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Abstract

In this paper, we present a methodology and efficient algorithms
for the design of high-performance system-on-chip communica-
tion architectures. Our methodology automatically and optimally
maps the various communications between system components
onto a target communication architecture template that can consist
of an arbitrary interconnection of shared or dedicated channels.
In addition, our techniques simultaneously configure the commu-
nication protocols of each channel in the architecture in order to
optimize system performance.

We motivate the need for systematic exploration of the com-
munication architecture design space, and highlight the issues in-
volved through illustrative examples. We present a methodology
and algorithms that address these issues, including the size and
complexity of the design space. We present experimental results
on example systems, including a cell forwarding unit of an ATM
switch, that demonstrate the benefits of using the proposed tech-
niques. Experimental results indicate that our techniques are suc-
cessful in achieving significant improvements in system perfor-
mance over conventional communication architectures (observed
speedups over typical architectures such as single shared buses av-
eraged 53%). Moreover, we demonstrate that our design space
exploration methodology and optimization algorithms are efficient
(low CPU times), underlining their usefulness as part of any sys-
tem design flow.

I. Introduction

Electronic system design is being revolutionized by widespread
adoption of the System-on-Chip (SoC) paradigm. The benefits of
using such an approach are numerous, including improvements
in system performance, cost, size, power dissipation, and design
turn-around-time. In order to exploit these potential advantages
to the fullest, a complete design methodology must adequately
address two dimensions of system design. Firstly, it is essential
to efficiently and optimally map an application’s computation re-
quirements to a set of high-performance system components, like
CPUs, DSPs, application specific cores, memoriesetc. Secondly,
it is equally important to empower a designer with techniques and
tools to map the system’s communication requirements onto a well
optimized communication architecture that is well suited to the
specific application at hand. The focus of this paper lies on the
second of these two aspects of system design.

Increasing levels of integration are leading to a growing vol-
ume and diversity of data and control traffic exchanged among
SoC components. As a result, a poorly designed on-chip commu-
nication architecture could become a severe impediment to opti-
mal system performance and power consumption. In order to sup-
port high-performance components, the on-chip communication
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architecture must efficiently transport the large volume of hetero-
geneous communication traffic they generate. Hence techniques
to efficiently and optimally map the system’s communication re-
quirements to a target communication architecture need to be in-
cluded as an integral part of any system design flow.

A. Paper Overview and Contributions

In this paper, we present a design space exploration and opti-
mization technique that takes as inputs a system description that
has been partitioned into HW/SW, and mapped onto appropriate
components. The exploration technique optimally maps the com-
munication requirements of the system onto a target template com-
munication architecture. The technique can be used to determine
the best way to assign system components to the template archi-
tecture so as to meet desired design goals. Our technique not only
generates an optimal mapping, but also provides a set of statically
configured communication protocols for each channel in the archi-
tecture that are customized for the derived mapping.

Our technique is based on identifying, through efficient per-
formance analysis, the characteristics of inter-component commu-
nication in a given system, including an accurate analysis of po-
tential contentions for shared channels in the architecture. The
technique consists of (i) a constructive algorithm to determine an
initial architecture which maps various SoC communications to
specific paths in a template communication topology, and to se-
lect an appropriate communication protocol for each channel, and
(ii) an iterative improvement strategy that improves on the qual-
ity of the initial solution to generate a well-optimized mapping of
communications along with carefully configured communication
protocols.

In the following sections we first motivate the need for such
exploration techniques by studying the nature and size of the com-
munication architecture design space, and the potential advantages
of thorough exploration. We then illustrate the complexity of the
problem by showing how a simple approach can result in an archi-
tecture that provides substantially sub-optimal performance. Fi-
nally we show how the problem is further complicated by the inter-
dependence of the choice of mapping and that of different proto-
cols for each channel in the architecture. We demonstrate how our
technique addresses these issues, and detail the various steps and
algorithms. Experimental results on example systems, including
a cell forwarding unit of an ATM switch, confirm the benefits of
using our technique. We show that using our technique, system
performance can be improved significantly (upto 53%). Moreover
we demonstrate that our technique generates optimized communi-
cation architectures at appreciably low cost in terms of CPU times,
thus underlining its usefulness as part of any system design flow.

