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Abstract

We present anerror catch and analysis(ECA) system for
semiconductor memories. The system consists of a test algo-
rithm generator called TAGS, a fault simulator called RAM-
SES, and an error analyzer (ERA). We use TAGS to generate a
set of test algorithms of different lengths and diagnostic resolu-
tions for the memory under test, and use RAMSES to generate
theMarch dictionaryfor each test algorithm. With the March
dictionaries, ERA is able to support March algorithms for easy
diagnosis of faulty RAMs. Legacy test algorithms also can be
reused. When integrated with a RAM tester, our ECA system
can generate RAM bitmaps that are similar to the RAM layout.
The bitmaps provide detail information about the error loca-
tions and faults causing the errors. Based on the information,
diagnosis of the RAM chips for yield and reliability improve-
ment can be done more easily.

1. Introduction

RAMs are continuing to play an important role in the semi-
conductor industry. The booming markets of computer, com-
munications, and consumer electronics are intensifying the
need for bigger and faster semiconductor memories to handle
the rapidly increasing volume of audio/video data. High capac-
ity and high density, however, brings challenges to the mem-
ory designers as well as manufacturers. Yield is the primary
concern—it drops due to higher failure probability caused by
increased capacity and density. Traditionally, dedicated mem-
ory testers have been used to test the chips, locate the errors,
and perform repair analysis. The process and equipments are
mainly designed for back-end volume production, so the entire
test flow provides only very limited information to the interests
of the memory designers or process engineers, who care about
design flaws, reliability, and yield. Bitmaps generated by the
tester normally provides only the locations of the faulty cells.
The engineers have to figure out possible causes of the errors
by manual analysis.

The diagnostic test algorithms can provide more informa-
tion, i.e., in addition to error location, fault type can be iden-
tified. These test algorithms are usually derived for a certain
set of fault models, either classic fault models [1, 2] or real-
istic fault models [3]. Although some good diagnostic test
algorithms have been derived in the past [1–3], a systematic
approach to generating the test algorithms and bitmaps and in-
tegrating them into the test flow for easy diagnosis remains to
be seen.

This paper describes an error catch and analysis (ECA) sys-
tem. It is more powerful and flexible than a traditional diag-
nostic test. Our purpose is to categorize the errors from a given

test rather than to only locate the faults. With the ECA system,
the test requirement specification is flexible, and trade-offs can
be made between test lengths and diagnostic resolution. Error
analysis is done off-line, so it can easily be integrated into the
existing testers. The ECA system consists of a test algorithm
generator called TAGS [4], a memory fault simulator called
RAMSES [5], and an error analyzer called ERA. Given the
test requirements specified by the user, TAGS generates a set
of test algorithms with different lengths and diagnostic reso-
lutions, and RAMSES reports the fault coverage figures and
generates aMarch dictionaryfor each test algorithm. After
applying a March test, the tester will report the error data log,
which is forwarded to ERA for producing the bitmaps. The
ECA system has been integrated with a commercial tester and
has generated useful bitmaps that helped memory designers to
identify design flaws of their products.

2. Fault Models and Definitions

Several popular RAM fault models are used to illustrate
our methodology, including stuck-at fault (SAF), address de-
coder fault (AF), transition fault (TF), inversion coupling fault
(CFin), idempotent coupling fault (CFid), and state coupling
fault (CFst) [6].

Each of the fault models can be expressed in detail by its
explicit sub-types if exist. When error catch and analysis is
desirable, faults should be defined as detail as possible. For
example, a SAF can be expressed explicitly by whether it is a
stuck-at-0 (SA0) or a stuck-at-1 (SA1). A coupling fault can be
specified explicitly by the state of the coupling cell (aggressor),
the state of the coupled cell (victim), and the faulty value. For
example,< 0;0=1 > is a state coupling fault with aggressor
cell being 0 and victim cell being forced from 0 to 1. For the
ease of discussion in this paper, we give names to sub-types
as listed in Table 2. Agr is the state of aggressor. Vtm is the
state of the victim in the form of fault-free/faulty. Addr is the
address relation of the aggressor and the victim, e.g., A< V
denotes the address of aggressor is less than that of victim.

