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Abstract
Crosstalk effect is crucial for timing analysis in very deep

submicron design. In this paper, we present and compare mul-
tiple scheduling algorithms to compute switching windows
for static timing analysis in presence of crosstalk noise. We
also introduce an efficient technique to evaluate the worst case
alignment of multiple aggressors.

1 Introduction
As chip design enters the very deep submicron(VDSM)

realm, decreasing feature sizes increases the significance of
coupling effects. In this realm, these subtle effects may be
no longer ignored as they may affect the timing and signal
integrity of the design. In the worst case, a design may be
obviated by very subtle coupling problems.

Crosstalk noise affects design integrity in two ways: one
is timing deterioration and the other is signal integrity. In this
paper, we concentrate on how coupling noise affects timing by
studying how to capture coupling delay effects in static timing
analysis.

Traditional static timing analysis(STA) only considers cell
and interconnect delay, searching for the longest or the short-
est path to assess the most critical timing. Capacitive load is
simply considered nominally: to a given node, each adjacent
node is considered quiescent, making no transition when the
node is transitioning. However, active coupling to a switching
node may result in additional delay or reduced delay on that
node depending on the direction of adjacent switching[1, 2].

If both nodes are switching in the same direction, the de-
lay on both nodes is reduced, whereas if they switch in the
opposite directions, the delay is increased.

It is possible to make the worst case assumption that the
twice the coupling capacitance is used to capture this opposite-
direction coupling effect, forming a decoupled version of the
circuit for each node, where capacitances are replaced by their
Miller equivalent. However, this approach can limit the design
space dramatically and lead to a very pessimistic, impractical
design.

Static timing analysis has been studied for more than a
decade[3, 4, 5]. However, no crosstalk coupling is involved in

those analyses. Recently, in [6], the authors provide a design
methodology to avoid coupling noise and address static anal-
ysis of noise on the transistor level. In [7], the author analyzes
the functional aspect of how signals can couple together. In
[8], a formulation is proposed to calculate the maximum noise,
but it can only apply to small circuits due to its complexity. In
[2], an algorithm to calculate the worst case aggressor align-
ment due to coupling is proposed. [1] shows the Miller factor
can be more than 2X for the upper bound of the maximum
coupling delay. Furthermore, in [9, 10], the authors show that
the bound is 3X instead of 2X. For a design in VDSM, the
functional aspect of crosstalk coupling is almost impractical
to analyze. STA with crosstalk coupling effects serves as a
very practical and efficient way to verify a circuit design not
to violate any timing constraints[11, 12, 13]. However, nei-
ther scheduling techniques nor convergence issues have been
reported in [11, 12].

In this paper, we address the problem of static timing anal-
ysis considering coupling effects. Unlike traditional STA, the
critical path delay cannot be obtained simply by topological
traversal. Switching windows, within which a node makes
transitions, are the key to determine whether the coupling
noise can affect timing. Only when two coupling nodes have
overlapping switching windows can their timing may change
due to their coupling. However, switching windows depend
on the signal timing itself, so we have a circular problem to
resolve. We propose an event-driven calculation algorithm
to solve this mutual dependency problem, resolving cycles
through causality. We assume a single worst case driver resis-
tance and apply superposition of waveforms extensively. This
is a conservative assumption and the result is an upper bound
of the actual switching window.

The rest of this paper is organized as follows: we first re-
view necessary background and definitions in Section 2. In
Section 3, we discuss the alignment of multiple aggressors for
worst-case delay. Section 4 presents an event-driven algorithm
in detail, including proof, event scheduling techniques, com-
plexity analysis, and efficiency issues. Experimental results
are shown in Section 5.



2 Background and Definitions
For a pair of coupling nodes, the node which suffers from

the coupling noise is called avictim node, and the other node
that contributes the noise is called anaggressor node. They
can change their roles depending on the context of which is
calculated for timing analysis. Theworst case delayof a
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Figure 1: Min/Max Timing

node, shown in Fig.1, is the minimum or maximum delay
considering all topological minimum or maximum delay de-
pendency and the worst case crosstalk coupling. For example,
the worst case timing may be computed using zero coupling
capacitance for min delay and 3X coupling capacitance for
max delay, respectively. Thenominal delay of a node is de-
fined as the delay calculated when each aggressor is quiet, that
is, using 1X coupling capacitance for delay calculation. The
worst case switching window thus forms the outer bound of
the actual switching window and the nominal case switching
window forms the inner bound.
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Figure 2: Propagation/Coupled Delay

Thecoupled delayof a node, shown in Fig.2, is the delay
due to the aggressors’ coupling of the node. It is computed
from the aggressor’s maximum coupling noise to achieve the
min or max delay. Thepropagation delayof a node(Fig.2) is
the delay due to the previous stage delay. It is computed from
the previous stage coupled delay plus the cell delay.