B. Related Work

There is a large body of work on system-level synthesis of
application-specific architectures through HW/SW partitioning
and mapping of the application tasks onto pre-designed cores and
application-specific hardware [1, 2, 3, 4, 5, 6, 7, 8]. While most
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Figure 1: Example system of communicating components with a template communication architecture consisting of multiple channel
interconnected by a bridge

previous research has focussed on optimally mapping system func-
tionality onto components, comparatively little work has addressed
mapping a system’s data and control communications onto an on-
chip communication architecture.

Research on system-level synthesis of communication architec-
tures [9, 10, 11, 12] mostly deals with synthesis of the communi-
cation architecture topology. While topology selection can be a
critical step in custom communication architecture design, in this
work we address a complementary problem. We assume the topol-
ogy is predetermined by choosing a template communication ar-
chitecture, several of which are available from interconnect core
providers [13, 14]. The problem we address is how to decide on
an optimal assignment of system components to the given architec-
tural template, with a suitable selection of on-chip communication
protocols.

Fast and accurate system level performance analysis is the key
to a practical design space exploration methodology. Research on
system level performance analysis that takes into account effects
of the communication architecture, include approaches based on
simulation of the entire system, modeling communication at vary-
ing levels of abstraction [15, 16]. However the high computa-
tional cost of simulation based techniques make them infeasible
when exploring a large design space. More efficient static perfor-
mance estimation techniques include [8, 9, 10, 11, 17], but they do
not model dynamic effects like bus contention accurately enough
to drive an exploration/optimization methodology. We adopt a
trace based performance analysis framework in our work [18, 19],
which provides for accurate modeling of dynamic effects, while
at the same time being far more efficient than simulation based
techniques.

II. Exploring the Communication Architecture Design Space

We formulate the problem of designing a communication ar-
chitecture for a partitioned HW/SW system as consisting of three
steps: (i) the task of defining a communication topology consist-
ing of a network of channels (each serving as a dedicated point-
to-point link or as a shared bus) interconnected by bridges, (ii)
the task of mapping the system’s communications onto paths in
the topology (by mapping components onto channels), and (iii)
the task of selecting or customizing the protocol for each chan-
nel. In this work we focus on the latter two steps, assuming that
the designer has selected a template topology. The template could
consist of an arbitrary network of shared and dedicated communi-
cation links. The reasons we chose this approach are twofold: (i)
Several such templates are commercially available to the designer
today, including multiple communication channels organized into

a hierarchy [14], approaches based on time-division multiplex-
ing [13], etc. (ii) Being faced with such choices, we believe the
designer should be empowered by automatic tools in order to eval-
uate alternative templates for a given system. Our techniques aim
at providing these tools, using which the designer can optimally
map the system to each template in turn using our exploration tech-
niques, and then evaluate each resulting solution using fast system
level performance analysis.

In this section, using examples, we illustrate a few issues that
arise in the process of mapping a system’s communications to a
template communication architecture. We first show that even
when a template topology is provided, the design space comprising
alternative mappings and communication protocols can be quite
large. Moreover, performance variation across the design space is
significant enough to motivate thorough exploration. Second, we
show that simple techniques to identify which components should
be grouped to share a channel (e.g., based on clustering compo-
nents that communicate frequently) are not sufficient to generate
an optimal solution. This is due to the additional complexity intro-
duced by conflicts that arise when multiple components contend
for shared communication resources (like a shared bus). Finally,
we show that selecting a particular assignment of components to
communication channels independent of the on-chip communica-
tion protocols can result in significantly sub-optimal designs.

