

Figure 1 shows a global routing graph with two layers, one

for wiring in x-direction, the other for wiring in y-direction,
and via edges in between. We denote by m the number of
edges in G.

For global routing only nets with pins in di�erent tiles are
considered. For each net i, i = 1; :::; k, let Ni � V be the
set of vertices for which there exists a pin of the net in the
corresponding tile. We call the vertices of Ni the terminals
of net i. In addition for each net i and each edge e a width

wi;e is given. The width of a net may vary from edge to
edge because the width of a wire of a net may be di�erent
for di�erent layers.

For a given net i let Ti = fTi;1; :::; Ti;lig be the set of all
possible Steiner trees. This set might be restricted such
that it contains only a subset of all possible Steiner trees, for
example for timing critical nets only the Steiner trees with

minimum L1-length. We assume that given any nonnegative
lengths for the edges, the algorithm can query a subroutine
to compute a Steiner tree T 2 Ti of minimum length with
respect to these lengths.

In practice a heuristic which does not necessarily return the
optimum Steiner tree is often good enough. However, to
compute a lower bound on the optimum solution, a subrou-
tine which computes a lower bound of the minimum length

for all Steiner trees in Ti with respect to given nonnegative
lengths on the edges is needed.

For each edge e = fu; vg a capacity c(e) is computed ac-
cording to the number of free channels between the two tiles
corresponding to u and v, taking into account the tangle-
ment of the nets which have all pins either in u or in v.

Global routing asks for a Steiner tree Ti for each net i. Given
these Steiner trees the relative congestion of an edge e is
de�ned as �(e) :=

P
i:e2Ti

wi;e=c(e), and the maximum rel-

ative congestion is � := maxe2E �(e).

As a �rst approach we will consider the task to �nd a Steiner
tree Ti for each net i such that the maximum relative con-
gestion is minimized.

Later, we will consider other versions of the global routing
problem, for example to �nd Steiner trees such that the max-

imum relative congestion is at most 1 and the total netlength
is minimized.

With this notation the global routing problem can be formu-
lated as a mixed integer program:

min�

subject toP
i;j:e2Ti;j

wi;exi;j � � c(e) for e 2 E

liP
j=1

xi;j = 1 for i = 1; :::; k

xi;j 2 f0; 1g for i = 1; :::; k;
j = 1; :::; li

(1)

Instead of solving the mixed integer program directly, we

consider the linear programming relaxation by substituting
the last constraint in (1) by

xi;j � 0 for i = 1; :::; k;
j = 1; :::; li

We call the problem of �nding an optimal solution to this

linear program the fractional global routing problem and we

Figure 1: A global routing graph with two layers and via
edges.

denote the value of the optimum solution by ��. For any fea-
sible solution of this linear program the relative congestion

of an edge e is given by �(e) :=
P

i;j:e2Ti;j
wi;exi;j=c(e).

The dual of this linear program is given by

max
kP
i=1

zi

subject toP
e2E

c(e)ye = 1P
e2Ti;j

wi;eye � zi for i = 1; :::; k;
j = 1; :::; li

ye � 0 for e 2 E

(2)

By linear programming duality (a good overview can be
found in [11]) any feasible solution of the dual linear pro-
gram provides a lower bound on the optimum solution for
the fractional global routing problem, and for the optimum

solutions equality holds.
According to the second inequality in (2) zi has to be smaller
than the minimum length of all Steiner trees T 2 Ti with
respect to the length wi;eye for edge e. As

Pk

i=1
zi is max-

imized, zi can be substituted by this minimum value, and
by rescaling ye such that the �rst inequality in (2) holds we

get the following theorem:

Theorem 1. Given any nonnegative values ye for the

edges e 2 E, the expression

kP
i=1

min
T2Ti

P
e2T

wi;eyeP
e2E

c(e)ye

provides a lower bound on the optimum value of the frac-
tional global routing problem.
Moreover, there exist nonnegative values ye, e 2 E, such
that the expression above is equal to the optimum value of

the fractional global routing problem. 2

3. SOLVING THE FRACTIONAL GLOBAL
ROUTING PROBLEM

Figure 2 shows the approximation algorithm which solves
the fractional global routing problem for any given approx-
imation ratio �. The implementation (for example the vari-
ables used) is di�erent and will be discussed in Section 5.

