
An Exact Gate Assignment Algorithm for Tree Circuits Under Rise

and Fall Delays

Arlindo L. Oliveira Rajeev Murgai

Cadence European Labs./IST-INESC Fujitsu Laboratories of America, Inc.
Lisboa, Portugal. Sunnyvale, CA, USA.
aml@inesc.pt murgai@fla.fujitsu.com

Abstract

In most libraries, gate parameters such as the pin-to-pin intrin-
sic delays, load-dependent coe�cients, and input pin capacitances
have di�erent values for rising and falling signals. The performance
optimization algorithms, however, assume a single value for each
parameter.

It is known that under the load-independent delay model, the
gate assignment (or resizing) problem is solvable in time polynomial
in the circuit size when a single value is assumed for each parame-
ter [5]. In the presence of di�erent rise and fall parameter values,

this problem was recently shown to be NP-complete even for chain
and tree topology circuits under the simple load-independent delay

model [8]. In this paper, we propose a dynamic programming algo-
rithm for solving this problem exactly in pseudo-polynomial time

for tree circuits. More speci�cally, we show that the problem can
be solved in time proportional to the size of the tree circuit, the

number of choices available in the library for each gate, and the
delay of the circuit. To the best of our knowledge, this is the �rst

pseudo-polynomial exact algorithm for the gate assignment prob-

lem for trees in the presence of di�erent rise and fall delays. We
present a straightforward way of extending this algorithm to gen-

eral directed acyclic graphs. We present experimental results on
a set of benchmark problems using a standard commercial library
and show that our algorithm generates provably optimum delays
for 72 out of 76 circuits. We also compare our technique with two
approaches traditionally used to solve this problem in the indus-

try & academia and show that it is slightly better than these two.
Interestingly, both traditional approaches also yield delays not far
from the optimum.

1 Motivation

Most of the research in performance optimization, including almost

the entire body of theoretical work, considers only a single value
for each cell parameter such as pin-to-pin intrinsic delay, load co-
e�cient, and input pin capacitance [13, 11, 5, 9, 6, 1, 14, 3, 2]. In
reality, each cell in the library has di�erent values for rising and
falling transitions, sometimes very di�erent. For instance, in one of
our sub-micron technologies, the rise and fall intrinsic delays for a
path in a simple gate di�ered by 45% and the load coe�cients, by
100%! To bridge this gap between research and reality, most opti-
mization tools approximate each cell parameter by taking either an
average or the maximum of rise and fall values. Clearly, both these

strategies for computing the circuit delay are approximations: the
�rst is optimistic, and the second, pessimistic.

Recently, Murgai proved that certain problems in performance
optimization that can be solved in polynomial time assuming a sin-
gle value for each cell parameter becomeNP-completewith di�erent
rise and fall values [8]. These problems are:

1. the local fanout optimization problem with the net topology

�xed, and

2. the gate assignment problem1 for minimizing the circuit de-
lay under the load-independent delay model. This problem
remains NP-complete even for simple chain and tree circuit
topologies.

However, these NP-completeness results used transformations

from PARTITION, which is NP-complete but not in the strong
sense [4], and can be solved exactly by a pseudo-polynomial time
algorithm. So the possibility of solving these problems exactly un-
der separate rise and fall delay values in pseudo-polynomial time
was left open.

In this paper, we revisit the second problem, that of minimum-
delay gate assignment under the load-independent delay model in
the presence of separate rise and fall delay values, and propose
an exact dynamic programming algorithm for solving it in pseudo-

polynomial time for tree circuits.
The paper is organized as follows. In Section 2, we summarize

the popular gate delay models in the context of rise and fall param-
eters. Section 3 revisits the gate assignment problem. Our dynamic
programming algorithm is described in Section 4 along with the im-
plementation details and data structures used. Section 5 presents
the experimental results. Finally, we conclude with directions for

future work in Section 6.

2 Gate Delay Models

The model used to calculate the delay through a gate (or cell) is of
central importance in timing analysis and optimization.

Given a single-output gate (or cell) g, let �(j; g) denote the delay
from an input pin j of the gate g to the output of g. We will use g

to denote the output of g as well. Two delay models are popular:
load-independent and load-dependent. The load cg refers to the
cumulative capacitance seen at the output of g. It is the sum of the
input pin capacitances 
(p) of all the fanout pins p of g.

In the load-independent delay model, the delay from an in-
put pin j of a gate g to the output of g, �(j; g) is the intrinsic
delay

�(j; g) = �(j; g) (1)

In the load-dependent delay model,

�(j; g) = �(j; g) + �(j; g)cg (2)

Here,
�(j; g) = intrinsic delay from j to g,
�(j; g) = drive capability or load coe�cient of the path from j to g,
cg = load capacitance at the output of the gate g.

The gate library speci�es � and � parameters for all input-pin

to output-pin paths within each gate and 
 values for all the input
pins. In general, �(j; g) and �(j; g) are di�erent for di�erent input

1Murgai called it the gate resizing problem.



pins j. If g has a single input pin (e.g., bu�ers, inverters) or if � and
� values are identical for all input pins, we will drop the argument
j.