Example 1: Figure 1(a) shows a system consisting of a set of
components each of which execute a set of computation tasks and
also execute data and control communications. Bold lines indicate
transfer of data, while dotted lines indicate exchange of control or
synchronization signals. Note that these lines indicate the logical
view of inter-component communication, and not physical paths
in the communication architecture. Figure 1(b) shows an imple-
mentation where all the communications generated by the system
components are mapped to either (or both) of two shared buses
connected by a bridge. However, given this architectural template,
there could be other mappings as well, such as the ones shown
symbolically in Figures 2(a) and (b).

In order to illustrate the potential impact of alternative architec-
tures on performance, Table 1 reports the performance of the sys-
tem under different mappings as measured by a performance anal-
ysis tool described in [19]. Each row represents a distinct mapping
of components to buses in the communication architecture. For ex-
ample, inArch1 , components C1-C4 are grouped onto one bus,
and components C5-C8 are on another bus (Figure 1(b)). In this
case, the system takes 11723 cycles to process a fixed sequence
of input stimuli. Arch1 results in 30.6% lesser execution time
thanArch2 (Figure 2(a)), which takes 15314 cycles to process
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Figure 2: Sample points in the design space for the example system of communicating components

the same sequence of input stimuli. However,Arch1 is 26.8%
slower when compared toArch3 (9242 cycles), which shows the
best performance among the chosen design points.

The above example illustrates the following issues:
� The design space of possible mappings can be very large for

a system with multiple components and channels. For an ar-
bitrary set ofn components andk distinct channels the num-
ber of possible mappings is bounded byO(knk!). In practice,
however, the design space can be pruned somewhat by con-
straining the number of components attached to each channel.
Even so, for small examples such as the one in Figure 1, (a
system with 8 components and 2 channels) if we assume that
the two buses are identical, and that the number of compo-
nents on each bus is equal, the number of choices is

�8
4

�
or

70! Moreover, as shown later, for each mapping, there exist
performance critical choices to be made while choosing an
implementation of the per channel communication protocols.
Combined, these factors result in a challenging optimization
problem.

� Performance variation across this design space can be signifi-
cant, (in this example upto 65%), thereby motivating the need
for organized exploration of the design space.

� Knowledge of the application specific characteristics of the
communication traffic, like volume, concurrency, and perfor-
mance criticality of inter-component traffic should be used by
the automated exploration tool to prune the search space, and
quickly generate an optimal architecture. To illustrate this,
note that in the above example,Arch1 outperformsArch2 .
The reason behind this is that the mapping of components to
buses inArch1 is based on clustering components that ex-
change large volumes of performance critical data.

In the next example we demonstrate that using simple metrics such
as the volume of communication traffic to drive the design of the
communication architecture need not produce the best mapping.

Example 2: Consider again the system discussed in Example 1,
and the choices of alternative mappings in a little more detail. Ta-
ble 1 reported that system performance under theArch1 config-
uration is superior to that underArch2 . The mapping inArch1
results in the following: (i) the number of communication transac-
tions that span multiple buses are minimized, and (ii) components
that exchange large amounts of performance critical data are at-
tached to the same bus. Both these factors result in low transmis-
sion latencies.

However, as we see next, the above approach does not neces-
sarily yield an architecture that produces the best performance. If
we change the mapping of components to channels in our example
to that ofArch3 (Figure 2(b)), then we discover that the system
completes its task in 9242 cycles, an improvement of 27% over
Arch1 . The reason for the improvement is that the new mapping
separates components that have largely overlapping communica-
tion lifetimes (C1 from C3 and C5 from C7), resulting in an im-

plementation that causes fewer conflicts and hence enhanced con-
currency in the system’s execution. However, the price paid is
that the number of communication transactions going across the
bridge is no longer at a minimum, since component C1 commu-
nicates with component C4 and C3 with C2 (Figure 1(a)). For
this system, since the benefit of reduced conflicts outweighs the
penalty of bridge transactions,Arch3 is the implementation that
best recognizes and takes advantage of the patterns of communica-
tion traffic. The example shows a case where a simple clustering
heuristic like the one described earlier fails to generate the best
solution.