The variables are initialized in lines 1 to 3. Æ is a constant.
The proof of the theorem in this section will show which
value to choose for Æ in order to get the desired approxima-
tion ratio. The same holds for and �.
The algorithm runs through several phases. A phase starts
in line 5 and ends in line 16. In the �rst phase we have

ji = 0 and therefore for each net i a minimal Steiner tree

2

(1) Set ye :=
Æ

c(e)
for all e 2 E.

(2) Set xi;j := 0 for i = 1; :::; k; j = 1; :::; li.
(3) Set ji := 0 for i = 1; :::; k.

(4) While

�P
e2E

c(e)ye < 1

�
(5) begin
(6) For i := 1 to k
(7) begin
(8) If ji = 0 or

P
e2Ti;ji

wi;eye > (1 + �)zi

(9) begin
(10) Find a minimal Steiner tree Ti;ji 2 Ti

for net i with respect to lengths
wi;eye, e 2 E.

(11) Set zi :=
P

e2Ti;ji

wi;eye.

(12) end
(13) Set xi;ji := xi;ji + 1.

(14) Set ye :=
�
1 + �

wi;e

c(e)

�
ye for all e 2 Ti;ji .

(15) end
(16) end

Figure 2: Approximation algorithm for fractional global
routing

Ti;ji 2 Ti with respect to lengths wi;eye, e 2 E is computed
(line 10). Variable ji stores the index of the Steiner tree
found for net i, and in variable zi the length of this Steiner
tree at the time it was computed is stored (line 11).

During a phase for each net i the variable xi;ji is increased
by one. To achieve that for each net i the variables xi;j ,

j = 1; :::; li, sum up to one, all variables xi;j are divided
by the total number of phases at the end of the algorithm.
Finally, in line 14 the dual variables ye are increased for all
edges used by the Steiner tree Ti;ji ; they are increased more
if the net uses a greater fraction of the capacity of the edge.
In subsequent phases a new minimal Steiner tree for net i

is only computed if the length of the last Steiner tree found
with respect to the updated edge lengths wi;eye, e 2 E,
has increased by more than (1 + �), where is a parame-
ter of the algorithm (line 8). This is a modi�cation of the
algorithm by Garg and K�onemann [7] for the maximum con-
current multicommodity ow problem. This idea was used

by Fleischer [6] to reduce the theoretical worst-case running
time for the maximum multicommodity ow problem.
Here we show that it does not increase the worst-case run-
ning time complexity, and results in Section 5 show that it
decreases the running time in practice.

Theorem 2. If there exists a solution for the fractional
global routing problem with maximum relative congestion
smaller than 1, the algorithm �nds a �-approximation in at
most

1 +
1

�0��
ln(1+�0)

�
m

1� �0

�

phases, if �0 = 1 �
�
1
�

� 1

3

and � =
q

1

(�0 � 1

4
)� 1

2
.

Moreover, the variables ye, e 2 E, provide a �{approximation
for the dual linear program.

The total number of phases of the algorithm depends on ��,

but usually in the application of global routing �� is not
arbitrarily small, for example we can assume �� � 1

2
.

To prove this theorem, we basically follow the proof by Garg
and K�onemann [7], but we repeat it here in order to show

that the modi�cations (a new Steiner tree has to be com-
puted only if its length has not increased by too much (line
8)) do not increase the worst-case running time complexity.

Proof. Let t be the total number of phases executed
by the algorithm. We will prove that if the algorithm had
stopped one phase before the last one, namely after t � 1
phases, the solution would have had the desired approxima-
tion ratio.

Let y
(p)
e be the value of variable ye after phase p. At the

beginning we have

P
e2E

c(e)y
(0)
e =

P
e2E

c(e) Æ
c(e)

= Æm (3)

When the dual variables ye are increased in line 14 after a
Steiner tree Ti;ji has been found, the expression

P
e2E

c(e)ye
increases by

P
e2Ti;ji

c(e)ye�
wi;e

c(e)
= �

P
e2Ti;ji

wi;eye

(here ye are the old values before the increment in line 14).
Whenever a minimal Steiner tree is found in line 10, its
length is stored in variable zi (line 11). In the following
phases a new Steiner tree for net i is only computed if the
length of the last Steiner tree found has increased by more

than (1 + �). Since ye is increased only during the algo-
rithm, we always have at the beginning of line 14:

