
A Recursive Algorithm for Low-Power Memory Partitioning

Luca Benini � Alberto Macii z Massimo Poncino z

� Universit�a di Bologna
Bologna, ITALY 40136

z Politecnico di Torino
Torino, ITALY 10129

Abstract

Memory-processor integration o�ers new opportunities for re-
ducing the energy of a system. In the case of embedded systems,
one solution consists of mapping the most frequently accessed
addresses onto the on-chip SRAM to guarantee power and per-
formance e�ciency. This option is especially e�ective when
memory access patterns can be pro�led and studied at design
time (as in typical real-time embedded systems).
In this work, we propose an algorithm for the automatic par-
titioning of on-chip SRAM in multiple banks that can be inde-
pendently accessed. Starting from the dynamic execution pro�le
of an embedded application running on a given processor core,
we synthesize a multi-banked SRAM architecture optimally �t-
ted to the execution pro�le. The algorithm provides a globally
optimum solution to the problem under realistic assumptions on
the power cost metrics, and with constraints on the number of
memory banks.
Results, collected on a set of embedded applications for the ARM
processor, have shown average energy savings around 42%.

1 Introduction
An increasingly large fraction of today's embedded System-on-
Chips (SoCs) employs core processors as basic computational
units. Processors are highly exible; hence, their design time
and cost can be amortized by re-using them in a wide variety
of applications. Unfortunately, this decisive advantage of core
processors is counter-balanced by some drawbacks. Most no-
tably, processors are power-ine�cient with respect to dedicated
architectures [1]. This ine�ciency is a fundamental consequence
of the trade-o� between exibility and power that must be ex-
plored at every step of the design ow.
One of the key issues in the design of energy-e�cient processor-
based architectures for embedded systems is the power dissi-
pated by memories. Processors are very demanding in terms
of memory: They require memories for both manipulating data
and fetching instructions. Several authors have pointed out that
the power consumed in memories (and memory-related activi-
ties) can take a dominant fraction of the power budget of an
embedded system for data-dominated applications [2]. Many
power optimization approaches speci�cally tackle the memory
power challenge in SoC design. The common denominator in
most memory energy minimization techniques is to dedicate sil-
icon real estate to memory and to integrate a memory array on
the same die as the processor.

Accessing on-chip memory is much faster and power-e�cient
than relying exclusively on o�-chip memories [3, 4].
The possibility of integrating processor and memory onto the
same chip o�ers new opportunities for energy-e�cient design.
Memory size and organization can be tailored to application re-
quirements, and application-speci�c memory architectures can
be developed to minimize memory power for a given embed-
ded application. Since hand-crafting application-speci�c com-

ponents for every design can be excessively time-consuming,
memory power optimization should be automated. The task
of memory power optimization tools for embedded systems is
to create low-power memory architectures customized for a spe-
ci�c core and a speci�c system functionality (i.e., an embedded
application). This is in sharp contrast with general-purpose sys-
tems, where the main objective of memory architecture design
is robustness and exibility.
On-chip caches are perhaps the best known architectural opti-
mization technique in memory design. Caches exploit the prin-
ciple of locality in memory access patterns [5], and provide a
exible way to store most frequently accessed memory locations
on-chip, where they can be e�ciently read and written. In em-
bedded systems, a valid alternative to caches is o�ered by on-
chip SRAM, often called scratch-pad RAM. In this architecture,
the most frequently accessed addresses are statically mapped
onto scratch-pad RAM to guarantee power (and performance)
e�ciency. Scratch-pad RAMs are particularly useful in real-
time embedded systems for data-intensive applications, where
access patterns can be pro�led and studied at design time, and
where caches are known to perform suboptimally and to reduce
predictability in real-time performance.
In this paper, we focus on automatic optimization of on-chip
scratch-pad RAMs for embedded SoCs. We start from the dy-
namic execution pro�le of an embedded application running on
a given processor core, and we synthesize a multi-banked SRAM
architecture optimally �tted to such pro�le. The rationale in our
approach is to partition scratch-pad memory in multiple banks
that can be independently accessed. Power-per-access is reduced
as the size of a memory bank is decreased. On the other hand, as
the number of banks increases, there is an unavoidable hardware
overhead caused by: (i) Duplication of addressing and control
logic; (ii) Increased communication resources required to trans-
fer information. Such an overhead manifests itself in increased
power, access time and area that prevents arbitrarily �ne par-
titioning. Hence, we need to �nd an optimal partition with a
tight constraint on the maximum number of memory banks.
The theoretical contributions of this work are: (i) The formu-
lation of the minimum-power partitioning problem with con-
strained number of memory banks; (ii) The development of an
algorithm that �nds the globally optimum solution to the prob-
lem under realistic assumptions on the power cost metrics. Ex-
perimental validation is carried out on a set of embedded appli-

Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.
ISLPED'00, Rapallo, Italy.
permission and/or a fee.
republish, to post on servers or to redistribute to lists, requires prior specific
bear this notice and the full citation on the first page. To copy otherwise, to
not made or distributed for profit or commercial advantage and that copies
personal or classroom use is granted without fee provided that copies are
Permission to make digital or hard copies of all or part of this work for

Bologna, Italy 40136 Torino, Italy 10129
*Universita di Bologna **Politecnico di Torino

Luca Benini* Alberto Macii** Massimo Poncino**
A Recursive Algorithm for Low-Power Memory Partitioning

78

cations for the ARM core processor. An average power reduction
of 41.7% has been achieved.
The manuscript is organized as follows. Section 2 introduces and
motivates memory partitioning, while Section 3 briey reviews
related work. The partitioning algorithm is described in detail
in Section 4. Finally, Section 5 reports experimental results.

2 Memory Partitioning for Low Power
A static random access memory (SRAM) can be easily inte-
grated onto the same chip as the processor and other ancil-
lary logic circuits, because it does not require additional fab-
rication steps and dedicated technology. For this reason, em-
bedded SRAMs are much more common in SoC designs than
non-volatile memories and DRAMs, even if they are much less
dense. In this work, we then focus on embedded SRAMs, al-
though embedded DRAM technology is actively developed and
commercially available, and it will probably become mainstream
in the next few years [4].
SRAMs can be made available as hard macros by silicon ven-
dors [6]. As an alternative, several EDA companies provide
soft RAM macro compilers that can be tuned to a given tech-
nology, and are used by designers to automatically instantiate
SRAM arrays with many di�erent sizes and organizations [7,
8]. Due to their relatively large cell area, on-chip memory
arrays are limited in size to a fraction of one megabyte. In
0:25�m technology, SRAM soft macros are generally smaller
than 128 Kbytes [7] (hard macros are more densely packed, and
they reach 256 Kbytes [6]). For the sake of explanation, we will
assume the availability of a library of synchronous, single-ported
SRAM memory cuts, with input/output data width of 32 bits
(a four-bytes word).
Fortunately, the most frequently accessed addresses in many
non-trivial embedded applications can �t into a relatively small
memory space. We will assume that the designer (or a dedicated
design tool [9]) speci�es a range (alo; ahi) of memory addresses
that should be mapped onto the on-chip SRAM. A dynamic
access pro�le, obtained through simulation, is also available.
For each address alo � i � ahi, it gives the number of reads
r(i) and writes w(i) to the address during the execution of a
sample run of the target embedded application. The pro�le can
be obtained by standard instruction-level simulators available
for all processor cores. In this work, we will consider a 32-bit
ARM processor. In a traditional approach, all addresses in the
range are mapped to a single SRAM memory array, the smallest
array in the library which is large enough to contain the speci�ed
range, as shown in Figure 1(a).

Data
Addr

R/W
MS

32
32

Addr

Reads 32
32

M
S

R
/W

D
a

ta

A
d

d
r

A
d

d
r

A
d

d
r

D
a

ta

D
a

ta

M
S

R
/W

M
S

R
/W

4K28K

Select

4K28K

(a) (b) (c)

64 K

32K 32K

ARM
Proc

ARM
Proc

Figure 1: Memory Partitioning Example.

This solution is not optimal from the power dissipation view-
point. Assume, for the sake of illustration, that the dynamic
access pro�le is that shown in Figure 1(b). A small subset of
the addresses in the range is very \hot" (i.e., it has large r(i)

values for all its addresses). A power-optimal partitioned mem-
ory organization is shown in Figure 1(c). It consists of three
memories and a memory selection block. Two relatively large
cuts contain the top and bottom part of the range, while the hot
addresses are stored into a small memory. The average power
in accessing the memory hierarchy is decreased, because a large
fraction of accesses is concentrated on a small, power-e�cient
memory.
It is important to notice that, in our work, we are making the
following assumptions:

(i) Energy per access monotonically increases with memory
size;

(ii) When the processor is accessing a location whose address
is outside the range contained in a memory bank, the
decoder de-asserts its memory select (MS) input. If the
MS is inactive, the bank consumes negligible power, and
its data outputs are three-stated.