The most widely used test algorithm for memories is the
March test. Fig. 1 shows the March C– as an example, which
consists of six March elements, denoted byM0 � � �M5. Each
march element contains one or more memory operations with
the given address orders.E0 � � �E9 are defined for error analysis
and are explained later in this section. A March test algorithm
is designed for detecting a set of target fault models. For exam-
ple, March C– detects all of the SAF, AF, TF, CFin, CFid, and
CFst. During the test procedure, an error is detected whenever
the result of a memory operation is different from the fault free
value. An error is recorded by its address, failing operation,
and data syndrome (the bit positions and failing values).



Name Agr Vtm Addr
SAF0 - 1/0 -
SAF1 - 0/1 -
TF0 - #/1 -
TF1 - "/0 -

CFin0 # l A < V
CFin1 # l A > V
CFin2 " l A < V
CFin3 " l A > V
CFst0 0 1/0 A < V
CFst1 0 1/0 A > V
CFst2 0 0/1 A < V
CFst3 0 0/1 A > V
CFst4 1 1/0 A < V
CFst5 1 1/0 A > V

Name Agr Vtm Addr
CFst6 1 0/1 A < V
CFst7 1 0/1 A > V
CFid0 # 1/0 A < V
CFid1 # 1/0 A > V
CFid2 # 0/1 A < V
CFid3 # 0/1 A > V
CFid4 " 1/0 A < V
CFid5 " 1/0 A > V
CFid6 " 0/1 A < V
CFid7 " 0/1 A > V
AF0 - - A < V
AF1 - - A > V
SOF - - -

Table 1: Fault names and its meaning.

M0 M1 M2 M3 M4 M5
m (w0) * (r0;w1) * (r1;w0) + (r0;w1) + (r1;w0) m (r0)

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

Figure 1: The March C– algorithm.

An error bitmap stores the locations of errors for the mem-
ory unit under test. After applying all test patterns, all faulty
cells are recorded in an error bitmap, which is then passed to
the laser repair stage if the memory is repairable. Process de-
signers and memory designers also use the error bitmaps to
find out possible flaws to improve the yield and reliability of
their products.

The error bitmaps can also be generated in a section of the
test pattern. In Fig. 1,E0 � � �E9 represent the error bitmaps
generated with respect to the the specific memory operations.
For example,E3 is the error bitmap for the read operation in
M2. The detection capability for the write operation depends
on the memory architecture. For a single port memory,E0, E2,
E4, E6, andE8 in Fig. 1 will always be empty. For a two port
memory with awrite-throughmode, these error bitmaps record
write-through errors.

The error bitmap for all faulty cells is defined as

Eall = (E0[E1[ : : :[EN�1); (1)

whereN is the number of read/write operations in the March
test. The complement of an error map,En, is defined as

En = (Eall �En): (2)

Fault dictionary is a data base constructed for logic-level di-
agnosis [7]. Fault diagnosis based on fault dictionaries is also
called thecause-effectanalysis. Here we propose a similar
analysis data base for diagnosing memory faults called the
March dictionary.

The March dictionary is generated by memory fault sim-
ulation. With the dictionary recording capability added into
the simulation procedure of RAMSES [5], it can generate the
March dictionary for a March test.

Table 2 shows a March dictionary of a 11N March test:

m (w0) * (r0;w1) m (r1) * (r1;w0) + (r0;w1) + (r1;w0) m (r0); (3)

which is generated for SAF, CFin, and CFst by the method-
ology proposed later in Section 4. For each fault model, the
correspondingMarch signatureindicates the response of the

March test in each error bitmap. In a March signature, there
is a 1 in the column position if this fault is detected in the cor-
responding error bitmap; otherwise there is a 0. For example,
stuck-at-1 is detected inE1, E6, andE10, so its March signature
is h01000010001i. We can also use the fault dictionary by col-
umn. For each error bitmap, there is a 1 if the corresponding
fault can be detected; otherwise there is a 0. For example, error
bitmapE1 contains errors caused by SAF1, CFin2, CFst3, and
CFst6.

Fault/Error Bitmap E0E1E2E3E4E5E6E7E8E9E10

SAF0 0 0 0 1 1 0 0 0 1 0 0
SAF1 0 1 0 0 0 0 1 0 0 0 1
CFin0 0 0 0 0 1 0 0 0 0 0 1
CFin1 0 0 0 0 0 0 1 0 1 0 0
CFin2 0 1 0 0 0 0 0 0 1 0 0
CFin3 0 0 0 1 1 0 1 0 0 0 0
CFst0 0 0 0 0 1 0 0 0 0 0 0
CFst1 0 0 0 0 0 0 0 0 1 0 0
CFst2 0 0 0 0 0 0 1 0 0 0 1
CFst3 0 1 0 0 0 0 0 0 0 0 1
CFst4 0 0 0 1 0 0 0 0 1 0 0
CFst5 0 0 0 1 1 0 0 0 0 0 0
CFst6 0 1 0 0 0 0 0 0 0 0 0
CFst7 0 0 0 0 0 0 1 0 0 0 0

Table 2: March dictionary example.