The above description assumes a single value for each parameter
�, �, and 
. However, it is well-known that delays for the rising

and the falling transitions can be quite di�erent. In fact, every
gate in the industrial gate libraries we have access to has di�erent
rise and fall delay parameter values. Quite often, these values are
far o� from each other. For instance, in one of our sub-micron
technologies, the rise and fall � values for a path in a simple gate
di�ered by 45% and the � values, by 100%! To handle this scenario,

we use the subscripts r and f to denote rise and fall. For instance,
�r(j; g) denotes the intrinsic delay from input pin j to the output
g when g switches from 0 to 1. Similarly, �f(j; g) is the intrinsic
delay when g makes a falling transition. We write these values as
pairs: (�r, �f ) and (�r, �f).

The gate delay parameters (�r, �f) and (�r , �f ) are used to
compute the arrival times at various gates and the delay through
the circuit as follows. At each gate, both rise and fall arrival times
are stored. The rise (fall) arrival time at a gate g denotes the

maximum possible time it takes for a transition to travel from a
primary input to the output of g and g makes a rising (falling)

transition as a result. A topological traversal of the circuit from
primary inputs to outputs is used to compute the rise and fall arrival
times at each gate g using the rise and fall arrival times already

computed at the fanin gates and the gate delays � through g. An
inversion through the gate should be considered appropriatelywhile

computing the times. For instance, since a falling transition at the
input of an inverter generates a rising transition at its output, the

fall arrival time at the inverter's input should be used to compute
the rise arrival time at its output. The arrival time at a primary
output is the maximum of the rise and fall arrival times at that

output. The delay of the circuit is the maximum arrival time at
primary outputs.

3 Gate Assignment Under Rise

& Fall Delays

Gate assignment for minimizing the circuit delay is a fundamental
problem in performance optimization of gate-level circuits. Ideally,
each gate should be optimally sized during technology mapping.

However, exact technology mapping is expensive in practice due
to the large size of the technology library and due to the complex
interaction between the gate being mapped and the unmapped por-
tion of the logic. In addition, wire loads often cannot be estimated

with su�cient accuracy during technology mapping to make the
best choices for gate sizes. As a result, heuristics are used, which,

among other things, may not select the best sizes for gates from
a delay perspective [3]. This leaves scope for improving the circuit
delay by resizing gates after technologymapping. Being an in-place

optimization technique, gate assignment is also layout-friendly (i.e.,
it does not disturb the placement and routing of cells) and can be

used during or after layout when more accurate wire load and wire
delay information are available. Thus, gate assignment has become

an important optimization problem in its own right.
The problem can be stated as follows. We are given a circuit

composed of single-output cells from a cell-library. For each cell
Ci, many di�erent sizes 1; : : : ; k; : : : are available in the library,

each size having possibly di�erent area, input pin capacitances 
,
intrinsic delays �, and load coe�cients �. Let Ck

i
denote assigning

size k to cell Ci. The gate assignment problem is to select the size

of each cell such that the circuit delay is minimized. We assume

the load-independent pin-to-pin delay model, in which the delay
through a path within a cell is just the intrinsic delay �. Although
simplistic, this delay model is gaining popularity with the advent of
gain-based synthesis [12] in the presence of large, almost continuous-
sized libraries.

I1

I2

C 1

C 2

C 3

I4
I3

Figure 1: A circuit where both same rise-fall and greedy

techniques yield sub-optimum solutions.

If only one value were to be used for each cell parameter (i.e.,
�), the problem can be solved optimally by a dynamic programming
algorithm [5] as follows. Traverse the network gates in a topological
order from primary inputs towards primary outputs. When a cell

Ci is reached, the minimum possible arrival times at all its input
pins are known. For each available size k of the cell Ci, compute
the arrival time at the output of Ck

i
using the arrival times at its

input pins j and the pin-to-pin delays �(j;Ck

i
) for the cell size k.

Pick the size k� that minimizes the arrival time at the output of
Ci. Replace Ci with C

k
�

i
. Continue the traversal and size selection

until the primary outputs are reached.

If both �r and �f are speci�ed, the circuit delay is given

by max fcircuit rise delay, circuit fall delayg, which is what we
wish to minimize. In one strategy typically used in industry and
academia for optimizing with di�erent rise and fall delays, each

pin-to-pin delay within a gate is approximated by a single delay
value: � = maxf�r; �fg. Under this approximation, the dynamic

programming algorithm of [5], which was described in Section 3, is
exact. Using these single pin-to-pin delay approximations, we apply

the algorithm on the circuit to obtain the new gate sizes. Then, we
do a delay trace on the modi�ed circuit using actual rise and fall

delays (�r; �f ) to determine the true circuit delay. Let us call this
strategy same rise-fall. In general, this strategy is sub-optimal.
Consider the circuit shown in Figure 1. Let us assume rise and fall
arrival times of 0 for all the primary inputs I1 through I4. Suppose
there are the following two sizes for the AND gate:

1. with (�r, �f ) of (7;3), and

2. with (�r, �f ) of (4;6).

Similarly, suppose two sizes for the OR gate:

1. with (�r, �f ) of (4;4), and

2. with (�r, �f ) of (2;5).

In this example, for the sake of simplicity, we assume that for each
gate size, both input pins have identical �r values and identical �f
values, as shown above. In all, there are 8 possible ways to select
gates for the circuit nodes shown. These 8 possibilities are shown

in Table 1.