Also, observe that we need to account for the power consumed in
the entire partitioned memory system, i.e., the address and data
buses, the decoder and the control signals. These components
introduce a non-negligible overhead on power consumption that
must be o�set by the savings given by bank partitioning. Never-
theless, we expect savings to be signi�cant especially when the
access pro�le is highly non-uniform and high-access addresses
are clustered into small banks.
This simple example helps in clarifying why memory partition-
ing can be advantageous. In order to automate memory par-
titioning, we need to rigorously de�ne cost metrics and search
space, and to formulate an optimization algorithm that can e�-
ciently solve realistic instances of the problem. These issues will
be addressed in Section 4. In the next section, we will briey
survey related work on memory optimization.

3 Related Work
Memory partitioning for low power has been investigated by sev-
eral authors in the past. Farrahi et al. [10] �rst studied memory
partitioning to exploit sleep mode operation. This work is in
the context of board-level memory optimization where memory
blocks are large DRAM chips that can be powered down when
they are not storing live program variables, thereby eliminating

memory refresh power. Furthermore, it is assumed that acti-
vating an inactive memory incurs a signi�cant power cost. The
technique presented by Farrahi et al. tries to cluster data into
memories so that memory chips are transitioned in and out of
the shut-down mode as little as possible.
On-chip memory partitioning solutions have been analyzed by
several authors. Su and Despain [11], Ko et al. [3], and Shiue
and Chakrabarty [12] studied power-e�cient cache organiza-
tions. They identi�ed cache sub-banking as an e�ective tech-
nique to reduce cache power consumption. These works are
explorative in nature and they do not provide any automatic
technique to de�ne an application-speci�c cache partition.
Our work is most closely related to the approach by Coumeri and
Thomas [13] to embedded SRAM optimization for low power.
They described a partitioned SRAM model (called segmented
con�guration), which is analogous to ours, and studied power
modeling for partitioned memories in detail [14]. However, they
did not propose any automatic search techniques for �nding op-
timal partitioning: They just focused on providing design space
exploration support to system designers.
Finally, a few researchers have realized that memory power can
be aggressively reduced by sinergically optimizing embedded ap-
plication and memory hierarchy [15, 2, 16]. Even though this

79

approach holds good promise, it requires a substantial amount of
human intervention, and automatic optimization is restricted to
very regular dataow computations (such as array operations).
In contrast, our technique can be applied to any application and
data access pattern, as long as meaningful memory pro�ling in-
formation can be collected.

4 Optimal Recursive Partitioning
In this section, we formulate and solve the memory partitioning
problem in the practical setting described in Section 2. With-
out loss of generality, we assume that the range of contiguous
addresses mapped onto on-chip SRAM goes from 0 to M � 1.
Memory is word-addressable and the word width is 32 bits. The
total memory size is then 4 �M bytes. A hard bound, Max, is
set on the maximum number of memory banks allowed in the
partitioned memory architecture.
The dynamic access pro�le for the target embedded applica-
tion is given as a pair of arrays r = [r0; r1; : : : ; rM�1], w =
[w0; w1; : : : ; wM�1], where ri is the number of reads to address
i, and wi is the number of writes to address i. The total energy
consumed by a memory containing a given range of addresses is
a technology-dependent metrics that can be expressed as a func-
tion MemE(lo; hi;w; r), where lo and hi are the maximum and
minimum address in the range. Furthermore, we also de�ne an
array � = [0; �1; : : : ; �Max-1], that expresses the energy over-
head of adding one more bank to a partitioned memory. In other
words, �i is the amount of additional energy that we expect to
spend in selection logic and memory buses when moving from
a memory organization with i banks to one with i + 1 banks.
The power savings obtained by partitioning must compensate
the overhead. Clearly, the exact value of the energy overhead is
not known before the memory is completely designed. Hence,
� just provides a conservative bound: It will be used to prevent
partitioning when power savings are dubious.
A memory partition is a set of memory banks that can be in-
dependently selected. Any address 0 � i < M is stored into
one and only one bank. The total energy consumed by a par-
titioned memory is the sum of the energy consumed by all its
banks. Given these de�nitions, we are now able to formulate
the memory partitioning problem:
Given w, r, � and MemE, �nd a partition of a M-word mem-
ory with at most Max banks that minimizes the total energy.
Before introducing an e�ective solution to memory partition-
ing, we focus our attention on the cost metrics employed for
estimating memory energy.