Given a nodei, the min propagation delay is

t ppg;min
i = min

j2FI(i)
fdmin

j ;i + tcpl;min
j g (1)

and the max propagation delay is

t ppg;max
i = max

j2FI(i)
fdmax

j ;i + tcpl;max
j g (2)
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Figure 3: Sensitive Min/Max Windows

,wheret ppg;min
i (t ppg;max

i ) denotes the min(max) propagation de-
lay, FI(i) is the set of fanin of nodei, dmin

j ;i (dmax
j ;i ) is the

min(max) node-to-node delay, andtcpl;min
j (tcpl;max

j ) denotes the
min(max) coupled delay of nodej.

Suppose the driving resistance of the aggressor is linear.
Coupled delay can be calculated using superposition of the
victim waveform and the coupling noise waveforms from the
aggressor nodes.

Themin sensitive window, shown in Fig.3, of a node for
the min delay is the duration starting from the rising point to
the switching threshold point of the transition. In this duration,
the coupling noise may speed up the transition and the delay
may be reduced. This duration is used to determine the min
delay variation because the possible range for a signal to be
sped up is just within this window. Similarly, themax sensi-
tive window of a node for the max delay is from the switching
threshold point to the end point of the transition. In this dura-
tion, the coupling noise may slow down the transition and the
delay may be increased.

2.1 Piecewise Linear Waveform
For ease of calculation, we assume piecewise linear wave-

forms. The number of linear segments can be used to trade
accuracy and run time for modeling waveforms from circuit
level characterization. Moreover, they can be easily manipu-
lated to do waveform superposition and to compute an enve-
lope waveform, which will be described in Section 4. All of
these computations are proportional to the number of linear
segments in the waveforms.

3 Multiple Aggressor Alignment Problem
In this section, we will discuss how to determine the worst

case alignment given multiple aggressor waveforms and a vic-
tim waveform. The problem is to align aggressor waveforms
so as to achieve the maximum or the minimum delay on the
victim node. Because each node has a switching window, in
which a node can possibly make transitions, these switching
windows restrict the range where the worst case alignment
can occur. In [2], the authors prove that the worst case de-
lay for a pair of aggressor and victim nodes occurs when the
peak noise aligns up to the switching threshold of the victim.
Based on their result, we address the case when multiple ag-
gressors are aligned, which is common for any STA scenario.
We propose an envelope waveform to perform this computa-
tion, something relatively easy to compute, where the com-
plexity is simply proportional to the number of linear segments
in all the waveforms.



In physical layout, there may be several aggressors cou-
pling to a victim node. Each of them is constrained by some
switching window.
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Figure 4: Maximum Delay under Coupling Effect

Consider the waveforms of 2 nodes switching at the oppo-
site directions shown in Fig. 4. The problem of finding the
delay due to noise effect is equivalent to sliding or convolv-
ing the aggressor waveform subject to the switching window
constraint to achieve the maximum delay on the victim node.
Specifically, we have to find the scenario which maximizes
tx point in Fig.4[2]. At that point, the waveform of victim
touches the switching threshold point of the next stage logic
gate, making a sharp transition. If the coupling noise wave-
form slides continuously from the left bound of the aggressor
switching window to the right bound, which is shown in Fig.5,
this waveform envelope forms a range and magnitude of noise
that could possibly affect the victim waveform. After superpo-
sition of this envelope and the victim waveform, the resulting
waveform is the worst case waveform envelope of the victim
node. The worst case delay can be found on the last point
crossing the switching threshold (usually 0.5 Vdd). The bold
lines in Fig.5 show the noise peak and the corresponding ag-
gressor transition to create this worst case timing.
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Figure 5: Sliding Noise and Envelope Waveform

Theorem 1 The technique described above can find the worst
case alignment which creates the worst case delay on a vic-
tim node, given the switching window constraints of multiple
aggressors.