C1 C2 C3 Delay

7 3 4 4 4 4 11
7 3 4 4 2 5 9

7 3 2 5 4 4 11
7 3 2 5 2 5 10
4 6 4 4 4 4 10
4 6 4 4 2 5 11
4 6 2 5 4 4 10
4 6 2 5 2 5 11

Table 1: Table of delays obtained for each possible gate

choice.



With same rise-fall, the gate delays assigned to the two sizes of
the AND gate are maxf7;3g = 7 and 6 respectively, and to the
two sizes of the OR gate, 4 and 5 respectively. Using these delay
numbers, we can see that the size C2

1
yields the minimum arrival

time at the output of C1 (the corresponding value = 6), C1
2
at the

output of C2 (the value = 4), and C
1
3
at the output of the gate

C3 (the value = maxf6 + 4;4 + 4g = 10). From Table 1, row 5, it
can be checked that the circuit delay under this assignment is 10.
However, from Table 1, it is easy to see that the optimum selection
is obtained by choosing gates C1

1
, C1

2
and C

2
3
(row 2 in the table),

leading to the delay of 9.
Another natural strategy for using the dynamic programming

paradigm is the following (we will call it greedy):
Maintain both rise and fall arrival times at each cell. For each

cell, select the size that minimizes the maximum of rise and fall

arrival times at that cell.

However, as shown in [8], greedy is also a sub-optimal strategy.
Consider once again the circuit of Figure 1 and the gate sizes as
shown above. By following this greedy strategy, one would select
gate C2

1
(with delays (4;6), since maxf4;6g < maxf7;3g), gate C1

2

(with delays (4;4)), and gate C1
3
(also with delays (4;4) { this can

be seen from the �fth and sixth rows of Table 1). This leads to a

circuit with the delay of 10, once again sub-optimal.

As this example shows, using this strategy we cannot decide lo-
cally at a gate the best size for it. We need to examine the fanouts
as well. However, that may generate an exponential number of so-

lutions by essentially enumerating all possible size selection choices
in the circuit.

Murgai proved [8] that the problem of gate resizing with di�er-

ent rise and fall parameter values is NP-complete even under the
load-independent delay model. The proof is based on transforma-
tion from PARTITION, a well known NP-complete problem [4].

PARTITION, stated as a decision problem, is as follows:

INSTANCE: A �nite set A and a weight w(a) 2 Z
+ for each a 2 A.

QUESTION: Is there a subset A0 � A such thatX
a2A0

w(a) =
X

a2A�A0

w(a)? (3)

However, interestingly PARTITION is not NP-complete in the
strong sense. This distinction between strong and weak NP-

complete problems is somewhat subtle, but important. Informally,
a problem is NP-complete in the strong sense if its di�culty is not

directly related to the values of the numbers used to describe an
instance of the problem. Strong NP-complete problems are hard to
solve even if the numbers that describe the instances of the problem

are small. On the contrary, the complexity of weak NP-complete
problems is directly related to the presence of large numbers in the
instance description. NP-complete problems that are not strong
can be solved in pseudo-polynomial time, i.e., in time polynomial
in the largest number involved in the problem description.

One important example of a weak NP-complete problem is the
PARTITION problem. PARTITION can be solved in polynomial
time using a simple dynamic programming technique [4] that takes

time polynomial in the sum of the numbers in A.
Since the gate assignment problem was proved NP-complete by

transforminga weak NP-complete problem, there remains the possi-
bility that the gate assignment problem is not, itself, NP-complete

in the strong sense. In the next section, we partially settle this
open problem by showing that a pseudo-polynomial time algorithm
for solving the gate assignment problem exactly for tree circuits
exists, thereby proving that the problem for tree circuits is not
NP-complete in the strong sense. For the general directed acyclic

circuits, the complexity of the problem still remains an open ques-
tion.

4 Proposed Method

1

1

2

2 3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

2

1

1

2

2

1

1

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

1

1

1

1

1

1

1

1

1 1

1 1 11

1

1

2 22

2

2

2

2

Figure 2: Delay feasibility table T1 for gate C1. r is the

column index and f the row index.

This section describes a dynamic programmingapproach that solves
the gate assignment problem exactly in pseudo-polynomial time for
a tree circuit. The algorithm is based on traversing the nodes of

the tree circuit topologically from primary inputs to the output,
computing the permissible fall and rise times for each node in the
circuit, selecting that choice at the primary output which yields

the minimum value of the circuit delay (which is the maximum of
the rise and fall delays) from all permissible delays, and propagating

this value backwards through the circuit and selecting the gate sizes.
For simplicity, in the following exposition, we will consider the case

where all the delays are integers, in some chosen unit.
Assume that, for each cell Ci in the circuit, several di�erent

sizes Ck

i
are available in the library, each having di�erent pin-to-pin

delays. We assume the load-independent pin-to-pin delay model, in

which the delay through a path within a cell is simply the intrinsic
delay of the cell.

