
System and architecture-level power reduction of microprocessor-based
communication and multi-media applications

Lode Nachtergaele

IMEC, Leuven, Belgium

Vivek Tiwari

Intel Corp., Santa Clara, CA

Nikil Dutt

U.C. Irvine, CA

1 Introduction
Current microprocessor architectures
become more and more dominated by the
data access bottlenecks in the cache, system
bus and main memory subsystems. These
also have a major influence on the system
(board-level) power consumption. In
practice this means lower energy
consumption for a given throughput
requirement.

In the booming domain of (largely
embedded) cost-sensitive communication
and multi-media applications, more and
more implementations make use of
microprocessor based platforms for
flexibility reasons.

However, in order to provide sufficiently
high data throughput at reasonable power
consumption for these demanding
applications, novel solutions for the memory
access and data transfer will have to be
introduced. These will have to be situated
both at the processor architecture and the
algorithm/compiler level.

The question we want to address in this
paper and tutorial is what would these
solutions look like. We will show that they
will be based on processor architecture
optimizations, on novel approaches in the
application of compiler technology, and on
exploiting the interface between the system
hardware and software.

2 Architecture Optimizations
Due to the quadratic dependence of power
on voltage, voltage reduction is the most
favored method of reducing power. It has
been shown that very aggressive voltage
reductions are possible if architectural and
algorithmic transformations are applied to
the problem (pipelining & parallelism) to
regain the loss in performance from voltage

reduction [1]. This is a very powerful
technique for throughput-oriented limited-
function applications (e.g. digital filtering),
and is an option for implementing part of the
functionality of embedded multi-media
applications.

Traditional CPU architecture research has
focussed on the performance problems
entailed by the increasing gap between CPU
speed and memory bandwidth. Larger and
more levels of caches and larger instruction
scheduling windows are the approaches that
have been adopted for increasing CPU
performance. More recently, architectural
optimizations aimed primarily at power
reduction have become an active area of
research.

The main ideas [2] can be classified under
the following themes:

a) module parameter tradeoffs – the
optimal size and configurations of
micro-architectural modules such as
caches [3], register-files etc. for the
desired power/performance

b) exploiting locality both for instructions
and data – e.g. mini-caches, mini-TLBs
to avoid looking up the larger main
cache [4] and value locality – where
recent computations are saved to avoid
re-computation [5]

c) enabling more powerdown – e.g.
partitioning of caches to allow one the
necessary bank to be powered up, and
word-width wise partitioning of
datapaths [6]

d) speculation reduction – dynamically
reducing the speculation in the machine
to reduce power – e.g. limiting
instruction issue if the number of
predicted branches exceeds a limit [7]

e) h/w hooks to allow for increased s/w
control on power – e.g. a loop cache into
which basic blocks are statically
allocated by the compiler [8].

Optimizations such as the above are local to
the CPU. Power reduction techniques of a
wider scope are possible if the CPU is seen
as a component of an overall system. For
example, the CPU need not be fully-active if
it is waiting for I/O. Similarly other system
components need to be active or powered-up
only when needed. This motivates the
application of dynamic power management
systems. The basic requirements for
dynamic power management system are the
availability of multiple power states for the
various system components – CPU,
memory, peripherals, mechanisms for
detecting opportunities for power state
transitions, and a control mechanism to
coordinate state transitions. The detection
and control functions can be distributed
between the hardware and system software
(O/S). For standard platforms such as the
personal computers, there are standard
power management specifications e.g. ACPI
(Advanced Configuration and Power
Interface Specification) [9]. For embedded
applications, there are opportunities for
additional flexibility and power management
systems tuned for specific applications can
be extremely efficient means for power
reduction. Improved modeling of system
behavior including stochastic models for
user-behavior etc. has gained attention
recently. Recently work has also focused on
studying improved power management
policies [10].

The power reduction from the power
management discussed above comes from
powering-down system components when
not needed. This has gained widespread
application due to its practicality and
relative ease of implementation. An
additional source of power efficiency comes
from extending power management to
include control on the CPU’s voltage and
performance. Dynamic voltage/freq has
gained increased attention lately [11].
Realizing its full potential ideally requires a

unified h/w-s/w approach. For general-
purpose, open platforms, the various system
components can come from different
vendors, and thus, industry-wide standards
and specifications will help faster adoption
of these ideas. However, for embedded
systems, the designer may have the
flexibility of designing both the system h/w
and s/w, as well as the end-application. In
particular, multi-media applications are
ideally suited for dynamic voltage/freq
scaling since they often have regular activity
patterns that can be pre-characterized.

3 Optimized Platform Mappings

In the domain of algorithm transformations
and compilation technology for embedded
data-dominated applications, there has been
a lot of work for the traditional metrics of
cost and performance. In recent years,
significant progress has been made in
targeting energy optimizations.