4.1 Cost Metrics
The cost function used to drive the partitioning process must
properly evaluate the two components of MemE, that is, mem-
ory energy dissipation per cycle and dynamic access pro�le.
Memory energy dissipation per cycle requires energy models.
Among those available in the literature, we have adopted the
one proposed by Coumeri and Thomas [14]. Such model is em-
pirically derived from simulation and, unlike other analytical
models, it does not use technological or electrical quantities as
parameters; rather, it is expressed in terms of high-level param-
eters such as size and bit-width.
The model consists of distinct equations for read and write oper-
ations, broken into individual expressions for the various struc-
tural components (cells, bu�er, sense amps, ATD, control logic).
The memory access pro�le for a given application can be com-
puted using any instruction-level simulator provided with the
chosen processor core. As discussed in Section 4, the distinc-

tion between read and write accesses is necessary because of the
di�erent energy cost of the two operations.
The total memory energyMemE is then given by the energy cost
per access of a memory with given bounds, hi, lo, multiplied by
the number of accesses to addresses within those bounds.
In formula, MemE is expressed as:

MemE(lo; hi;w; r) = Er(hi� lo) �
P

hi

i=lo
r[i]+

Ew(hi� lo) �
P

hi

i=lo
w[i]

where Er(d) (Ew(d)) represents the energy consumption for a
read (write) access in a memory of d words.
The expression of MemE in Equation 4.1 is monotonically in-
creasing with respect to the value of (hi� lo), i.e., the memory
size. This is becauseMemE is obtained by multiplying two func-
tions of memory size that increase monotonically: The energy
for a read/write access and the total cumulative read/write ac-
cess counts. This monotonic behavior of the cost function is
of fundamental importance for the the partitioning algorithm
described in the next section.

4.2 Partitioning Algorithm
The search space of all possible memory partitions can be easily
enumerated by observing that a partition is completely de�ned
by a cut set, i.e., a set of addresses that identify memory bank
boundaries. For a Max-way partition of a M-word memory, we
have Max � 1 boundary addresses. Clearly, this number grows
very rapidly with Max, namely, as a binomial coe�cient of M
over Max � 1. It is also easy to prove by counter-example that
total energy is not a single-minimum function over the solution
space: There are many local minima. These observations seem
to indicate that the memory partitioning problem can be solved
only with heuristic techniques, such as genetic algorithms or
randomized search, that do not guarantee global optimality.
Fortunately, a careful analysis of the structure of the problem
and its cost metrics reveals that it is possible to �nd the globally
optimum solution with an algorithm that has exponential worst-
case run-time (i.e., in the worst case, it exhaustively explores
all possible partitions), but performs very well in practice. The
algorithm �nds the optimum cut by recursive bi-partitioning,
and it relies on two key properties to speed-up the search:

(i) The total energy consumption of a memory bank mono-
tonically increases with increasing memory size, if the
addresses stored in a larger memory are a superset of the
addresses stored in a smaller memory.

(ii) The number of memory banks, Max, in a partitioned ar-
chitecture is much smaller than the total memory size
M .

Consider the simple case of Max = 2 (bi-partitioning). The
optimum solution can be found in O(M) time by iteratively
moving the lower bound, j, of the �rst bank from 1 to M �

2. The total memory energy can be computed as TotE2 =
MemE(0; j;w; r) +MemE(j + 1;M � 1;w; r). A bi-partition
is considered better than the single-bank solution with energy
TotE1 if TotE2 < TotE1 � �1.
The number of iterations can be reduced if, for a given j, we �nd
thatMemE(0; j;w; r) � TotE1��1. This early stopping condi-
tion is motivated by property (i) above: If a memory containing
the range of addresses [0; j] consumes more than TotE1 � �1,
further iterations can be avoided because MemE(0; k;w; r) �
MemE(0; j;w; r) for every k > j. The simple case of two-way
partitioning indicates that property (i) can be e�ectively ex-
ploited to create bounds and prevent the exploration of search
space regions that do not contain the global optimum.