4.1 Delay Feasibility Table

The basic idea underlying the approach is to use a dynamic pro-
grammingalgorithm to compute, for each cell, the ranges of possible
delays obtainable. For each cell Ci in the circuit, the permissible

fall and rise times will be kept in a table Ti, the delay feasibility
table. Ti(r; f) will contain a value k > 0 if it is possible to achieve

a rise arrival time of r and a fall arrival time of f by selecting the
gate size k for that cell. If it is not possible to meet either r or f ,
then Ti(r; f) will contain the value 0.

Upper limits on the required size of the table can be obtained
from the circuit delay obtained with the greedy strategy described
in Section 3. For the purposes of this analysis, we will assume
the maximum circuit delay obtained with the greedy approach is
m = D. This number represents an upper bound on the achievable
circuit delay. For our example, as shown earlier,m = 10.

As an example, consider again the circuit in Figure 1. For gate

C1 in that �gure, it is possible to achieve a rise time of 7 and a fall
time of 3 by choosing gate C1

1
. It is also possible to achieve a rise

time of 4 and a fall time of 6 by choosing gate C2
1
. According to

the de�nition, T1(r; f) should take the value 1 for any pair (r; f)
such that (r � 7 ^ f � 3). It should also take the value 2 for any

pair (r; f) respecting (r � 4^f � 6). Note that, for values of r and
f satisfying both conditions (e.g., r = 8; f = 8), Ti(r; f) can take
either the value of 1 or 2, since both choices of gates achieve the
desired arrival times.

For gate C1, the delay feasibility table is shown in Figure 2.
In this and the following �gures, the value of r is used to index
the column of the table and the value of f to index the row of
the table. In this table, we chose arbitrarily gate C1

1
for those delay

values that can be obtainedwith eitherC1
1
or C2

1
. The blank entries

are assumed to contain the value 0 and denote delay infeasibility.



1

1

2

2 3

3

4

4

5

5

6

6

7

7

8

8

2

1

9

9

2

1

10

10

1

2

1

1

1

1

1

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1 1 1 1 11

22

2

2

2

2

2

Figure 3: Delay feasibility table T2 for gate C2.

1

1

2

2

3

3

4

4

5

5 6

6

7

7

8

8

9

9

10

10 2 2

22

1

Figure 4: Delay feasibility table T3 for gate C3.

Similarly, for gate C2, the table in Figure 3 is obtained.

For each cell Ci, the entries in table Ti are computed using a
simple recursive relation. Let Si = fCjg denote the set of gates

that are the direct fanins of Ci. Let us also assume that the output
of Cj is connected to the input pin j of Ci. We are interested in

determining if a rise arrival time of r and a fall arrival time of f
is possible at the output of Ci for some size assignment for all the
gates in the sub-circuit rooted at Ci. We answer this by trying

all gate sizes k at Ci one by one and then for each k checking the
feasibility of appropriate rise and fall delay values at the fanin gates

Cj, as shown in the following relation:

Ti(r; f) = k i� 8j s:t:Cj2Si
Tj(frj;k ; ffj;k) 6= 0 (4)

where

� frj;k = r��r(j;Ck

i
) and ffj;k = f ��f(j; C

k

i
), if Ci is positive

unate in the pin j, i.e., a rising (falling) transition at j causes
a rising (falling) transition at Ci (e.g., Ci = Cj + Cz).

� frj;k = f��f (j; C
k

i
) and ffj;k = r��r(j; Ck

i
), if Ci is negative

unate in the pin j, i.e., a rising (falling) transition at j causes
a falling (rising) transition at Ci (e.g., Ci = C

0

j
+ Cz).

� frj;k = ffj;k = minfr��r(j; Ck

i
); f��f (j; C

k

i
)g, if Ci is binate

in the pin j, i.e., a rising (falling) transition at j can cause
both rising and falling (rising and falling) transitions at Ci
(e.g., Ci = CjCz + C

0

j
C
0

z).

Here, �r(j; Ck

i
) is the pin-to-pin delay from the input pin j to the

output pin of Ck

i
that corresponds to a rise transition on the out-

put of the cell Ck

i
caused by a transition on the input pin j, i.e.,

the input pin connected to the cell Cj . Similarly, �f (j;C
k

i
) is the

delay that corresponds to a fall transition on the output of cell Ck

i

caused by a transition on the pin j. Expression (4) states that there

is a gate assignment for the sub-circuit rooted at the cell Ci, with
the size k for the cell Ci, which can result in the rise and fall ar-
rival times of r and f respectively at the output of Ci if and only
if for each fanin gate Cj of Ci, there is a gate assignment for the

sub-circuit rooted at Cj that can yield frj;k and ffj;k as the rise
and fall arrival times respectively at the output of Cj. The com-

putation of frj;k and ffj;k for the positive and negative unate cases
is straightforward. For a binate pin j, consider a gate assignment
rooted at Cj, which along with the size k at Ci results in a rise
arrival time of r and a fall arrival time of f at Ci. Then, it must

be the case that this assignment yields at the output of Cj, the rise
arrival time of r � �r(j; Ck

i
) (considering the positive unate path)

and also f��f (j;C
k

i
) (considering the negative unate path). That

is only possible if this assignment yields the rise arrival time at Cj
of minfr � �r(j; Ck

i
); f � �f(j; C

k

i
)g. Similarly, for the fall arrival

time.