P
e2Ti;ji

wi;eye � (1 + �)zi � (1 + �) min
T2Ti

P
e2T

wi;eye;

which means that at the end of phase p we have:

P
e2E

c(e)y
(p)
e �

P
e2E

c(e)y
(p�1)
e

+ �(1 + �)
kP

i=1

min
T2Ti

P
e2T

wi;ey
(p)
e :

(4)

For brevity, we set �0 := �(1 + �). By linear programming

duality (Theorem 1) we have

�
�
�

kP
i=1

min
T2Ti

P
e2T

wi;ey
(p)
e

P
e2E

c(e)y
(p)
e

:

Using this inequality, inequality (4) can be rewritten

P
e2E

c(e)y
(p)
e �

P
e2E

c(e)y
(p�1)
e + �0��

P
e2E

c(e)y
(p)
e ;

which can be transformed to

X
e2E

c(e)y
(p)
e �

1

1� �0��

X
e2E

c(e)y
(p�1)
e :

3

With equation (3) we get:

P
e2E

c(e)y
(p)
e �

Æm

(1� �0��)p

=
Æm

(1� �0��)

�
1 +

�0��

1� �0��

�p�1

�
Æm

(1� �0)

�
1 +

�0��

1� �0

�p�1

�
Æm

(1� �0)
e
�0��(p�1)

1��0 :

(5)

For the last inequality the fact 1 + x � ex for x � 0 is used.

An upper bound on the relative congestion of an edge e can
now be derived: Suppose edge e is used � times by some
tree, and let the jth increment in the relative congestion of
edge e be aj :=

wi;e

c(e)
for the appropriate i. After rescaling

the variables xi;j , the relative congestion of edge e is �(e) =Ps

j=1
aj=(t�1). Since y

(0)
e = Æ

c(e)
and y

(t�1)
e < 1

c(e)
(because

the condition in line 4 still holds before the last phase is
executed) and since

y
(t�1)
e =

Æ

c(e)

sY
j=1

(1 + �
0
aj);

we get

Æ

c(e)

sY
j=1

(1 + �
0
aj) �

1

c(e)
:

As (1 + �)a � 1 + �a for 0 � a � 1 (the expression (1 + �)a

is convex in a, 1 + �a is linear, and equality holds for a = 0
and a = 1), it follows that

(1 + �
0
)

Ps

j=1
aj
�

1

Æ
;

and hence we get

�(e) =

Ps

j=1
aj

t� 1
�

ln1+�0
�
1
Æ

�
t� 1

: (6)

Since
P

e2E
c(e)y

(t)
e � 1, solving inequality (5) with p = t

for � gives a lower bound on the optimum solution value:

�� �
1� �0

�0(t� 1)
ln

�
1� �0

Æm

�
;

from which together with (6) we get an upper bound on the

approximation ratio �:

maxe2E �(e)

��
�

ln(1+�0)
�
1
Æ

�
t� 1

1� �0

�0(t� 1)
ln

�
1� �0

Æm

�

=
�0

(1� �0) ln(1 + �0)

ln
�
1
Æ

�
ln
�
1��0

Æm

� :

If Æ is now chosen to be Æ :=
�

m
1��0

�� 1

�0

we get

ln
�
1
Æ

�
ln
�
1��0

Æm

� = 1

1� �0

such that

� �
�0

(1� �0)2 ln(1 + �0)

�
�0

(1� �0)2(�0 � �02

2
)

�
1

(1� �0)3
:

Given a desired approximation ration � we choose �0 such
that � = 1

(1��0)3
and � such that �0 = �(1 + �). Since

maxe2E �(e) � �� we get from (6) that

�
�
�

ln1+�0
�
1
Æ

�
t� 1

;

which means that the maximumnumber of phases is bounded
by:

t � 1 +
ln1+�0

�
1
Æ

�
��

= 1 +
1

�0��
ln1+�0

�
m

1� �0

�
:

2

Interestingly, this algorithm does not only minimize the max-
imum relative congestion of the edges. If the algorithm were
run on two completely separate regions of a chip, it would

minimize the maximum relative congestion on each of these
regions. In total the number of congested edges is much
smaller and thus it helps to �nd the congested regions where
the placement needs to be changed.