80

4.3 Multi-Way Partitioning
The extension to multi-way partitioning leverages property (ii)
of the previous section: The algorithm moves from coarse par-
titions to �ner ones that have a larger hardware overhead. The
coarse-granularity solutions are exploited to tighten the bounds
on the search of �ne-granularity partitions. The partitioning al-
gorithm is therefore invoked Max times, to compute partitions
with an increasingly larger number of blocks.
The pseudo-code of the partitioning algorithm is shown in Fig-
ure 2. Procedure Part receives as input the recursion index n,

the current maximum depth of the recursion Max, the starting
memory address of the current block to be partitioned Init-
Cut, the current total energy TotEnergy, and the current en-
ergy budget Budget. The procedure is �rst invoked as Part

(1; 2; 0;MemE(0,M,r,w); 0), i.e., with initial budget equal to the
cost of a monolithic memory of M words, and with total energy
initialized to 0.

1 Part (n,Max,InitCut,Budget,TotEnergy) f
2 Budget {= �n�1;
3 if (Budget < 0) return (0);
4 for (i = 0 to Max) f
5 CurrTotE = 0;
6 MemEnergy = MemE(InitCut,cut,r,w);
7 NewB = Budget - MemEnergy;
8 if (NewB < 0) return (0);

else f
9 CurrTotE = TotEnergy + MemEnergy
10 if (n == Max) f
11 CurrTotE += MemE(InitCut+1,M,r,w);
12 if (CurrTotE < MinEnergy &&
13 CurrTotE < Budget) f
14 MinEnergy = CurrTotE;
15 store current solution as best solution
16 pop current last selection

g
g else f

17 push current selection on solution stack
18 Part(n+1,Max,InitCut+1,NewB,CurrTotE);
19 pop current last selection

g
g

g
g

Figure 2: Recursive Partitioning Algorithm.

The algorithm is recursive; at a given recursion depth, it com-
putes the optimal partition (of up toMax blocks) of the memory
portion between Initcut and its upper limit M .
In Line 2, the currently available power budget, Budget, is re-
duced by a factor corresponding to the energy penalty due to
adding an extra memory bank. If this new budget becomes neg-
ative, no further solution can be found using n memory blocks,
and execution resumes at the upper recursion level (Line 3).
If some budget is still available, we start the exploration of all
possible partitions from the current cut InitCut to the end of
the memory (Line 4). A local energy cost is initialized at each
iteration (Line 5), and the cost of the partition in the generic it-
eration MemEnergy is computed using the cost function MemE
(Line 6). The resulting cost is subtracted from the current bud-
get, and assigned to the budget of the iteration loop NewB
(Line 7). This \local\ budget is used to restrict the search
space (Line 8); the rationale here is that if the cost of the cur-
rently analyzed block ([InitCut,i]) exceeds the current budget,
it is useless to continue with this iteration. If this is not the
case, the current energy cost is added to the current total, and
considered for inclusion in a solution (Line 9)

If bottom of the recursion is reached(Line 10), the current so-
lution is completed by adding the cost of the remaining portion
of memory (from the current cut to the end { Line 11). This
complete solution can be stored as the new best solution if its
energy cost improves the current one and it does not exceed the
available budget (Lines 12 to 15). In order to continue in the
iteration of Line 4, we pop the last selection from the current
solution (Line 16).
The discovery of a new minimum allows us to further restrict
the search space, in terms of a reduction of the total budget.
This additional optimization is not shown in the pseudo-code
for the sake of readability.
If the recursion can proceed, we push the current index i onto
the solution stack (Line 17), and recur by adding another mem-
ory block. The current budget and current total energy of the
solution built so far are forwarded to the next recursion level
(Lines 18 and 19).
Although the cost function used in the algorithm is mainly an
energy cost, this is not a limitation. Additional constraints (e.g.,
area or delay), can be easily incorporated into the algorithm;
this would also help in further pruning the search space.