Table 1: Performance variation over different points in the design
space

Cases

Arch1

Arch2

Arch3

Bus 1

C1 C2 C3 C4

C1 C3 C5 C7

C1 C2 C5 C6

Performance
(clock cycles)

11723

15314

9242

Bus 2

C5 C6 C7 C8

C2 C4 C6 C8

C3 C4 C7 C8

Table 2: Effect of communication protocol in the design space
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Example 3: In this example we illustrate that communication ar-
chitecture design tools should incorporate the influence of the on-
chip communication protocols in order to judge the quality of a
candidate solution. Using the same example from Figure 1, recall
that the performance analysis results indicated thatArch3 was
the best configuration due to reduced conflict level on each bus.
However, the performance estimate forArch3 in Table 1 was de-
rived assuming that an optimally tuned bus protocol was assigned
to each of the two buses.

Suppose while examining alternative solutions, we ignore the
effect of the bus protocol, and assume a fixed protocol while eval-
uating different solutions. To demonstrate the potentially sub-
optimal outcome of such an approach, we ran an experiment where
each bus was assigned a static priority based arbitration protocol,
with specific protocol parameters. Here we consider the parame-
ter DMA, which defines the maximum block transfer size, and the
bus access priorities of each component. In the first experiment,
we evaluated theArch3 configuration (Figure 2(b)), leaving the
protocol parameters unchanged fromArch 2 , (as shown in row 1
of Table 2). The system took 12504 cycles to complete the task, a
degeneration of 6.6% overArch1 ! However, after we regenerated
a set of bus protocols that were optimal (row 2 of Table 2), the best
performance result of 9242 cycles was obtained.



This example demonstrates the following:
� In order to examine a candidate solution, the effects of the on-

chip protocols cannot be ignored since they can significantly
impact the performance metric. When the set of components
mapped to a channel changes, the traffic characteristics on
that channel change, and therefore invalidate the optimality
of the previously chosen protocols.

� The problems of selecting an optimal mapping of compo-
nents to channels in the communication architecture and that
of choosing the best set of protocols are inter-related. Solv-
ing each problem separately, independent of the other, could
easily lead to sub-optimal solutions. In our example, such
an approach would have made us overlookArch3 . In order
to evaluate one solution over another we must derive a set
of optimal protocols for each architecture, and analyze the
performance of the combination of the architecture and its
associated protocols.

III. Overall Communication Architecture Design
Methodology

In this section, we present an overview of our communication
architecture design methodology highlighting the important steps.
In the next section, we describe how some of the crucial steps are
conducted in more detail.
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Figure 3: Overall algorithm for design space exploration

The overall methodology is shown in Figure 3. The inputs con-
sist of (i) a system specification that has been partitioned into HW
and SW, and mapped to appropriate cores or custom HW, and (ii) a
template communication architecture topology consisting of mul-
tiple (shared/dedicated) channels interconnected by bridges. The
algorithms automatically generate an optimal mapping of system
components to specific channels in the target architecture, as well
as a set of optimized communication protocols for each channel.

In the first step, HW/SW co-simulation of the parti-
tioned/mapped system description is performed, with communi-
cation among components modeled assuming completely parallel
exchange of communication events at a fixed rate of data trans-
fer. Execution traces are collected and stored in a compact repre-
sentation called aCommunication Analysis Graph(CAG), which
captures the abstracted system behavior (including computation,
communication, and inter-component synchronization) over the
entire simulation trace [19]. Using the analysis algorithms de-
tailed in [18] and [19], Step 3 generates various statistics about
the system performance and inter-component communication traf-
fic. Based on these statistics, and a specification of the topology of
the template architecture, a constructive heuristic procedure (Step

4) generates an initial mapping of components to the target archi-
tecture. Step 5 determines a set of optimal protocol parameters for
each channel. The results of Steps 4 and 5 together constitute an
initial solution.