(Proof:) The victim envelope waveform actually depicts the
minimum voltage values that the victim waveform can possi-
bly reach over time. Due to the superposition assumption, we
can superpose each aggressor envelope waveform on the vic-
tim envelope waveform one by one. The resulting waveform
envelope is the final worst case voltage it can reach over time.
By tracing this envelope waveform, the worst case delay can
be obtained. 2

4 Coupling Delay Computation in Presence of
Crosstalk Noise

4.1 Algorithm
In today’s technology, RC delay calculation consumes a

major portion of the total computation time for delay calcu-
lation. Typical RC delay calculation algorithm involves effec-
tive capacitance computation[14] and model order reduction
of the RC interconnect[15]. Cell delay computation is a rel-
atively simple computation often via a table lookup. Finally,
waveform superposition is another complexity that adds to the
whole coupling computation. Therefore, our algorithm is opti-
mized toward reducing the number of coupling computations.

There are two types of events in our event-driven algorithm.
A coupling event is the event triggering calculation of the
coupling waveform envelope based on the victim and the ag-
gressors’ waveforms to derive the coupled delay. Adriving
eventis the event triggering calculation of the propagation de-
lay based on the previous stages’ coupled delay.

Given a circuit with the coupling noise for each pair of vic-
tim and aggressor, and the waveform that has been charac-
terized, we propose the following event-driven algorithm to
compute effective circuit delay:
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Figure 6: Coupling/Driving Events

1. Schedule a coupling event for each node.

2. Pop an earliest event until the queue is empty according
to the current status of the circuit.

(a) If it is a coupling event, for example, a coupling
event from node B to node A in Fig.6, compute the
superposition coupling waveform and get the cou-
pled delay of node A. Schedule the next stage driv-
ing event for node D.

(b) If it is a driving event from node C to node A, up-
date the propagation delay of the current node A,



schedule a driving event from node A to node D,
force a coupling event on node A to recompute the
coupling effect, and find if node A newly attacks
the adjacent nodes. Schedule the coupling events
for newly attacked adjacent nodes, that is to say, for
example, a coupling event from node A to node B.

Our algorithm keeps track of all old delay values. If a coupling
or a driving condition does not change, it won’t be necessary
to recompute or schedule an event.

Note that not only the victim can have delay variation due
to noise effect, but also the aggressor has delay variation. The
event-driven algorithm proposed above will check each node
to compute the coupled delay based on the propagation de-
lay and coupling effect, and propagate extra delay forward the
stages. That is to say, depending on the context, each node
will be considered as a victim to update the delay value.

4.2 Convergence of Our Algorithm
Intuitively, our algorithm tries to maintain a consistent sys-

tem that each node has its propagation min and propagation
max delays as defined by Eq.(1) and (2) and the coupled delay
conforms to the worst case alignment of its aggressor wave-
forms as described in Section 4. Our algorithm corrects the
local inconsistency of delays and issues the related delay per-
turbation event to the next stages or the adjacent coupling de-
lays.

Theorem 2 Given an accuracy requirement, the algorithm
described above converges to a consistent value for each delay
in a circuit using finite steps.

(Proof:) If there is a coupled delay inconsistency or a driv-
ing delay inconsistency on a node, our algorithm recomputes
it according to the coupling nodes or the incoming driving de-
lays by the algorithm described in Section 4 and Eq.(1) or (2),
to update its coupled or propagation delay, and issue events
for updating related coupling nodes and the next stage nodes.
This maintains local consistency. Note that we assume each
isolated sub-circuit group has at least one input to initiate the
event-driven process. Initially, we assume that the propagation
delay for each primary input is fixed.