By sorting the cells in the circuit in a topological order from
the inputs, the values of Ti(r; f) can be computed by the following
simple algorithm:

1. Select the next cell Ci in the circuit. Set Ti(r; f) to 0, for all
r; f � m.

2. For each possible choice Ck

i
, do steps 3 and 4. If no more cells

need processing, stop. Otherwise, go to 1.

3. For each cell Cj in the fanin of Ci, obtain �r(j; C
k

i
) and

�f(j; C
k

i
) from the library data.

4. For all values of r in f1 : : :mg and f in f1 : : :mg, do: if

8jTj(frj;k; ffj;k) 6= 0 then set Ti(r; f) to k.

It is assumed that references to Ti(r; f) with r < 0 or f < 0 will
yield the value of 0.

To proceed with the example used above, we can now compute
table T3 for gate C3 by applying the recursion in equation 4. T3 is
shown in Figure 4. For example, the element (9;9) in table T3 is

2 because T1(9� 2;9� 5) (i.e., T1(7;4)) and T2(9� 2;9 � 5) (i.e.,
T2(7;4)) { as shown by the dark squares { are both non-zero: see

Figures 2 and 3. Recall that the size 2 for C3 has a rise delay of
2 and a fall delay of 5 for both input pins, i.e., �r(j;C2

3
) = 2 and

�f(j; C
2
3
) = 5 for j = 1; 2. On the other hand, T3(8;9) is 0, because

choosing either the size 1 or the size 2 for C3 leads to infeasible delay
assignments at the gate C1. For instance, selecting C2

3
implies that

T1(8 � 2;9 � 5) must be non-zero. But T1(6;4) is 0. Similarly,
selecting C1

3
implies that T1(8� 4;9� 4) must be non-zero, which

is not the case. Note that in this example, for simplicity, we used
only positive unate gates.

Since C3 is the circuit output, we stop the forward traversal of
the circuit. Next, we select that entry (r; f) in T3 which minimizes
the maximum of fri; fig over all non-zero entries T3(ri; fi). In our
example, T3(9;9) = 2 is the best entry, corresponding to the best
achievable delay time of maxf9;9g = 9, obtainable by selecting
the gate C2

3
as the implementation for the cell C3. The best gate

assignment solution for the rest of the circuit can now be obtained
by traversing the tables backwards. One �nds that for gate C3 we
should select option C2

3
(since T3(9; 9) is 2), for gate C2 one should

select gate C1
2
(since T2(9� 2;9 � 5) = T2(7;4) is 1) and for gate

C1 one should select gate C1
1
(since T1(7;4) is also 1).

Note that in this example we used equal rise delays and equal
fall delays for all input pins to the gate output only for the sake of
clarity. In general, di�erent pins will have di�erent delays, and that

is taken into account in expression (4).

4.2 Complexity Analysis and Optimiza-

tions

From (4) and the algorithm proposed, a �rst analysis shows that
the creation of table Ti requires a time proportional to nipim

2,
where m is, as before, the dimension of the table, ni is the number



of possible choices for gate Ci and pi the number of input pins for
gate Ci.

It turns out, however, that computing the entire table is not
necessary. In fact, for the purposes of delay optimization, only
the boundary of the �lled area2 in the table needs to be computed,
since no optimal solution will ever use cells properly inside the �lled
area. In Figure 3, the boundary is shown in bold. The computation
of the cells in the boundary of the gate Ci can be performed by
following the boundary of each gate in its direct fanin and �lling
in the corresponding entries in Ti. This procedure is illustrated
in Figure 5. Since the maximum length of each boundary is no

Cell C2

Cell C1

Cell C3

Figure 5: Computation of the boundary of the gate C3

from the boundaries of its fanin gates C1 and C2.

larger than 2m, the computation of the boundary requires a time

proportional to
nipim (5)

With appropriate date structures, the memory requirements will

also be proportional to this expression.
Consider now a library where the gate delays are not integers,

but are given as 
oating point numbers. Assume that the precision
of the gate delays is g (the granularity). For example, if the delays
are given with a precision down to the hundredth of a nano-second,

then g = 0:01. Additionally, assume that the value obtained for the
circuit delay using the greedy approach described in Section 3 is D.

Then, a table of size of m = D=g will be required.
Summing expression 5 for all gates in the circuit, we obtain that

the complexity of the algorithm is

O(
RPGD

g
) (6)

where R is the maximum number of choices available for any gate
in the library, P the maximum number of input pins in the gates,
G is the total number of gates in the circuit, D is the circuit delay
and g is the granularity.

Since a linear dependence in R, P and G is unavoidable for any
gate sizing algorithm, the extra complexity is paid by the term D

g
.

This result was to be expected since in pseudo-polynomial time
algorithms, the complexity is necessarily dependent on the size of
the numbers involved, or, equivalently, on their precision.

4.3 Data Structures

Given the description of the algorithm and the note made in the
previous section that only the boundaries of the �lled part of the

tables needs to be kept, there are several possibilities for the main-
tenance of the data stored in the tables Ti.

One possibility is simply to use a matrix for each table Ti. This
matrix should be initialized to 0, and then only the boundaries
need to be �lled in. This solution is simple, but has the signi�cant
disadvantagethat thememory requirementsbecomeproportional to

2By �lled area we mean the area of the tables that is �lled with
values di�erent from 0.