As demonstrated in Section II, an approach that stopped
here could lead to significantly sub-optimal system performance.
Hence the need for the second, iterative part of our technique. In
Step 6, the performance analysis tool is re-invoked, to consider ef-
fects of the selected communication architecture. By analyzing the
CAG, the tool incorporates the effects of the communication archi-
tecture, and re-evaluates performance and communication statis-
tics.

Based on these statistics, Step 7 explores alternative solutions
by calculating potential performance gains of performing vari-
ousmoves, whereby an already assigned component is re-mapped
from one channel to another, and chooses the best set of candidate
moves to construct a new solution. The output of Step 7 is a new
mapping of components to the target architecture. Step 8 chooses
an optimal set of protocol parameters, for reasons illustrated in
Section II. The new solution is re-evaluated, and the iterative pro-
cedure (Steps 6 through 8) is repeated till no further improvement
in performance is obtained.

IV. Algorithms for Design Space Exploration

In this section we first describe how Step 4 of Figure 3 makes
use of the statistics and topology information to generate an initial
solution. We then consider how the iterative part of our technique
improves on that solution.

A. Inter-Component Communication Statistics

Statistics generated by the performance analysis of Step 3 are
represented in an inter-componentCommunication Graph. The
Communication Graph is a directed graph consisting of one vertex
for each component, and an edge(vi ;vj) when there exists commu-
nications between componenti and j. The direction on the edge is
dependent on which of the two components drives the transactions
between them. Information on an edge(vi ;vj) includes several
properties of the communication transactions seen between com-
ponentsi and j, including the number of transactions, distribution
of their sizes (mean varianceetc.), critical path information, (ex-
pressed as the distribution of their slacks), number of transactions
with zero slack (critical transactions),etc. While the various pa-
rameters on each edge may be used in several different ways, in our
implementation, we chose to derive a single weight for each edge
by taking the the product of the average size and the number of
transactions betweenvi andvj and scaling it by the by the average
slack (Figure 4). This takes into account frequency, volume and
criticality of transactions that occur place between componentsi
and j.

C1

C2

C3C4

267

123

41

136

98

45

Example edge wt. calculation:

C1 -> C2

# of transactions = 20

Avg. size = 61

Avg slack = 0.9

Weight = 20x61

0.9

= 136

Figure 4: Communication Graph: Example
By examining the Communication Graph, Step 4 calculates

for each component, a measure of thedemandit places on the
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communication architecture. For componenti this is the sum of
the weights of the outgoing edges fromvi in the Communication
Graph. It then arranges the components in descending order of
demand.

B. Modeling the Template Topology

After ranking the components as described above, Step 4 also
ranks the channels in the communication architecture by build-
ing and analyzing a model of the template communication topol-
ogy. The topology is modeled using a graph representation. The
Template Graphconsists of one vertex for each channel, and bi-
directional edges between vertices whenever two channels are con-
nected by a bridge. The information on these edges contain param-
eters that describe the properties of the bridge — the overhead of
transmitting a single word over it, its frequency of operationetc.
Each vertex also has a self looping edge, which describes prop-
erties of the channel it represents. These include the number of
cycles required to transmit unit data (1 word), width of the chan-
nel (in bits), the frequency of operation (in Mhz), and the number
of handshake cycles that precede each independent communica-
tion transaction. From these parameters, aconnectivitymetric for
each channel is calculated as follows.

Given a set of communication transactions, with source and
destination channelsP and Q, we calculate the amount of time
it takes to complete the transactions by measuring the following
quantities:

� The initiation delayis is measured by summing up the hand-
shaking time on each channel and bridge on the path between
P andQ. This time is incurred for every independent transac-
tion.