For word-oriented memories, the fault types should be fur-
ther classified by explicitly specifying the syndrome (bit posi-
tion). For a 4-bit word-oriented memory, SAF0 is extended to
SAF0<0001>, SAF0<0010>, SAF0<0100>, and SAF0<1000>.

Diagnostic resolution is defined as the ratio of distinguish-
able faults and all detectable faults. In general, two faults are
distinguishable if they have different March signatures.

3. Error Catch and Analysis

Keeping the data log of memory testers, the error bitmaps
E0 � � �EN can be obtained by parsing the data log. Error anal-
ysis is a procedure which takes error bitmaps and the March
dictionary as inputs and generates fault bitmaps which contain
the fault locations and the corresponding fault types.

The error catch and analysis (ECA) system is shown in
Fig. 2. The main components are 1) RAMSES—memory fault
simulator, 2) TAGS—test algorithm generator, and 3) ERA—
error analyzer. For a unit under test (UUT), we have a user-
defined test requirements including target fault models, fault
coverage, diagnostic resolution, and test length. RAMSES
evaluates the fault coverage, diagnostic resolution, and con-
structs the March dictionary for a March test. TAGS generates
a March test based on RAMSES results to meet the test re-
quirements.

After applying the March test, the data log of error detec-
tions are forwarded to ERA. ERA converts the data log to form
the error bitmapsE0 � � �EN, then generates fault bitmaps ac-
cording to the error bitmaps and the March dictionary.

An example is used to illustrate the ECA procedure. Given
the target faults, SAF, CFin, and CFst, and an unlimited test
length, TAGS generates an 11N March test with 100% diag-
nostic resolution as shown in Eq. 3. Assume the UUT is a 1-bit
single port RAM with a 10�10 cell array, and after parsing the
tester data log, the error maps are generated as in Fig. 3. Error
maps for write operations,E0, E2, E5, E7, andE9 are always
empty.
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Figure 2: Error catch and analysis system.
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Figure 3: A brief example: error bitmaps.

The March dictionary of this case is shown in Table 2. For
each fault model, the fault bitmap is generated by processing
the error bitmaps with intersect operations. According to the
March dictionary, when there is a 1 for the correspondingEn,
the bitmap is used; otherwise the complemented bitmap, i.e.,
En, is used. For example, the fault bitmap of SAF0 can be
generated by

FSAF0 = E0\E1\E2\E3\E4\

E5\E6\E7\E8\E9\E10: (4)

When an error bitmap is empty, i.e.,En = /0, thenEn = Eall
according to Eq. 2. From the definition ofEall in Eq. 1, the
intersection ofEall with anyEn equals toEn. Therefore, empty
error bitmaps are redundant and can be removed. For example,
Eq. 4 can be reduced to

FSAF0 = E1\E3\E4\E8: (5)

Other target fault bitmaps, SAF1, CFin0 � � � CFin3, CFst0 � � �
CFst7, can be generated in a similar way by their specific equa-
tions according to the March dictionary. The resulting fault
bitmaps are shown in Fig. 4 except empty bitmaps.

Like Eall , we can stack fault bitmaps to generate aFall
bitmap. As shown in Fig. 5,Fall provides detail fault models
for each error, and at the same time provides fault statistics.

The limitation of the March test is that it can locate the cou-
pled cell but not the coupling cell of a coupling fault. There-
fore, when the location of both the coupling cell and coupled
cell is desired, the fault bitmaps of coupling faults can be fed
back to the tester to do non-March test, e.g., GALPAT [6], for
further diagnosis.
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Figure 4: A brief example: fault bitmaps.
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Figure 5: A brief example:Eall andFall .

The computation time of ERA is proportional to the number
of errors in the unit under test (UUT). Assume the number of
errors that occurs in the UUT isN, the number of target fault
models ism, and the length of the March test isp. The worse-
case time complexity of ERA isO(pmN). The values ofp and
m are constant for a given March test to detect a given set of
fault models. Therefore, the complexity of the ERA is linear,
i.e.,O(N).