We will show that decisions made at this
stage heavily influence the final outcome
when the appropriate architectural issues of
the embedded memories are correctly
incorporated. This has to happen both at the
ILP (instruction-level parallelism) compiler
and in the preceding system compilation
stages.

From the viewpoint of compilers, several
opportunities for power
reduction/management exist, particularly in
the embedded multimedia and
communication domains. Many of such
applications are typically characterized by
data-intensive computations operating on
(multi-dimensional) arrayed data structures
stored in off-chip memories. Thus compiler
transformations that aim to reduce off-chip
memory traffic often simultaneously
improve performance, while reducing
power.

3.1 System-level Code Transformations

Software specifications for multimedia
systems are typically not optimized from a
memory point of view. For example the
software used during the development of the
MPEG-4 video decoder uses several

megabytes of memory while decoding a
video of 352 by 288 pixels [12]. After
systematic system level optimizations of the
source code, only a few hundred kilobytes
are actually required. Also the number of
transfers from and to memory can be
reduced by an order of magnitude. Both the
reduction of size and number of transfers
decrease both, at least linearly, the power
consumption of the memory system while
preserving behavior. Hence, exploration of
Data Transfer and Storage (DTS) is an
important pre-compilation step. A stepwise
approach by a DTSE methodology [13],
partially supported by tools, avoids a design
time explosion. [14] gives a good overview
of the general research in this domain.

The major principles of source-to-source
transformations of the DTSE methodology
are: a) Global data-flow transformation to
avoid redundant transfers, b) Global loop
and control flow transformations to increase
locality of reference, c) Data reuse
exploration to exploit the available memory
hierarchy, d) SDRAM memory organization
and e) Data layout decisions to reduce the
memory size and to improve cache hit rates.
These transformations are fully platform
independent except the last two who are
partially influenced by parameters of the
target platform. This claim is supported by
the results in [15]. This fact allows for a
posteriori decisions about the target
platform. A platform specific compiler, the
subject in the next section, then optimizes
platform dependent issues.

3.2 Platform Compiler Technology

Early experiments by Tiwari et al. [16]
demonstrated reduced energy consumption
(and higher performance) through improved
register allocation, resulting in fewer spills
to memory. Compiler techniques that
improve data locality through coarse-grain
transformations [13] and data layout
optimization [17,18,19], result in
significantly fewer cache misses, leading
again to improved performance and lower
power dissipation.

Similarly, instruction scheduling techniques
to reduce instruction cache misses have been
developed [20], resulting in reduced bus
transitions per off-chip memory transfer.
Recent work in memory-aware compilation
[21,22,23] aims to better exploit memory
access protocols of contemporary DRAMs
for improving the memory bandwidth of
applications.

The effects of such compiler optimizations
(as well as many other contemporary
compiler transformations) on power
dissipation require a comprehensive
measurement or simulation environment,
since the relationship between performance
and power or energy is not easily
predictable. New efforts in building
architectural power/energy-aware simulation
[24,25,26] will help quantify the effects of
compiler optimizations on power and
energy. Finally, compiler-controlled power
management techniques are beginning to
appear [27,28], that dynamically tradeoff
power for performance. The compiler,
through a combination of static analysis,
profile-driven data and feedback-driven
optimization, can thus modify the
power/performance characteristics of the
target architecture, in consort with system-
level power management schemes.

4 Conclusions

Microprocessor based platforms become
more and more the choice for embedded
solutions. To enable low power consumption
platforms for upcoming demanding
communication and multi-media
applications solutions along three major
axes are addressed: 1) architectural
optimizations, 2) system level source-to-
source transformations and 3) compiler
technology.

5 Acknowledgements

We thank our colleagues at IMEC for their
stimulating discussions and contributions to
the DTSE methodology.

5 References

[1] A. Chandrakasan and R. Brodersen,
“Low Power Digital CMOS Design,”
Kluwer Academic Press, 1998.

[2] IEEE Transaction on Computer
Architecture Newsletter, special issue
on “Interaction between Compilers and
Computer Architectures'”, June 1997.

[3] R. Bahar, G. Albera, and S. Manne,
“Power and Performance Tradeoffs
Using Various Caching Strategies,”
Proc. Intl. Symposium on Low-Power
Electronics and Design, 1998.

[4] M. Kin and W. Mangione-Smith, “The
Filter Cache: An Energy Efficient
Memory Structure,” Proc. Micro30,
1997.

[5] M. Azam, P. Franzon, W. Liu, and T.
Conte, “Low Power Data Processing by
Elimination of Redundant
Computations,” Proc. Intl. Symposium
on Low-Power Electronics and Design,
1997.