4. MINIMIZING THE TOTAL NETLENGTH
Minimizing the maximum relative congestion is not the only
objective in global routing. Here we show how to mod-
ify the algorithm described in Section 3 such that the total

netlength is considered and minimized subject to the con-
dition that the maximum relative congestion of the edges is
at most 1. We follow the idea by Garg and K�onemann [7]
for the minimum cost multicommodity ow problem.

In addition to the capacity c(e) for each edge e = fu; vg
the L1-length l(e) is given, that is, for an edge in x- or
y-direction the distance between the midpoints of the tiles
corresponding to u and v. Let L be a target for the total
netlength; then the constraint

kP
i=1

liP
j=1

 P
e2Ti;j

l(e)

!
xi;j � �L (7)

is added to the linear program (1). This constraint is very

similar to the capacity constraints for the edges, the �rst
constraint in (1), and the algorithm can be modi�ed to treat
this new constraint in the same way as the capacity con-
straints. To minimize the total netlength, we want L to be
as small as possible such that �, the maximum relative con-
gestion, is at most 1. This is achieved by binary search over

L.

4

(1) Set ye :=
Æ

c(e)
for all e 2 E and yL := Æ

L
.

(2) Set xi;j := 0 for i = 1; :::; k; j = 1; :::; li.
(3) Set ji := 0 for i = 1; :::; k.

(4) While

�P
e2E

c(e)ye + LyL < 1

�
(5) begin
(6) For i := 1 to k
(7) begin
(8) If ji = 0 orP

e2Ti;ji

(wi;eye + l(e)yL) > (1 + �)zi

(9) begin
(10) Find a minimal Steiner tree Ti;ji 2 Ti

for net i with respect to lengths
(wi;eye + l(e)yL), e 2 E.

(11) Set zi :=
P

e2Ti;ji

(wi;eye + l(e)yL).

(12) end
(13) Set xi;ji := xi;ji + 1.

(14) Set ye :=
�
1 + �

wi;e

c(e)

�
ye for all e 2 Ti;ji .

Set yL :=

1 + �

P
e2Ti;ji

l(e)

L

!
yL.

(15) end
(16) end

Figure 3: Approximation algorithm for fractional global
routing regarding the total netlength.

For the dual of the linear program an additional dual vari-
able yL for constraint (7) is needed. Then the dual linear
program is given by:

max
kP

i=1

zi

subject toP
e2E

c(e)ye + LyL = 1P
e2Ti;j

(wi;eye + l(e)yL) � zi for i = 1; :::; k;
j = 1; :::; li

ye � 0 for e 2 E

yL � 0

Figure 3 shows the modi�ed algorithm. The lines which
have been modi�ed have a bold number.

It is also possible to modify the algorithm such that the total
weighted netlength is minimized, where a weight according
to the timing criticality for each net is given. The additional
modi�cations of the algorithm are straightforward.

5. COMPUTATIONAL RESULTS
We have implemented the algorithm in C. All runs are on
an IBM RISC System/6000 Model 260. The global routing
algorithm has been used together with a local router in the
routing package XRouter (see [8], [9] and [16]) for several

IBM processor chips.

Instead of having a variable xi;j for each possible Steiner
tree (which would be impossible because of memory limita-
tions), only one variable for each Steiner tree generated by
the subroutine in line 10 is needed. These Steiner trees are

simply stored in a list.

number average
of global number average edge
routing of pins capacity

Chip grid size nets per net x y z

chip1 256 x 252 506884 3.113 124 119 29

chip2 313 x 309 263563 2.834 62 57 40

chip3 87 x 310 68048 2.715 18 24 40

Table 1: Characteristics of chips.

For computing the Steiner trees we use a subroutine which

computes the optimum Steiner tree for 2- and 3-terminal
nets. For nets with more terminals it is a heuristic: It com-
putes the Steiner points of the minimal Steiner tree with
respect to L1 - length (see [8]), then performs a Dijkstra
search, using the Steiner points as additional targets. How-
ever, these Steiner points do not necessarily have to belong

to the Steiner tree, as antennas are removed in the end.

The condition in line 4 is not checked. Instead, the algo-
rithm stops when a desired maximum relative congestion is
achieved. Since Æ is relevant for the stopping condition only,
it can simply be set to 1.