5 Experimental Results
The memory partitioning algorithm was tested within a design
ow based on the ARM processor. The ARM core family has
been speci�cally designed for embedded applications, and vari-
ous cores are provided as intellectual property (IP) macros for
integration in complex SoCs. Some cores include parts of the
memory hierarchy within the bounds of the IP macro (caches

and memory management units), while others just contain the
basic processor, and leave to the designer the responsibility (and
the freedom) of specifying the memory hierarchy. Since our pur-
pose is to synthesize a customized partitioned memory, in our
experiments we used the ARM7TDMI core that does not con-
tain any internal memory.

ARM
Mem

ARM

S

Mem Mem

Mem
Mem

Addr
Data
Addr

Data

(a) (b)

Figure 3: Floorplan Views: (a) Monolithic Memory; (b)
Partitioned Memory.

The physical view (i.e., oorplan and global routing) of the
processor-memory system with partitioned memory is shown in
Figure 3(b): The processor is placed facing the memory system,
the memory address and data buses, as well as control signals
run in a channel between two sets of memory banks facing each
other. Memory selection and decode logic is placed between
memory and processor. The placement of unpartitioned mem-
ory and processor is shown in Figure 3(a). Notice that the length
of the connections between memory and processor can be min-
imized in this case, because the two macro-cells can be placed
one in front of the other. This simple physical model is used as
a basis for specifying the values for the elements of the energy
penalty array �, and to set the maximum number of partitions
Max.

81

Benchmark Addr Energy Savings
Monolithic Best Partition [%]

[nJ] [nJ] Bank Structure

AdaptFilter 1757 2.08e-4 1.24e-4 Bank1: 109 rows x 128 columns 40.4
Bank2: 166 rows x 256 columns

Butterfly 3820 1.01-4 6.03e-5 Bank1: 227 rows x 128 columns 40.8
Bank2: 365 rows x 256 columns

Chaos 3696 8.18e-5 4.87e-5 Bank1: 203 rows x 128 columns 40.3
Bank2: 361 rows x 256 columns

Dft 15584 3.94e-4 2.41e-4 Bank1: 179 rows x 128 columns 38.8
Bank2: 1897 rows x 256 columns

Dhry 14781 2.56e-4 1.47e-4 Bank1: 454 rows x 256 columns 42.7
Bank2: 1395 rows x 256 columns

FilterBank 8829 7.20e-4 4.12e-4 Bank1: 165 rows x 256 columns 42.6
Bank2: 940 rows x 256 columns

IirDemo 988 1.61e-5 8.90e-6 Bank1: 89 rows x 64 columns 44.6
Bank2: 32 rows x 32 columns
Bank3: 195 rows x 128 columns

Integrator 4211 3.17e-4 1.87e-4 Bank1: 232 rows x 128 columns 40.9
Bank2: 411 rows x 256 columns

Interp 4025 4.57e-4 2.56e-4 Bank1: 223 rows x 128 columns 43.8
Bank2: 392 rows x 256 columns

Scramble 3873 4.50e-4 2.57e-5 Bank1: 145 rows x 128 columns 42.8
Bank2: 412 rows x 256 columns

Average 41.7

Table 1: Energy Comparison of Monolithic and Partitioned Memories.

In our experiments, Max = 4 (i.e., we allowed a maximum of
two memory banks on each side of the bus). This is a conser-
vative bound on partitioning, which is likely to be acceptable
by most designers. Array � is set to � = [0; 0:2; 0:15; 0:10].
Element �1 = 0:2 (i.e., 20% of the energy consumed by the
monolithic memory) is the largest because we expect a sizable
penalty in moving from the unpartitioned memory to the parti-
tioned solution. We need to create the selection control logic, to
place the memory banks around the bus channel, and to route
the bus and control wires. �2 = 0:15 is still fairly large because,
in moving from two banks to three banks, we need to add a bus
stub to the right of the �rst pair of banks. Finally, �3 = 0:10 is
the smallest, because the fourth bank just �lls the \empty slot"
below (or above) the third memory.
This simpli�ed physical model is obviously just one of the many
possible choices. The optimization algorithm is completely in-
dependent from it. Furthermore, notice that we set the values
of � in a conservative fashion. In a design ow based on state-
of-the art oorplanning, global routing and placement tools, the
penalties can be tightened and, possibly, more aggressive par-
titioning (Max > 4) could be considered. Again, this outlines
the exibility of our algorithm in adapting to di�erent physical
design scenarios and designer con�dence levels.
We have applied the memory partitioning algorithm to a set
of C benchmarks that represent typical embedded applications,
and that are distributed along with Ptolemy [17], a simulation
framework for HW/SW descriptions. ARMulator [18], a software
emulator for core processors of the ARM family, has then been
used to trace memory accesses