We now prove the convergence of our algorithm. Suppos-
ing there is no coupling, we can compute the propagation de-
lays in a topological order in one single pass. However, due
to crosstalk coupling, a victim node may have coupling from
its transitive fanouts whose switching windows cannot be fi-
nalized at the time when we calculate the propagation delay of
the victim. Suppose one of the aggressor nodesj is a transitive
fanout of a victim nodei, and their switching windows overlap
each other. Fig.7 shows these waveforms. We will prove this
converges to a single point. As aggressorj ’s transition moves
from left to right, we can plottcpl;min

i as a function oft ppg;min
j ,

which is shown in Fig.8, whereT is a shorthand fort ppg;min
i ,

hj is the normalized peak noise coupling from aggressorj, d�i; j

t j
ppg,min

t i
cpl,min
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Figure 7: Transitive Fanout as an Aggressor

is a transitive delay from nodei to nodej, and the propagation
delay of nodej is equal to

t ppg;min
j = tcpl;min

i +d�i; j : (3)

The function means that it can be sped up to the lower bound
of T�sihj and it has an upper bound ofT, which is no speed-
up. In addition, Eq. (3) has a lower bound whend�i; j equals
to zero. The convergence process is shown in Fig.9. If the
first tcpl;min

i is at point a, the value oft ppg;min
j (point b) can be

obtained by Eq. (3). The value oftcpl;min
i is thus obtained by

the tcpl;min
i function shown in Fig.8, which is point c. It will

continue this process to point d, e, until it converges to the
crossing point z, at which it meets the accuracy requirement.

t i
cpl,min

t j
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Figure 8:tcpl;min
i Function oft ppg;min

j and convergence

Moreover, the slope of middle segment oftcpl;min
i function can

be shown to be greater than 1, which means we can have only
one crossing point since Eq. (3) is also linear. As a result,
the iteration process must be able to improve towards conver-
gence, which means that we can reach the accuracy require-
ment on finite steps. 2

Note that the iteration occurs when the aggressor’s sensitive
window overlaps with the victim’s switching threshold point,
and the aggressor is one of the transitive fanouts of the victim.
As the transitive delay is shorter and the aggressor’s slew time
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is longer, it is likely to overlap and increase the computation
time.

For the max delay, because of the conservative assump-
tion that the aggressor may switch at any time point within
the switching window to create the worst case coupling, the
result of event-driven algorithm always takes the worst case
timing, which is conservative and no iteration needed. The
tcpl;max
i function has two types shown in Fig.4.2.
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4.3 Properties of Our Algorithm
It is interesting to note that our algorithm can reach the

same result even if the initial values, propagation and coupled
delays, are given totally different. That is to say, our algorithm
results in a very robust calculation. Different initial value set-

tings only affect the number of events and calculation time.
Typically if the initial values are closer to the final result, the
computation time is reduced. This principle generally applies
to all the iterative algorithms to converge in fewer steps if the
initial value are closer to the final convergence value.
4.4 Event Pruning

Any event may cause a series of computations to update
the whole system. However, coupling and driving events may
not be necessary if they will not change any delay value of
a circuit. Therefore, it is desirable to reduce the number of
events issued to speed up the computation.

Coupling may be considered harmless if two signals switch
with non-overlapping timing windows. That is to say, due to
the temporal isolation, the two nodes that are physically cou-
pled result in no crosstalk noise effect. We can also compute
the lower bound of min delay and upper bound of max de-
lay by 0 or 3X coupling capacitance. It can be done before
running the event-driven algorithm, and provides a valuable
information for pruning events.

When a node changes its propagation delay, our algorithm
issues events based on the facts:

1. if the coupling computation in some previous event may
still keep the same condition for coupling, it does not
need to schedule this event, since the same coupling con-
dition results in the same amount of coupling noise.

2. when the coupling condition changes, a coupling event
has to be issued to update the corresponding coupling
nodes, and the propagation delay of next stage may
change accordingly, so a driving event is issued.

The event-driven type of calculation makes the compu-
tation very robust and efficient without least redundant re-
computation.
4.5 Scheduling Technique

Scheduling is a key for the efficiency of convergence. We
can reduce complexity by an order of magnitude with careful
arrangement of events. Among all the scheduling techniques,
including topological order of the nodes, the event timing se-
quence, static or dynamic updating, and updating frequency,
we identify several significant scheduling approaches as fol-
lows:

Dynamic Event Time We schedule events based on the right
hand bound of a sensitive window defined in Section 2,
and dynamically sort the events according to the current
circuit status(delay value). Intuitively, it forms a sweep
timing line across the circuit. If any event occurs earlier
in the event time, our event algorithm schedules it first
and keep iterating on its related events until it converges.

Static Event Time We schedule events based on the right
hand bound of a sensitive window. No dynamic sorting
of events is performed. When two events have the same
time, we schedule events based on the topological order
of the nodes.