(5, 3)

(3, 5)

(0, 0)

(0, 0)

(0, 0)

(3, 1)

(1, 3)

I1

I3

C1

C3

2C

I2

Figure 6: Sub-optimality for general DAGs

GD

g2
and that the initialization step may actually become dominant

for small values of g, leading to a signi�cant ine�ciency.

An interesting alternative is to use a sparse matrix data struc-
ture. If the accesses to the matrix elements are based on a hash ta-
ble method, the memory requirements are now only proportional to
GD

g
, thus giving a much better asymptotic behavior. Regrettably,

our experiences using a hash table based sparse matrix manipula-
tion did indeed save memory, but at the expense of a substantial
increase in the CPU time caused by the overhead in accessing the

tables. This signi�cant slowdown made the approach uninteresting,
although it allows larger circuits to complete if given enough time.

We are currently addressing the problem of choosing an appro-

priate data structure that will yield the desired O(GD
g
) memory

usage without having such a signi�cant impact on the CPU time.
Conceptually, a solution that is e�cient in both memory and CPU
should be attainable, given the weak requirements imposed by the

access patterns.

A more radical approach can be taken, reducing even further the
memory requirements. Note that the boundary of each table Ti is

totally de�ned by the exterior corners of the boundary of the �lled
area. For instance, the contents of the table shown in Figure 2 are

totally de�ned by the values of the two corner cells T1(7;3) = 1 and
T1(4;6) = 2. Using appropriate data structures, it may be possible
to avoid the need to store the entire boundary. Note that, in the
worst case, there may exist O(m) external corners of the boundary,
but, on average, the number of corners will be much smaller than

m, leading to very signi�cant savings in memory usage. However,
whether it is possible to explore this property by using appropriate
data structures remains an open question.

There are other signi�cant details which have not been imple-
mented in the current version of the algorithm and will speed up

the algorithm and decrease the memory usage. One such optimiza-
tion is based on the fact that the table size does not need to be
the same for each node in the circuit, since the interesting part of
the table Ti does not cover the whole range of indices from 1 to m.
In fact, positions in the table indexed by coordinates smaller than
the smallest possible delay in the direct fanins of Ci are useless,
since the table contains only zeros in that region. On the other
hand, positions in the table indexed by coordinates larger than the
largest possible delay value for gate Ci are also useless, since they
will never be used in the optimum solution. We believe these and
related optimizations, when implemented, will reduce memory and
CPU usage by at least on order of magnitude, making the approach
very competitive with the simple greedy strategy described in Sec-
tion 3.

4.4 Extension to Directed Acyclic

Graphs

The algorithm proposed above is provably optimum only for tree
circuits. For general combinational circuits, i.e., directed acyclic
graphs (DAGs), it may not even yield a feasible solution. The
reason is as follows. Consider the circuit of Figure 6 with the gate
C1 fanning out to two gates C2 and C3. Let C2 and C3 be the
circuit outputs. Let C1 have two sizes:



1. with (�r, �f) of (3;5), and

2. with (�r, �f) of (5;3).

C2 has one size with (�r, �f ) of (3;1) and C3 has one size with
(�r, �f) of (1;3). All inputs arrive at time (0;0). Our goal is to
minimize the circuit delay. The delay feasible regions at the cell
outputs are:

� C1: (r � 3^ f � 5)_ (r � 5 ^ f � 3).

� C2: (r � 6^ f � 6)_ (r � 8 ^ f � 4).

� C3: (r � 4^ f � 8)_ (r � 6 ^ f � 6).

The best delay at the circuit outputs C2 and C3 is 6, corresponding
to (r; f) = (6;6). Since there is a single size for C2 and C3, to obtain
these values, we need (3, 5) at the input of C2 and (5, 3) at the
input of C3. Both these inputs are connected to the output of C1.
The constraint from C2 requires that we select size 1 for C1 whereas
the constraint from C3 mandates that we select size 2. Thus, (6, 6)
is unrealizable! The problem is that C1 is a multiple-fanout point,
and the two fanout gates require selection of di�erent sizes at C1.
Both sizes, although possible, cannot be selected at the same time.

There are several ways we can modify our algorithm for general
DAGs. However, none of them is provably exact.

1. For DAGs, the best delay value ` computed at the circuit
outputs from the delay feasibility tables is a lower bound on the
true minimum delay possible by gate assignment. In this method,
we compute the delay feasibility tables for each gate as before. We

select the best delay values at the outputs. Then, we traverse the
gates backwards (from primary outputs to primary inputs), select-
ing the size for each gate as dictated by the rise and fall delays prop-

agated from the outputs, and propagating the (r; f) constraints to
the fanins. When we hit a multi-fanout gate C, each fanout prop-

agates di�erent (r; f) constraints to C, requiring possibly di�erent
sizes for C. We pick the size that corresponds to the minimumvalue

of maxfr; fg. After all the gates have thus been assigned sizes, we
perform a delay trace on the modi�ed circuit to obtain the true
delay D of the resized circuit. If D = `, we know this algorithm has

yielded the best possible delay.
2. Partition the DAG into trees, by cutting o� at multiple fanout

points (for instance). Order the trees topologically from inputs to
outputs. For each tree in the order, apply the dynamic algorithm
and select the gate sizes to minimize the delay at the output of the
tree. Use these delay values while selecting the sizes for the gates
in the trees later in the order. This is the heuristic widely used also

in technology mapping.
Currently, we have implemented the �rst heuristic.