Results of the experiments are collected in Table 1. Column
Addr shows the number of distinct addresses used by each ap-
plication. Column Monolithic gives the energy cost of a single
memory block that contains all the program addresses. Column
Best Partition shows the results of the application of the parti-
tioning algorithm. In particular, column Energy gives the total
energy consumption of the partitioned memory, while column
Bank Structure provides the details on how the various memory
banks are organized.
Energy �gures are obtained using the formula for MemE dis-
cussed in Section 4.1, that is, as the product of the number of

memory accesses of a given program and the cost per access, as
returned by the model of [14].
Finally, column Savings gives the percentage energy savings of
the optimal solution with respect to the monolithic one.
The results are highly satisfactory, since the average energy sav-
ings is of 41.7% (maximum 44.6%) over the 10 benchmarks.
Notice that the energy �gures also include the wiring and logic
energy overhead given by �.
The execution time is obviously proportional to the number of
distinct addresses used by the program, and ranges from about
two minutes for the smallest benchmarks to about three hours
for the largest one (Dft). It is key mentioning that this rela-
tively large execution time provides an optimal solution, and
not just a heuristic local minimum. Moreover, it represents a
one-time cost because, for given a memory model and access
pro�le, the optimizer has to be run only once. Finally, the al-
gorithm runs with the smallest possible granularity, i.e, a single
memory word. In other terms, we do not restrict the sizes of
the memory banks a-priori (e.g., multiples of a minimum num-
ber of words). This choice is the only one that is guaranteed to
�nd the global optimum in the most general case. Obviously,
discretizing the search space with a minimum cut size would
sensibly cut run times, at the expense of the optimality.
From the table we notice that all the benchmarks but one have
an optimal solution consisting of two blocks. This is indeed
due to the quite conservative value of � used in the experi-
ments. Consider, for example, that partitioning into three mem-
ory blocks is estimated to have an overhead cost of 35% of the
cost of the monolithic memory block (�1 + �2).

To quantify the impact of the � we have run two additional
experiments. In the �rst one, we have compared the values
of Table 1, obtained with a value of � referred to as �0, to
the values obtained with a less conservative value of �, namely
�(�0:5) = [0:0; 0:15; 0:1; 0:05]. Results are shown in Table 2.
Column�0 reports the savings and the number of partitions of
Table 1. Column �(�0:5) shows the same quantities obtained
with the new value of�. We notice how, in several cases (shown
in boldface), the reduced overhead cost allows to increase the
number of memory blocks; in all the benchmarks, the larger
slack results in improved energy reductions.

82

In the second experiment, we have studied the sensitivity of
the partitioning algorithm to the penalty array � on a spe-
ci�c benchmark (namely, IirDemo). Starting from the reference
value of � (�0, represented by the middle bar in the chart of
Figure 4), we have progressively increased (bars on the right)
and decreased (bars on the left) the values of �. Each bar, la-
beled with ��X , refers to a �X% increase/decrease in � with
respect to the reference vector. For example,�+40 corresponds
to a penalty vector of [0:0; 0:28; 0:21; 0:14], where each value �i
has been increased by 40%.
Each bar is annotated with the energy saved by the partitioned
solution, and the number of partitions found, in brackets. A
hard bound set to 8 has been used in the experiment. As ex-
pected, the partitioning algorithm yields solutions of decreasing
quality as the penalty factor increases.

Benchmark �0 �(�0:5)

Max Savings Max Savings
[%] [%]

AdaptFilter 2 40.4 2 45.4
Butterfly 2 40.8 3 59.4
Chaos 2 40.3 3 46.9
Dft 2 38.8 2 61.3
Dhry 2 42.7 3 60.1
FilterBank 2 42.4 2 51.1
IirDemo 3 44.6 3 50.8
Integrator 2 40.9 3 59.9
Interp 2 43.8 3 60.4
Scramble 2 42.8 2 53.3

Average 41.7 54.8

Table 2: Energy Savings with Di�erent �'s.