Table 1 shows some chips with their grid size, number of
global routing nets (nets with pins in di�erent tiles), average

number of pins per net and average capacity for the edges in
x-, y- and z-direction. chip1 is a chip used for telecommu-
nication, chip2 is a follow{up of the Power3 microprocessor,
and chip3 is part of the S/390 processor chipset.

Table 2 shows the running times of the approximation algo-
rithm for these chips and how the maximum relative con-

gestion and the lower bound improve during the algorithm.
Our experiments show that large numbers for � reduce the
running time: We chose � between 0.6 and 2.0 and between
7 and 10.

Table 3 shows the running times for chip3 if is set to 0,
which means that in each phase all nets are routed. The

running time increases drastically, but the result does not
improve much. With the values we chose for , in average
only about 20% of all nets are routed in one phase.

We compared the algorithm with the following rip-up and
reroute algorithm: In the �rst phase each net is routed with
minimum L1-length. The length of the overloaded edges is
increased by a very small value, such that the total number

of overloaded edges used is minimized as a second objective
for the case that there are several routes of minimum L1-
length.

In a second phase the congestion of overloaded edges is re-
duced by rerouting all segments crossing an edge with maxi-
mum overload and �nally exchanging that segment for which

the length increased by as little as possible. When segments
are rerouted edges with the maximum overload are either
forbidden or the edges have high exponential cost as a func-
tion of their congestion.

For chip1 this rip-up and reroute algorithm failed and in-
creased the netlength by more than 14 % starting from the

minimum netlength (each net routed separately), whereas
the approximation algorithm found a solution with the to-
tal netlength being only 11% greater than the minimum
netlength. Table 4 shows the running times for this chip
for the case that L was set to the minimum netlength which
was 530.75 m.

On easy instances, for example chip2 routing each net with

5

maximum running
number relative lower time

Chip of phases congestion bound (in seconds)

chip1 5 1.000 0.707 10336
10 0.962 0.823 30313
15 0.952 0.857 58606
20 0.952 0.872 87458
25 0.951 0.882 119951

chip2 5 1.238 0.368 2024
10 0.943 0.519 5285
15 0.886 0.585 9336
20 0.851 0.619 13881
25 0.827 0.641 19040

30 0.833 0.657 24236
35 0.857 0.669 28676
40 0.875 0.679 35213

chip3 5 1.329 0.535 253

10 1.122 0.737 568
15 1.079 0.795 1001
20 1.044 0.822 1623
25 1.017 0.836 2587
30 1.000 0.845 3388
35 0.979 0.854 4228

40 0.979 0.859 5634

Table 2: Running times: minimizing the maximum relative
congestion.

maximum running
number relative lower time

Chip of phases congestion bound (in seconds)

chip3 5 1.236 0.543 668
10 1.094 0.749 1906
15 1.074 0.800 3732
20 1.041 0.822 6374

25 1.014 0.837 8392
30 0.993 0.847 14063
35 0.977 0.854 18421
40 0.965 0.858 23076

Table 3: Running times with = 0.

minimum L1-length gave almost a feasible solution. In this

case the running time of the approximation algorithm was
much higher and there was almost no improvement in the
quality of the solution.

The computational results also show that the time needed
for a phase increases as the algorithm proceeds. The reason
is the following: The dual variables ye increase more for
highly congested edges and these edges build up barriers
which have to be broken by the Dijkstra search for those

nets which need to cross these barriers and hence more nodes
have to be labeled.

After solving the fractional global routing problem, random-
ized rounding is applied. For each net i independently one
Steiner tree is chosen at random, and the probability that

Steiner tree Ti;j is chosen is xi;j . For details see [14], [15].
Figure 4 shows the relative congestion of the edges after
they had been sorted with respect to increasing congestion
for the solution of the fractional global routing problem and
after randomized rounding for chip2. The maximum rela-
tive congestion increased only on very few edges, and by

using the rip-up and reroute algorithm the congestion could

maximum total running
number relative netlength time

Chip of phases congestion (in meter) (in seconds)

chip1 5 1.3008403 568.31 6587
10 1.0696429 639.51 15466
15 1.0210526 628.99 24747
20 0.9938596 605.69 33226
25 0.9834568 588.39 39272

Table 4: Running times: minimizing the total netlength.