� The transmission delayis measured by calculating, for each
channel on the path betweenP andQ the expressionn

w f where
n= number of cycles required to transmit 1 word,w=width
of the channel in bitsf =frequency of operation in Mhz. The
channel on the path with the smallest bandwidth determines
the rate at which data is transfered fromP to Q.

The time taken for a set of communication transactions is given by
the sum of the initiation delays and the transmission delays. The
total delay of a set of communications involving busP is used to
derive the connectivity metric used to rank busP. Note that this
calculation ignores the possibility of conflicts. The intuition is that
channels which have high performance and are “well connected”
to the rest of the topology are given a high rank.

C. Construction of the Initial Solution

The initial solution construction procedure picks the highest
ranked component that is not yet assigned to a channel and then
tries to decide which channel to assign it to. For example, sup-
pose channelP has componentsi and j assigned to it and com-
ponentk is being considered for assignment. Its interaction level
with channelP is measured by summing the weights of the edges
(vk;vj);(vk;vi);(vi ;vk);(vj ;vk) in the Communication Graph. The
channel for which this interaction level is maximum is the target
channel for componentk. If this level exceeds a threshold, then
the assignment is made. If not, it implies that too few components
have been assigned to make an informed decision using the above
technique. In this case, the list of components is scanned for a
component which has not yet been assigned, and has maximum
interaction with the current componentk. Based on the ranks of
the two components and the number of components assigned to
each channel so far, they are both together assigned to an appro-
priately ranked channel. If there still exist choices among a few
alternatives, a channel is randomly chosen.
Assigning protocol parameters: We assume a static priority
based arbitration scheme for each channel since this protocol is
used by many bus architectures,e.g.,[20]. Hence, the parameters
that need to be determined are the priorities of each component,
and the maximum permissible block transfer size or DMA size.
Priorities are assigned to components sharing a channel by exam-
ining the ranks of each component in the sorted list of components
generated earlier. The maximum block transfer size for a channel
k is calculated from the sub-graph of the Communication Graph
that consist of vertices representing components that are assigned
to channelk. It is given by a weighted average of the size of trans-
actions among components of the given channel, where the weight
incorporates the criticality, derived from the average values of the
slack. This favors a large block transfer size when large transac-
tions often lie on the system critical path.

D. Iterative improvement

Here we describe how we construct a sequence of moves (or
transformations) to yield a solution that improves the system’s per-
formance. Given an assignment of components to channels, with
a set of protocol parameters for each channel, Step 7 first executes
Evaluate Gain(i,P,Q) , which computes the potential gain
of moving componenti from its currently mapped channelP to
another channelQ (P 6= Q), for every combination of component
and potential destination channels. The rest of the algorithm uses a
well-known variable depth-first-search approach to determine the



Evaluate gain

inputs: COMPONENTi, BUS P, BUS Q
outputs: FLOAT gain
begin

for eachvεP, uεQ
old delay= old delay+

calculatecommdelays(v;old speeds);
old delay= old delay+

calculatecommdelays(u;old speeds);
end for
lQ0= congestionlevel(P);
lQ0= congestionlevel(Q);
for each componentj such that

jεQ && (i; j)! overlapcycles6= 0:
lQ = lQ+(i; j)! overlap cycles;

end for
for each componentk such that

kεP && (i;k)! overlapcycles6= 0:
lP = lP� (i; j)! overlap cycles;

end for
Q! new speed= lQ�lQ0

lQ0
� (Q! old speed);

P! new speed= lP0�lP
lP0

� (P! old speed);
send(i;P;Q);
for eachvεP, uεQ:

new delay= new delay+
calculatecommdelays(v;new speeds);

new delay= new delay+
calculatecommdelays(u;new speeds);

end for
gain= old delay�new delay;
return gain;

end

Figure 6:Evaluate gain procedure

best sub-sequence of moves (whose cumulative gain is maximum)
to construct an improved solution [21].