[6] D. Brooks and M. Martonosi,
“Dynamically Exploting Narrow Width
Operands to Improve Processor Power
and Performance,” Proc. HPCA-5,
1999.

[7] S. Manne, A. Klauser and D.
Grunwald, “Pipeline Gating:
Speculation Control for Energy
Reduction,” Proc. ISCA-25, 1998.

[8] N. Bellas, “Architectural and Compiler
Techniques for Energy Reduction in
High Performance Microprocessors,”
Ph.D. Thesis, Univ. of Illinois at
Urbana-Champaign.

[9] ACPI, http://www.teleport.com/~acpi/

[10] Y-H. Lu, E-Y. Chung, T. Simunic, L.
Benini, and G. De Micheli,
“Quantitative Comparison of Power
Management Algorithms,” Proc.
DATE, 2000.

[11] T. Burd et. al., “A Dynamic Voltage
Scaled Microprocessor System,” Proc.
ISSCC 2000.

 [12] L. Nachtergaele, T. Gijbels, J.
Bormans, F. Catthoor, M.Engels,
“Power and speed-efficient code
transformation of multi-media
algorithms for RISC processors”, IEEE
Workshop on Multimedia Signal
Processing, Los Angeles, California,
USA, December 7-9, 1998, pp. 317-
322.

[13] F. Catthoor, S. Wuytack, E. DeGreef,
F. Balasa, L. Nachtergaele, and A.
Vandecappelle, “Custom Memory
Management Methodology,” Kluwer
Academic Press, 1998.

[14] L.Benini, G.De Micheli, “System-level
power optimization techniques and
tools”, ACM Trans. on Design
Automation for Embedded Systems
(TODAES), Vol.5, No.2, pp.115-192,
April 2000.

[15] K.Danckaert, F.Catthoor, H.De Man,
“Platform independent data transfer
and storage exploration illustrated on a
parallel cavity detection algorithm'',
Proc. ACM Conf. on Par. and Dist.
Proc. Techniques and Applications,
PDPTA'99, Vol.III, pp.1669-1675, Las
Vegas NV, June 1999.

[16] V. Tiwari, S. Malik, A. Wolfe, and
T.C. Lee, “Instruction Level Power
Analysis and Optimization of
Software”, Journal of VLSI Signal
Processing Systems, Vol. 13, No. 2,
August 1996.

[17] P. Panda, N. Dutt, and A. Nicolau,
“Memory Issues in Embedded
Systems-on-Chip: Optimizations and
Exploration,” Kluwer Academic Press,
1999.

[18] W. Shiue and C. Chakrabarti,
“Memory Exploration for Low Power
Embedded Systems,” Proc. 36th Design
Automation Conference, 1999.

[19] C. Kulkarni, F. Catthoor, H. De Man,
“Advanced Data Layout Organization
for Multi-media Applications,” Proc.
IPDPS Workshop on Parallel,
Distributed Computing in Image
Processing, Video Processing and
Multimedia, 2000.

[20] H. Tomiyama, T. Ishihara, A. Inoue,
and H. Yasuura, “Instruction
Scheduling for Power Reduction in
Processor-based System Design,” Proc.
Conference on Design, Automation,
and Test in Europe, 1998.

[21] P. Grun, N. Dutt and A. Nicolau,
“Memory-aware Compilation through
Accurate Timing Extraction,” Proc.
37th Design Automation Conference,
2000.

[22] P. Grun, N. Dutt and A. Nicolau,
“MIST: An Algorithm for Memory
Miss Traffic Management,” Proc.
International Conference on Computer-
Aided Design, 2000.

[23] S. Rixner, W. Dally, U. Kapasi, P.
Mattson and J. Owens, “Memory
Access Scheduling,” Proc. 27th

International Symposium on Computer
Architecture, 2000.

[24] D. Brooks, V. Tiwari and M.
Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis
and Optimizations,” Proc. 27th

International Symposium on Computer
Architecture, 2000.

[25] N. Vijaykrishnan, M. Kandemir, M.
Irwin, H. Kim, and W. Ye, “Energy-
Driven Integrated Hardware-Software
Optimizations using SimplePower,”
Proc. 27th International Symposium on
Computer Architecture, 2000.

[26] M. Kandemir, N. Vijaykrishnan, M.
Irwin, and W. Ye, “Influence of
Compiler Optimizations on System
Power,” Proc. 37th Design Automation
Conference, 2000.

[27] D. Marculescu, “Profile-Driven Code
Execution for Low Power Dissipation,”
Proc. International Symposium on Low
Power Electronics and Design, 2000.

[28] The COPPER Project: Compiler-
Controlled Continuous Power-
Performance Management, The Center
for Embedded Computer Systems,
University of California,Irvine.
http://www.cecs.uci.edu/~copper

	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