0 50000 100000 150000 200000
edges

0.0

0.5

1.0

co
ng

es
tio

n

(a)

0 50000 100000 150000 200000
edges

0.0

0.5

1.0

co
ng

es
tio

n

(b)

Figure 4: Congestion of edges for the solution of the frac-
tional global routing problem (a) and after randomized
rounding (b) for chip2.

be reduced to almost the value of the solution for the linear

program in a few seconds.

6. CONCLUSIONS
We have presented an approximation algorithm for solv-
ing the linear programming relaxation of the global routing

problem. If a chip cannot be routed, this algorithm will give
a proof by the dual solution, which also gives a lower bound
on the maximum relative congestion. This is one of the
advantages over many other algorithms for global routing.

Our computational results show that the algorithm is su-

perior on diÆcult instances where rip-up and reroute algo-
rithms fail.

7. ACKNOWLEDGEMENTS
Many people contributed ideas for the global routing pro-

gram and helped to implement it. The author would like to
thank especially Karl K�ohler and J�urgen Werber.

8. REFERENCES

[1] K. Aoshima and E. S. Kuh. Multi-Channel Optimiza-
tion in Gate-Array LSI Layout. In Proceedings ISCAS,
pages 1005{1008, 1983.

[2] R. J. Brouwer and P. Banerjee. PHIGURE: A Par-

allel Hierarchical Global Router. In Proceedings of
the 27th ACM/IEEE Design Automation Conference,
pages 650{653, 1991.

[3] R. C. Carden IV and C.-K. Cheng. A Global Router
Using an EÆcient Approximate Multicommodity Mul-
titerminal Flow Algorithm. In Proceedings of the 28th
ACM/IEEE Design Automation Conference, pages

316{321, 1991.

6

[4] J. Cong and B. Preas. A New Algorithm for Stan-

dard Cell Global Routing. Integration, the VLSI jour-
nal, 14:49{65, 1992.

[5] W.-M. Dai and E. S. Kuh. Simultaneous Floor Plan-
ning and Global Routing for Hierarchical Building-
Block Layout. IEEE Transactions on Computer-Aided
Design, 6(5):828{837, 1997.

[6] L. K. Fleischer. Approximating Fractional Multicom-
modity Flow Independent of the Number of Commodi-
ties. In Proceedings of the 40th Annual Symposium on

Foundations of Computer Science, pages 24{31, 1999.

[7] N. Garg and J. K�onemann. Faster and Simpler Algo-
rithms for Multicommodity Flow and other Fractional
Packing Problems. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, pages
300{309, 1998.

[8] A. Hetzel. Verdrahtungsprobleme im VLSI-Design:
Spezielle Teilprobleme und ein sequentielles L�osungs-

verfahren. Ph. D. Thesis (in German), University of
Bonn, 1995.

[9] A. Hetzel. A Sequential Detailed Router for Huge Grid
Graphs. In Proceedings of the Conference "Design, Au-
tomation and Test in Europe", pages 332{338, 1996.

[10] J. Huang, X.-L. Hong, C.-K. Cheng, and E. S. Kuh. An
EÆcient Timing-Driven Global Routing Algorithm. In
Proceedings of the 30th ACM/IEEE Design Automation
Conference, pages 596{600, 1993.

[11] B. Korte and J. Vygen. Combinatorial Optimization:

Theory and Algorithms. Springer{Verlag, Berlin, 2000.

[12] G. Meixner and U. Lauther. A New Global Router
Based on A Flow Model and Linear Assignment. In
Proceedings of the International Conference on Com-
puter Aided Design, pages 44{47, 1990.

[13] T. Okamoto, M. Ishikasa, and T. Fujita. A New Feed-
Through Assignment Algorithm Based on A Flow
Model. In Proceedings of the International Conference

on Computer Aided Design, pages 775{778, 1993.

[14] P. Raghavan and C. D. Thompson. Randomized
Rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365{374,
1987.

[15] P. Raghavan and C. D. Thompson. Multiterminal
global routing: A deterministic approximation. Algo-
rithmica, 6:73{82, 1991.

[16] A. Rohe and M. Zachariasen. Rectilinear Group Steiner
Trees and Application in VLSI{Design. Technical Re-

port, University of Bonn. 2000.

[17] E. Shragowith and S. Keel. A Global Router Based on
a Multicommodity Flow Model. Integration, the VLSI
journal, 5:3{16, 1987.

7

	Main Page
	ISPD'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