Estimating the potential gain of a move:The potential gain of
a move is estimated using additional information that is generated
by the performance analysis tool for the architecture under current
consideration. Under a given architecture, the lifetime of a com-
munication transaction is made up of three parts: (i) waiting time
arising out of handshaking overhead, (ii) waiting time arising out
of simultaneous access attempts to the shared channel, and (iii)
time taken to transfer the data. The performance analysis engine
generates, for each pair of components(i; j), the number of cy-
cles for which the lifetimes of communication transactions driven
by i overlaps with transaction lifetimes driven byj. Figure 5(a)
shows a set of overlapping communication transaction lifetimes,
and Figure 5(b) the resultingCommunication Conflict Graph.

From the Communication Conflict Graph, for a given mapping
of components to channels, acongestion levelfor each channelP
is obtained. This is given by summing up the weights for every
edge(vi ;vj) in the Communication Conflict Graph wherevi andvj
represent components mapped to channelP. When considering a
move of componenti from channelP to channelQ, the algorithm
calculates the potential decrease in the congestion level on channel
P and the potential increase in the congestion level on channelQ.
To illustrate this, consider the example shown in Figure 5(b) where
the components are shown grouped into two buses, and component

C3 is being re-mapped fromBus1 to Bus2. For example, from
Figure 5(a) it is clear that onBus1, the number of overlapping
time units is 6 (1 betweenC3 andC4, and 2 betweenC4 andC5,
and 3 betweenC3 andC5). After removal ofC3, the number of
time units of overlap onBus1 reduces to 2 (those betweenC3 and
C4) while the number of units of overlap onBus2 increase from 6
to 16. Figure 5(c) shows the congestion levels on each bus before
and after moving vertexC3 from Bus1 to Bus2.

To calculate the potential gain of moving componenti from
channelP to Q, the pseudocode of Figure 6 is executed. The
first loop accumulates the communication delays associated with
communications generated by each componentv on channelP
followed by each componentu on channelQ. This is stored in
old delay. Then the old congestion levels on the each channel are
calculated as described earlier and saved inlP0 andlQ0. Next, the
new congestion levels on each channel are calculated. The second
loop calculates the increased congestion levellQ on channelQ (the
destination channel), and the third loop calculates the decreased
congestion levellP on channelP (the source channel). Then the
speed of each channel is symbolically scaled by the congestion
level on each channel. The time taken for all transactions involv-
ing channelsP andQ are recalculated (newdelay), and compared
with the previous value. The difference is the potential gain of
performing the move. At each step in the iterative procedure, the
move that is chosen is the one producing the maximum gain. Note
that, at any given step the move producing the maximum gain may
result in a deterioration (gain may be negative). However, a se-
quence of moves with a net positive gain may be enabled by con-
sidering individual moves with negative gain. Thus, the explo-
ration technique provides for hill-climbing in order to avoid local
maxima.

V. Experimental Results

In this section, we illustrate the benefits of using the exploration
techniques presented in this paper on some example systems. The
experiments are aimed at measuring performance improvement
obtained by using an optimized mapping of components to chan-
nels versus commonly used conventional bus architectures, and
more naive solutions. We also report CPU time consumed by the
exploration tool while generating these solutions.

To demonstrate the effectiveness of our exploration technique,
we conducted experiments on two example systems. The first is a
cell forwarding unit of an output queued ATM switch. TheATM
system consists of 8 output ports, each with a local queue of cell
headers. The system also has three shared memory banks, to store
the arriving cell payloads. Each port periodically polls its queue
to detect presence of a cell. When non-empty, it issues adequeue
signal to its local queue, extracts the relevant cell from the appro-
priate shared memory and sends it onto its output link. The second
system (SYS) is the one discussed in Section II.

Each system was specified as a set of concurrent communicat-
ing tasks, with communication modeled as the exchange of ab-
stract communication events. HW/SW partitioning and mapping
was performed using the POLIS [22] framework, and system level
simulation was carried out in PTOLEMY [23]. The resulting sim-
ulation traces were used in the subsequent communication archi-
tecture analysis and exploration algorithms. For theSYSexample,
the template architecture consisted of two buses connected by a
bridge with specified parameters (width, speed,etc.) as shown in
Figure 1(b). For theATMexample, the topology consisted of three
buses interconnected by 2 bridges.