4. Test Algorithm Generation for the ECA

One of the advantage of our ECA procedure is that it does
not require a specific test/diagnosis algorithm. Existing test
procedures and test programs can be re-used. However, pro-
duction test algorithms have usually been optimized for test
only, the diagnostics resolution may not be high enough to
meet the ECA requirements. We propose an automatic test
algorithm generation methodology for the requirement of a
higher diagnostic resolution.

The test algorithm generation is based on TAGS (test algo-
rithm generation by simulation) in our previous work [4]. Af-
ter the complete test is generated, we continue the TAGS algo-
rithm but only insert read operations and apply filter options.
A user-specific test can also be used for read insertion.

We illustrate the generation by several popular fault models.
The target fault models are SAF, TF, AF, SOF, CFin, CFid,
and CFst. For these target faults and unlimited test length,
TAGS generates an 11N test that detects 100% of the above
faults. Beginning with the 11N test, i.e.,* (w0) * (r0;w1)
* (r1;w0) + (r0;w1) + (r1;w0; r0) * (r0), the test generation
procedure for the ECA ends with a 17N algorithm, i.e.,* (w0)
* (r0;w1; r1) * (r1) * (r1;w0; r0) * (r0) + (r0;w1; r1) * (r1)
+ (r1;w0; r0) * (r0) The diagnostic resolution is 0.996. It is
not 100% due to the behavior of SAF and TF. SAF0 and TF1
are indistinguishable if the initial background is 0; SAF1 and
TF0 are indistinguishable if the initial background is 1.



We also use two popular March tests as the user specified
tests, March X (6N), and IFA9N [8].

These algorithm can be used in test algorithm generation and
result in some points of diagnostic resolutions. The compari-
son is shown in Fig. 6, which shows the trade-off on test length
and the diagnostic resolution. When the diagnostic resolution
requirement is not high, e.g., only certain fault bitmaps are of
interest, a shorter and cost-effective test algorithm is preferred.
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Figure 6: Diagnostic resolution for test algorithms.

The test generation algorithm proposed here is only a local
optimal solution for a given test, either generated by TAGS or
specified by the user. An optimal (shortest) test algorithm for
a given test requirements can be approached by iteratively run-
ning with all test algorithms in the TAGS test library, which is
generated for a given set of fault models during test generation
procedure.

5. Experimental Results

We have applied our error catch and analysis methodology
on a 16Kx8 embedded SRAM (FS80A020) test chip which is
tested by a commercial tester (Credence SC212). Through the
system illustrated in Fig. 2, fault bitmaps have been generated.

The address/data scrambling topology has been provided by
the memory designer. Through address remapping, we have
been able to generate the fault bitmaps with the floorplan and
physical locations of memory cells, including the block bound-
aries and gaps. Fault bitmap examples for SAF0 and CFin2 are
shown in Fig. 7 and Fig. 8, respectively. These fault bitmaps
significantly help memory designer visually in order to inves-
tigate the possible cause of errors.

Figure 7: SAF0 fault bitmap of an 16Kx8 embedded SRAM
(FS80A020) test chip.

After the ECA procedure, there are still some errors that are
not included in any fault bitmap but apears in error maps, i.e.,
these errors are caused by the faults that are not included in the
target fault list or even have not been defined. These faults are
calledunmodeled faults. By investigating the error bitmaps,

Figure 8: CFin2 fault bitmap of an 16Kx8 embedded SRAM
(FS80A020) test chip.

we can create a March signature for a specific type of error. A
new fault model can be defined and added for a specific error
behavior that appears frequently.

6. Conclusions

Bitmaps reported by commercial testers are not sufficient
for memory designers and process designers, more diagnostic
information should be available for them to improve the yield
and reliability. This paper presents an error catch and analy-
sis (ECA) system, which consists of a test algorithm generator
(TAGS), a fault simulator (RAMSES), and an error analyzer
(ERA), for generating more useful information such as fault
bitmaps and fault statistics. The ECA system is implemented
for the off-line analysis, and can easily be integrated into the
existing testing flow. With the ECA system, useful bitmaps
can be generated to help memory designers for identifying de-
sign flaws of their products. We are working on the integration
of this system with design for testability (DFT) circuits such
as built-in self-test (BIST) or built-in self-diagnosis (BISD) of
semiconductor memories.
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