Ckt. #Nodes #Edges #Cpl. Re- Run
Comp. Comp.% Time

C17 11 12 23 4.5% 0.005s
C432 196 336 424 8.2% 0.083s
C499 243 408 538 10.7% 0.099s
C880 443 729 1042 17.6% 0.200s
C1355 587 1064 1361 15.9% 0.276s
C1908 913 1498 2041 11.8% 0.441s
C2670 1350 2076 3082 14.1% 0.638s
C3540 1719 2939 3924 14.1% 0.880s
C5315 2485 4386 5477 10.2% 1.225s
C6288 2448 4800 7281 48.7% 1.350s
C7552 3718 6144 9220 24.0% 1.896s

Table 1: Result for ISCAS85 Combinational Circuits

Smart Global For each updating pass, we maintain a flag on
each node to identify if the node needs to be updated in
the next pass. At each pass, each node is examined and
processed if necessary. The updated delay will propagate
to its coupling nodes and next stages. The event pruning
technique is also used to reduce the number of updates.
If no update is needed through out a pass, it is converged.

The number of events strongly depends on the number of
coupling edges and the number of propagation edges. It im-
plies some preprocessing to prune to loosely coupling edges
can be very effective.

5 Experimental Results
We demonstrate our algorithm on a 233MHz PC with 64M

bytes memory based on a Linux OS. We benchmark our algo-
rithm on the ISCAS85 combinational circuits. For each cir-
cuit, each node is presumed to have four random coupling
nodes. The coupling noise between each pair of aggressor
and victim and the slew on each node are pre-characterized
or estimated. We also vary these parameters with different
scheduling approaches to test the efficiency of our algorithm.

The total run time for all the ISCAS85 eleven combina-
tional circuits is just 7.09 seconds using dynamic event time
scheduling technique with a convergence accuracy of 10�8ns.
It is observed that on average, 21.9% of nodes are recom-
puted for coupling calculation, which means only 21.9% of
the nodes have to be calculated twice for the coupling to ob-
tain to the final delay value. Table 1 shows the result, where
the first column is the name of circuits, the second column
is the number of nodes, the third column is the total number
of fanouts, which is equal to the number of driving edges, the
fourth column is the number of coupling computation, the fifth
column is the percentage of re-computation of coupling, and
the last column is the run time.

With different initial values, the number of coupling com-
putations can have 22% difference such as shown in Table 2,
where the first column shows W factor, which is the factor
how the initial value is close to the worst case value: 0.0 rep-

W factor #Coupling ReComp.% Run
Comp. Time

1.0 40528 43.6% 7.55s
0.8 37192 31.8% 7.31s
0.6 34467 22.1% 7.17s
0.5 34413 21.9% 7.09s
0.4 35080 24.3% 7.17s
0.2 37121 31.5% 7.21s
0.0 41828 48.2% 7.39s

Table 2: Initial values affects the number of coupling compu-
tations

Scheduling factor #Coupling Run
Method Comp. Time
Smart Global 240292 96.8s
Dynamic Event Time 308048 113.2s
Static Event Time 286718 108.2s

Table 3: Performance for Different Scheduling Approaches

resents using the nominal delay value, and 1.0 represents using
the worst case value for initial values. The second column is
the total number of coupling computations of all eleven com-
binational circuits from ISCAS85. The third column is the
percentage of re-computations, and the last column is the run
time.

We also implement the ISCAS combinational circuits in a
0.25µmtechnology. The result is shown in Table 4, where the
first column shows the circuit name, the second column is the
number of nodes in the circuit, the third column is the num-
ber of propagation edges, the fourth column is the number of
the coupling edges, the fifth column is the number of coupling
computation, and the last column is the run time. In Table 3,
we compare different scheduling approaches in terms of to-
tal run time for all these circuits. In gerenal, Smart Global
scheduling approach is a winner among all the scheduling ap-
proaches.

6 Conclusion
We propose a robust and efficient algorithm to compute the

coupling delay effect on static timing analysis using a flexi-
ble and practical waveform model. The convergence property
has been shown as well as different scheduling techniques to
reduce the run time. We expect this approach can be directly
implemented in a very practical industrial tool for advanced
static timing analysis targeting for very deep submicron de-
signs.
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