Table 3 reports the performance of each of the two systems
under various communication architecture choices. The rows in
Table 3 correspond to the following architectures: in row 1, all
components are mapped to a single shared system bus; in row 2,
the mapping of components to channels and protocol parameters



Table 3: Experimental results

Case

shared

random

initial

opt

Abstract
comm .

Performance
(cycles)

32328

25593

19998

18139

9988

CPU time
(seconds)

6.8

7.0

6.7

11.8

134

Speedup

1.00

1.26

1.62

1.78

3.24

CPU time
(seconds)

10.3

11.3

12.1

23.5

138

Speedup

1.00

1.61

2.10

2.67

4.94

ATM SYS

24654

15314

11723

9242

4992

Performance
(cycles)

are chosen at random; in row 3, the mapping and protocols are
determined by the initial solution (note, that this is the result of
a selection algorithm that ignores access conflicts); in row 4, the
mapping and protocols are optimized by the proposed exploration
procedure, including the iterative refinement; in row 5, the com-
munication architecture topology is an abstract one, with infinite
concurrency and bandwidth (this is a loose lower bound on the
system execution time.

For each system, in columns 2 and 5, Table 3 reports the ac-
tual performance measurement in terms of the number of clock
cycles taken to accomplish a given task. In the case ofSYS this
was the time taken to process 2000 input stimuli, and for theATM
example, it was the time taken to process 1000 cells. In columns
3 and 6, Table 3 reports performance of each configuration as the
speed up relative to the case when all communication goes through
a shared bus (row 1). Columns 4 and 7 report CPU times with the
following interpretations. In rows 1 and 2, (shared bus and ran-
dom), the time spent in design space exploration is zero (the so-
lution is pre-determined). Hence the reported CPU times indicate
the time spent on a single evaluation of the system performance
using the tool presented in [18, 19]. In row 3 (initial), CPU time
includes the time spent in performance analysis as well as con-
structing the initial solution. In row 4 (optimized solution) it is the
sum of the times spent in analysis, construction of the initial solu-
tion and the iterative procedure. Finally, for the last row, CPU time
indicates the time required to generate the initial system execution
trace via HW/SW co-simulation (performed only once for each
system), since no subsequent performance analysis was necessary.

From this table we observe the following:
� Performance of each system under the optimized mapping is

superior to any of the other solutions. In particular, for the
ATMexample, it is2.67 times fasterthan the commonly used
single shared bus architecture, and 27% faster than one de-
signed using a naive approach that ignores conflicts.

� The CPU times consumed in the exploration algorithms are
dominated by the time spent in performance analysis. This is
clear because the times reported in rows 1, 2 and 3 are roughly
the same. Also, CPU time reported in row 4 is roughly dou-
ble the CPU time reported in the previous rows, owing to an
extra invocation of the performance analysis tool during the
iterative improvement step.

� Using co-simulation as a performance analysis tool in a de-
sign space exploration methodology would not be feasible,
since the large cost of a simulation would be encountered at
each and every design space point that needs to be examined.
In comparison, our performance analysis technique is over an
order of magnitude faster than complete system simulation.

VI. Conclusions

In this paper we presented a new methodology and a set of al-
gorithms to help system designers automatically create an opti-

mal mapping of their system’s communication needs to a target
template communication topology. We presented examples to il-
lustrate the need for such automated design space exploration for
application specific system-chips, described the issues that need to
be addressed while designing such a framework, and the difficulty
of the problem in general. Experimental results indicate that our
methodology performs well, generating solutions that provide sig-
nificant performance improvement over more ad hoc techniques.
Also our methodology is efficient, due to use of efficient perfor-
mance analysis to drive the exploration algorithms.
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