Note: If arbitrary gate replication is allowed in addition to
gate assignment, the dynamic programming algorithm (resulting
in the delay value `) is provably optimum for general DAGs. To
achieve this delay `, when traversing the circuit backwards, for each
multiple-fanout gate, create as many copies as the number of dif-
ferent sizes required by the fanouts.

5 Experimental Results

To evaluate the applicability of the method and the practical

impact of our dynamic programming-based solution of the gate as-
signment problem, a preliminary implementation of the algorithm
was developed and integrated with the SIS system [10]. In this
section, we present the results obtained, both in terms of the �nal
delay obtained for the circuit and the CPU times required to com-

pute the solutions. We tested the algorithm on the set of circuits
in the MCNC 91 benchmark, using Fujitsu's 0.5-� full-strength

technology library, with both unate and binate gates. For these
experiments, we set the granularity g to 0:01 nanosecond.

We implemented three gate assignment algorithms:

� same rise-fall method, in which the pin-to-pingate delay is ap-
proximated by a single delay value, and then the dynamic pro-
gramming algorithm of [5] is applied. Finally, a delay trace on

the modi�ed circuit using actual rise and fall delays (�r ; �f)
yields the true circuit delay.

� the greedy method of Section 3: Under a topological traversal
of the circuit, it selects for each gate the size that minimizes

the maximum of rise and fall arrival times at that gate.

� the dynamic programming (DP) method of Section 4, as ex-
tended to general DAGs (see method 1 in Section 4.4).

The experiment was run on an Ultrasparc-60 that had 700MB of

memory. Out of the 77 circuits present in this benchmark set, the
DP algorithm was not able to complete on 1 example (C6288) due
to memory limitations.

Out of the remaining 76 circuits, the DP method provably
achieved the minimum delay on 72 of these circuits, and same-rise-
fall & greedy did so on 55 and 63 circuits respectively. We know that

a method generated the optimum delay value on a benchmark if it
yielded a delay value identical to the corresponding lower bound `

generated by the forward pass of the DP method. To the best of our

knowledge, this is the �rst time anyone has shown that the delays
yielded by popularly used same-rise-fall and greedy algorithms, as
well as by the DP method are exact for most benchmarks. This
empirical evidence of the optimality of the DP method on almost

all the circuits is very encouraging.
In 57 of the 76 circuits, the same rise-fall, greedy, and DP meth-

ods all obtained identical delays, 53 of which were provably opti-

mum.
Statistics for the remaining 19 circuits are shown in Table 2. The

numbers of circuit inputs, outputs and literals are shown in columns
2 through 4. The table also describes the results obtained on these
circuits. The column 5 lists the lower bound ` on the optimum
delay computed by the forward pass of the DP algorithm. This

is the minimum delay any gate assignment algorithm can hope to
achieve. Columns 6, 7, and 8 list the �nal delay values for the circuit
where gate assignment was performed by same rise-fall (S), greedy

(G), and the DP algorithm respectively. Columns 9 and 10 list the
percentage improvements in delay by DP over S and G respectively.

The last column shows the combined CPU times taken to solve the
gate assignment problem with all the three methods.

The DP method resulted in provably minimum delay on all the
19 circuits, whereas same-rise-fall did so only on 2 and greedy on

10. So DP was better than same-rise-fall on 17 circuits and better
than greedy on 9. The maximum delay improvement of DP over
same rise-fall is 1.90% and that over greedy is 1.05%.

The performance of greedy was slightly better than same-rise-

fall: on 11 circuits, greedy was better than same rise-fall and on 3

it was worse.
Finally, we note that all the algorithms are quite fast.

6 Conclusions and Future Work

In this work, we presented a pseudo-polynomial time algorithm for
a problem that is known to be NP-complete, the gate assignment
problem. To the best of our knowledge, this is the �rst pseudo-

polynomial exact algorithm for the gate assignment problem for

tree circuits in the presence of di�erent rise and fall delays. The-
oretically, it is an important result. We also presented a simple
extension of the algorithm to general circuits.

A preliminary implementation of the algorithmwas used to eval-
uate the performance of the commonly-used same rise-fall and
greedy algorithmsagainst our proposed dynamic programming solu-

tion. Although this implementation still uses simple data structures
and su�ers from ine�ciencies in the memory usage, we were able
to solve the gate assignment problem exactly for almost all circuits
(72 out of 76) in a well-known benchmark set using the proposed
dynamic programming technique, thus proving that this problem
can be solved exactly for circuits of signi�cant size.