Savings
 [%]

− 80 − 60 − 40 0

[3]

[3]
[3]

[3]

[2]

[2]

[2]

[2] [2]

64.9 %

56.6 %

48.4 %
44.8 % 44.6 %

26.8 %

7.6 %
1.9 %

Penalty
Factors + 60 + 80

0.6 %

− 20 + 20 + 40

Figure 4: Impact of � on the Achievable Savings.

6 Conclusions and Future Work
We have presented an algorithm for computing the minimum-
energy partition of an on-chip memory into multiple banks that
can be independently accessed. The partitioning is carried out
according to the dynamic memory access pro�le of an embedded
application. The algorithm can be constrained to the maximum
number of banks, and �nds the global optimum to the parti-
tioning problem. The hardware and wiring overhead due to
additional memory banks is properly taken into account as a

penalty factor.

Results have been validated on a set of benchmark applications
run on an ARM processor, with signi�cant energy reduction
with respect to the case of a monolithic memory.
Future work includes the addition of delay and area constraints
to the algorithm, as well as a more accurate evaluation of the
hardware penalty factors by analysis of actual layout data.

References
[1] J. Rabaey, M. Pedram, Low Power Design Methodologies,

Kluwer, 1996.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, A. Vandecappelle, Custom Memory Manage-
ment Methodology Exploration for Memory Optimization for
Embedded Multimedia System Design, Kluwer, 1998.

[3] U. Ko, P. Balsara, \Energy Optimization of Multilevel Cache
Architectures for RISC and CISC Processors," IEEE Transac-
tions on VLSI Systems, Vol. 6, No. 2, pp. 299-308, June 1998.

[4] T. Watanabe, R. Fujita, K. Yanagisawa, \Low-Power and High-
Speed Advantages of DRAM-Logic Integration for Multimedia
Systems," IEICE Transactions on Electronics, vol. E80-C,
no. 12, pp. 1523{1531, December 1997.

[5] J. Hennessy, D. Patterson, Computer architecture, a quanti-
tative approach, Morgan Kaufman, 1996.

[6] UMC, Embedded 6T Static RAM Macros Datasheet,
http://www.umc.com, 1999.

[7] Artisan Components, Process-Perfect SRAM Generator
Datasheet, http://www.artisan.com, 1999.

[8] Virage Logic, Custom-Touch Memory Compiler Datasheet,
http://www.viragelogic.com, 1999.

[9] L. Benini, A. Macii, E. Macii, M. Poncino, \Synthesis of
Application-Speci�c Memories for Power Optimization in Em-
bedded Systems," DAC-37, June 2000, To Appear.

[10] A. Farrahi, G. Tellez, M. Sarrafzadeh, \Memory Segmenta-
tion to Exploit Sleep Mode Operation," DAC-32, pp. 36-41,
June 1995.

[11] C. Su, A. Despain, \Cache Design Tradeo�s for Power and
Performance Optimization: A Case Study," ISLPD-95, pp. 63-
68, April 1995.

[12] W. Shiue, C. Chakrabarti, \Memory Exploration for Low-
Power Embedded Systems," DAC-35, pp. 140-145, June 1998.

[13] S. Coumeri, D. Thomas, \An environment for exploring
low power memory con�gurations in system level design,"
ICCD'99, pp. 348-353, September 1999.

[14] S. Coumeri, D. Thomas, \Memory Modeling for System Syn-
thesis," ISLPED'98, pp. 179-184, August 1998.

[15] S. Wuytack, J. Diguet, F. Catthoor, H. De Man, \Formalized
Methodology for Data Reuse: Exploration for Low-Power Hi-
erarchical Memory Mappings," IEEE Transactions on VLSI
Systems, Vol. 6, No. 4, pp. 529-537, December 1998.

[16] P. Panda, N. Dutt, \Low-Power Memory Mapping
Through Reducing Address Bus Activity," IEEE Trans-
actions on VLSI Systems, Vol. 7, No. 3, pp. 309-320, Septem-
ber 1999.

[17] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J.
Liu, X. Liu, L. Muliadi, S. Neuendor�er, J. Reekie, N. Smyth,
J. Tsay and Y. Xiong, \Overview of the Ptolemy Project,"
ERL Technical Report UCB/ERL No. M99/37, Dept. EECS,
University of California, Berkeley, July 1999.

[18] ARM Corporation, ARM Software Development Toolkit, Ver-
sion 2.50, Reference Guide, ARM DUI 0041C, chapter 12,
November 1998.

83

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