These experiments have also shown that, in general, both same

rise-fall and greedy approaches obtain results very close to the op-



delay % imp
circuit PI PO lits ` S G DP DP/S DP/G CPU

9symml 9 1 277 1.83 1.84 1.84 1.83 0.54 0.54 1.3
C2670 233 140 2043 4.09 4.12 4.12 4.09 0.73 0.73 15.6

C3540 50 22 2934 5.22 5.23 5.23 5.22 0.19 0.19 18.9
C5315 178 123 4369 4.43 4.45 4.44 4.43 0.45 0.23 52.2
C7552 207 108 6098 3.56 3.57 3.57 3.56 0.28 0.28 52.0
alu2 10 6 453 4.38 4.42 4.38 4.38 0.90 0.00 3.9
cht 47 36 236 1.03 1.05 1.03 1.03 1.90 0.00 0.3

cm150 21 1 77 2.00 2.02 2.00 2.00 0.99 0.00 0.2
dalu 75 16 3067 4.25 4.27 4.25 4.25 0.47 0.00 40.0

lal 26 19 223 1.09 1.10 1.09 1.09 0.91 0.00 0.3
my adder 33 17 257 6.26 6.27 6.26 6.26 0.16 0.00 10.1
pair 173 137 2420 3.19 3.20 3.19 3.19 0.31 0.00 10.9
rot 135 107 764 3.25 3.26 3.26 3.25 0.31 0.31 6.8
sct 19 15 164 1.41 1.42 1.41 1.41 0.70 0.00 0.3
t481 16 1 6823 4.14 4.14 4.15 4.14 0.00 0.24 32.9
too large 38 3 1052 3.78 3.80 3.82 3.78 0.53 1.05 6.9

ttt2 24 21 341 1.23 1.24 1.23 1.23 0.81 0.00 0.5
vda 17 39 1423 1.94 1.94 1.95 1.94 0.00 0.51 3.2

x2 10 7 71 0.91 0.92 0.91 0.91 1.09 0.00 0.1

Table 2: Results for circuits where di�erences in delays were observed
PI (PO) number of circuit inputs (outputs)

lits number of literals in factored form
` lower bound on the minimum delay
S same rise-fall method
G greedy method

DP the dynamic programming algorithm

timum, at least for the library used. This is despite the fact that

the library contained gates with signi�cantly di�erent rise and fall
delays. We believe this is due to the fact that even for circuits with
a moderate number of levels (say 5), the imbalances in the indi-
vidual rise and fall gate delays cancel out by the time the primary

outputs are reached. Nevertheless, we were able to show for the �rst
time that for the load-independent delay model in the presence of

rise and fall delays, same rise-fall and greedy approaches work quite
well, achieving exact results on 55 and 63 circuits respectively out
of 76.

There are several interesting directions for future work. One
obvious extension is to search for an exact pseudo-polynomial al-

gorithm for general combinational circuits, which have gates with
multiple fanouts. The other extension is to apply this method to

the technology mapping problem. This should represent a rela-
tively simple extension, as long as the load-independentdelaymodel
is assumed. Note that a generalization of the algorithm to the
load-dependent delay model is not likely, since Murgai has recently
proved that the gate assignment problem under the load-dependent

delay model is NP-complete in the strong sense [7].

The memory usage currently represents the most signi�cant bot-
tleneck faced by the algorithm. It limits the applicability of the
implementation to examples with tens of thousands of gates and li-
braries with very �ne delay granularities. Additional work is needed

on the data structures used in the manipulation of the tables.

References

[1] C. L. Berman, J. L. Carter, and K. F. Day. The Fanout Prob-
lem: From Theory to Practice. In C. L. Seitz, editor,Advanced
Research in VLSI: Proceedings of the 1989 Decennial Caltech

Conference, pages 69{99. MIT Press, March 1989.

[2] P. Chan. Algorithms for Library-speci�c Sizing of Combina-
tional Logic. In DAC, pages 353{356, 1990.

[3] O. Coudert, R. Haddad, and S. Manne. New Algorithms for

Gate Sizing: A Comparative Study. In DAC, pages 734{739,
1996.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Mathematical

Sciences Series. Freeman, 1979.

[5] Y. Kukimoto, R. K. Brayton, and P. Sawkar. Delay-Optimal
Technology Mapping by DAG Covering. In DAC, pages 348{
351, 1998.

[6] J. Lillis, C. K. Cheng, and T. T. Y. Lin. Optimal Wire Sizing

and Bu�er Insertion for Low Power and a Generalized Delay
Model. In ICCAD, pages 138{143, 1995.

[7] R. Murgai. On The Complexity of Minimum-delay Gate
Resizing/Technology Mapping Under Load-Dependent Delay
Model. In IWLS, pages 209{211, 1999.

[8] R. Murgai. Performance Optimization Under Rise and Fall
Parameters. In ICCAD, pages 185{190, 1999.

[9] Lukas P. P. P. van Ginneken. Bu�er Placement in Distributed

RC-tree Networks for Minimum Elmore Delay. In ISCAS,
pages 865{868, 1990.

[10] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential circuit design
using synthesis and optimization. In Proceedings of the Inter-

national Conference on Computer Design, October 1992.

[11] K. J. Singh. Performance Optimization of Digital Circuits.
PhD thesis, UC Berkeley, December 1992.

[12] I. Sutherland and R. Sproul. The Theory of Logical E�ort:
Designing for Speed on the Back of an Envelope. In Advanced

Research in VLSI, University of California, Santa Cruz, 1991.

[13] H. Touati. Performance-oriented Technology Mapping. PhD
thesis, UC Berkeley, November 1990. UCB/ERL M90/109.

[14] H. Vaishnav and M. Pedram. Routability-Driven Fanout Op-
timization. In DAC, pages 230{235, 1993.


	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers


