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Abstract fact, recent experiences suggest this optimization problem is getting
more difficult. Namely, Caltech researchers et al. propose partition-
This paper addresses the problem of identifying the minimal ing asynchronous data-paths into bit-slices and pipelining between
pipelining needed in an asynchronous circuit (e.g., number/size bit-slices to achieve higher throughput [12, 7]. When combined
of pipeline stages/latches required) to satisfy a given performance with standard pipelining between functional componentboundaries,
constraint, thereby implicitly minimizing area and power for a this creates a complex 2-dimensional pipeline. As a general rule
given performance. In contrast to the somewhat analogous prob-in asynchronous design, the number of pipeline stages increases
lem of retiming in the synchronous domain, we first show that the the power and area of the design due to extra completion sensing
basic pipeline optimization problem for asynchronous circuits is and control logic. Thus, one reasonable objective for pipeline op-
NP-complete. This paper then presents an efficient branch andtimization is to identify the minimal pipelining needed to satisfy a
bound algorithm that can find the optimal pipeline configuration for given performance constraint, thereby implicitly minimizing area
moderately-sized problems. Our experimental results on a few scal-and power for a given performance.
able system models demonstrate that our novel branch and bound
solver can find the optimal pipeline configuration for models that It may be worth pointing out similarities with a somewhat anal-
have up to 3% possible pipeline configurations. ogous problem ofetiming [14] in the domain of synchronous cir-
cuits. In particular, like our problem, one basic version of retim-
. ing is to achieve a desired cycle time with the fewest number of
1 Introduction latches. In addition, like retiming, we do not significantly change
the structure of the circuit. Thatis, we currendlynot consider re-
synthesizing the circuit jointly with pipeline optimization. The key
difference between the two problems, however, is that in the syn-
chronous domain an initial assignment of latches must be given and
the number of latches along any cycle must not be changed. In con-
trast, for our problem, the initial latch assignment is not necessary
and the correctness requirements on the number of latches along a
cycle are different.

Most designs use a global clock to synchronize data flow. Re-
cently, however, asynchronous designs, have demonstrated poten
tial benefits in low power, high average performance, composabil-
ity, and improved noise immunity and electromagnetic compata-
bility. Many tools and techniques have been developed to address
hazard-freedom and area minimization. Estimation and optimiza-
tion of their performance, however, remains somewhat of a stum-
bling block. The basic problem is that the complex interaction of
various handshakingprotocols makes direct optimization for perfor-

mance very difficult This paper first proposes an abstract model of the circuit on

There are two basi roaches to performance optimization of which the basic pipeline optimization problem can be defined. This
ere are two basic app P P abstract model is sufficient to characterize a variety of pipelining

asynchronous_ circuits. The flrst_ approach |nvolves_ using perfor- schemes, including those from Williams and Caltech [17, 12]. How-
mance analysis techniques to guide manual or semi-automated de-

. . . ever, it is currently restricted to deterministic pipelines (no-choice)
sign changes(e.g., [16]). The alternative approachisto developsyn-and only considers fixed delays. Given that the basic synchronous
thesis techniquesthat directly optimize for performance. Successful

S . o retiming problem can be optimally solved in polynomial time [11],
efforts in this area have addressed transistor sizing [5], technology ' : Lo
mapping [6], and allocation and scheduling (e.g.. [3, 2, 1]) in high- we first explored the complexity of our optimization problem. One

level synthesis contribution of this paper is a proof that the defined asynchronous
; : . S pipeline optimization problem is NP-complete. In addition, we
asTr?(I:?lI%?l%irsf?:grrgﬁilgesaﬁ;nievél ilcr)ween‘c?rtrinrri}rz]:::t(ie o%p“mlzaatlﬁgu?;?a for presentan efficient branch and bound algorithm which demonstrates
prgvious research is either aFt) a mugh lower Iével tﬁan pipelining the feasibility of the optimization problem for moderately-sized
(.., logic synthesis) or assumes that the pipelining is fixed (e.g models. Our experimental results on a few scalable models of asyn-
in'hi.g:]h-level synthesisMore specifically, to the best of our know- @ chronous systems that our branch and bound solver can successfully

edge, no automated tool existsto indicate the degree of pipelining find the optimal solution among ove?2pipeline configuration.

e.g., humber of pipeline stages) needed to achieve a given perfor- L . . .

Ena?wce. In otherva\?ords wk?ile)it is well-known thagt goo% pipelin- The organization of the remainder of this paperis as_follows. St_ac-
ing design styles in asynchronous circuits are critical to reduce the tion 2 presents pipeline analysis backgroundand Section 3 describes
asynchronous control circuit overhead (e.g., [17, 16]), itis more dif- the model on which we formulate the optimization problem. Sec-
ficult to determine the best means of breaking up a large combina- tion 4 then proves NP-completeness of our problem while Section

tional block into pipeline stages to achieve a given performance. In 5 describes an relatively efficient exact solution base_d on a branch
and bound approach. Sections 6 and 7 present experimental results,

TThis work is funded in part by NSF Grant CCR-9812164. conclusions, and potential directions for future work.
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As an example, the intuition behind the first of the three cyclesis as
follows. After stage evaluates, staget 1 can evaluate, followed

by stage + 2. Once stagé+ 2 evaluates, the results from stage

i + 1 are no longer needed and it can precharge. Once stage
pre-charges, stagecan re-evaluate, completing the cycle. Tye

Fo_ - F, o -~ Fs = _Fq .. cle time is lower bounded by the maximum of the above quantity
for each three-pipeline-stage sequence. More specifically, the cycle
time is the maximum of this lower bound and the cycle metrics as-
sociated with all loop dependencies.

Note that the marked graph in Figure 1(a) is general but ig-
nores the control and completion sensing overheads. In contrast, the
marked graph in Figure 1(b) illustrates a more detailed model of a

J7 JZ JZ specific pipeline style, namely Williams’ PSO pipeline scheme. For
this marked graph, a sequence of three stages yields the following
D*. D¢, D% .
2 3 4 three one-token cycles:
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TR+ TR 1) +T(DF 1) + TR + TR 1) +1(Dp))

(a) Abstract model

(b) PSO model For general PSO pipelines that contain forks and joins the above

equations must be modified to include control circuit overhead.

The optimization techniques developed in this paper focus on
the general class of pipelines in which each sequence of 3 stages
contributes some number of one-token cycles which covers most
2 Backg round: Asynchronous Pi pelines pipeline strategies of current interest. We assert, however, that ex-

tensions to pipeline strategies in which fewer than 3 or more than 3

Previous work related to performance of asynchronous pipelines Stages yield one-token cycles are straight-forward.
have focused on assuming a given structure of an asynchronous
pipeline and analyzing its performance. For example, a determin-
istic pipeline is generally partitioned into a setadiges each con-
trolled by a different control signal. TH# stage is associated with a
function evaluationdelay T(F), afunctionresetdelay 1(F"), acom-
pletion sensing delay for evaluation t(Df), acompl etion sensing de-
lay for reset T(Df), acontrol overhead delay for evaluation T(C?),
and econtrol overheaddelay for reset 1(C{). Marked graphsaretyp- gy cryres. This section describes our proposed model.
ically used to analyze the interaction of neighboring stagesinterms 4 pipeline optimization model is a labeled directed graph
of the above quantities [17, 10, 18, 18]n particular, each cycle in (SU,M,F,L), with nodesS, edges) C <, binary labels on edges
the graph has eycle metric that is the sum of the delays of allas- 4. J .5 B and two sets of binary labels on nodesS— B and
sociated transitions divided by the number of tokens that canreside| . g _, B.’ The edges) represent unpartitionable combinational
in the cycle. Theycletime of a deterministic pipeline is definedas 50k calledunits. The unitu;, has a function evaluation delay
the largest cycle metric in its marked graph representation [5, 13]. 1(££), a function reset delay( f), a completion sensing delay for

_The largest cycle metric in the marked graph either arises from fnction evaluatiort(df), a completion sensing delay for function
pipelining constraints or froralgorithmic loop dependences. For resetr(d"), a control overhead delay for function evaluatigo®),
example, in asynchronous pipeline rings which implement itera- ;4 achJntroI overhead delay for function rege ). :
tive algorithms, e.g., Williams’ asynchronousdivider [17], the cycle The nodesS represent candidate boundaries between pipeline
time may be dictated by how long it takes for a data or bubble (i.e., gtages callediots. The labelsF denote slots which have pre-
asingle token) to travel around the ring. N assigned abstract latches that delineates pipeline stage boundaries.

We first consider the marked graph illustrated in Figure (a). "Jp¢ JapelsL denote which slots areo be assignedabstract
This marked graph abstractly models pipelines using both Williams | 5cpes, Note that the presence of the latch changesthe implied con-
style PCO and PSO scheme [17] as well as some of Caltech's ) sty cture of the circuit but does not necessarily represent a phys-
precharge-logic pipelining schemes [12]. For this marked graph, | |ogic entity. In particular, note that many of the Williams style
there exists threene-token cycles, containing only one-token, for  hineline [17] need not have explicit latches. In particular, the set of
every sequence of three pipeline stages as follows: combinational logic blocks in between two slots that are assigned

Figure 1: Marked graph models of asynchronous pipelines.

3 Pipeline Optimization Model

The abstract circuit models used for analyzing pipelines assume a
fixed pipeline structure and thus cannot be directly used as a model
to optimize the pipeline structure itself. More specifically, a pipeline

optimization model must characterize the set of possible pipeline

abstract latches is orstage. An example of asynchronous linear
max(r(F,e) +1(RS1) +1(RS2) +1(Ry), pipeline is in Figure 2. Note that introducing more than one slot in
TR+ TR ) + TR )+ T(FE), between stages (by adding a fictitious functional units with zero de-

lay) facilitates the introduction of explicit latches to further increase
!Due to space limitations, we refer the interested reader to [13] for a throughput (suchasin PC1and PS1[17]).

formal introduction to marked graphs and their application to performance ~ The labelsM denote the edgas; for which independent data

analysis. can initially reside. We require that every loop in the pipeline opti-
’Note that the places in the marked graphs are omitted for brevity. mization model contain at least one edge that is labeled with a data.
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However, loops may have multiple such labeled edges, reflecting ||« * | °* | > | > | > [ > | > | > [ *|*|°?
the algorithmic intention to have multiple independent data flow- | 2 6 2 2 2 2 2 2 2 2 2
ing simultaneously through the circuit. Thus, more generally,were- ([T o [0 [ 2 [ o | 2 [ o | 2 [ o | o | 2 | o
quire that every loop in the pipeline optimization model be assigned R R R
enough abstract latches to support the number of ediglebeled \ >,

with independent data. For example, for both Williams’ PSO and
PCO0 schemes, the minimum number of abstract latches to support
independent data isi2- 1 [17, 16]. Also, we must considésrmi-

nal slots that have either no incoming or no outgoing edges. To en-
sure the cycle time can be computed, we require that terminal slots
be pre-assigned abstract latches. Otherwise it is unclear how to ac- o )
count for the delay of units attached to terminal slots when comput- graphin Figurel(b) for the special caseof t(f{) = 1(f") = 1(d?) =
ing the cycle time. These two conditions together ensure the cycle T(df) = T(cf) = 1(c[) = 0, for &l i units. Lastly, we assume that

Figure 3: AnasynchronousHuffman decoder model and its detailed
delay information.

time iswell-defined. the giv_en cycletime const_rai ntod _islarger t_han cyc!gmetricsassoci-
The function evaluation delay of stagis defined as(F;) = ated with 1oop dependencies, which for this simplified dependency
Yuesage T(fj). The reset delay of stagés defined as(R;) = graph model, is independent of the degree of pipelining. The proof

of NP-completenessfor avariety of more complex marked graphs,
including the graph depicted in Figure 1(b), then follows directly

y restriction [8]. Theintuition behind these resultsisthat, in gen-
eral, the number of potentially-optimal pipeline configurationsin an
asynchronouscircuit ismuch larger than considered by synchronous
retiming for a similar-sized problem.

We define the Asynchronous Pipeline Decision (APD) problem
asthetask of determining whether there exists a pipelining strategy
using K or less abstract latches for which the pipeline cycletime is
well-defined and less than or equal to &. We prove this problem is
NP-complete by reduction to 3SAT problem in two steps.

First, let Z be aset of variables z and X be a collection of sum-
of-product clausesover positive and negative literals of Z such that
eachclausex; € X has|x;| = 3[8]. The3-Satisfiability (3SAT) prob-
lemisawell known problem whose task is determine whether there
exists a satisfying truth assignment for X. The complexity of the
3SAT problem has been well established:

maxyesage T(r'j) based on the assumption that all units within a
stageresets (e.g., precharges) simultaneously. The completion sen
ing delays of stages set to the last unit’'s completion sensing delay
for both function evaluation and reset. The intuition here is that the
completion sensing units for the other units are not needed and can
be discarded. Similarly, the control overhead delays of stéige

both function evaluation and reset) is defined as the first unit’s con-
trol overhead delays.

The output of the optimization problem is a subset of slots to be
assigned abstract latches and is referred to abstnact latch as-
signment. Thus, thamin-abstract-latch pipeline optimization prob-
lemis to find a minimum cardinality abstract latch assignment that
yields a cycle time that is well-defined and less than or equal to a
given constraind.

Example To make this model more concrete, consider the pipeline

optimization model for a Huffman decoder [4] depicted in Figure 3

using the PSO pipeline scheme. The model decomposes the Huff-
man circuit into 11 units separated by 9 slots and includes the esti-
mated delays for each unit. There are three loops in this optimiza-
tion model, each representing an algorithmic loop dependency. The
maximum sum of the unit evaluation delays (reset evaluation de- ) o o o
lays) along any such loop represents a lower bound on the cycle Consider asimplified pipeline optimization model G = (SU),

time. In this case, the evaluation delays of the top loop dominates, Where Sis aset of slots, U is a set of units, and no cycle consists
yielding a lower bound of 46. ] of lessthan three slots. We define a 3U1L assignment as the task

of determining whether there exist a set of slots S C Swith cardi-

nality lessthan or equal to K, for which every terminal slotisin S

i i and every three consecutive unit sequence should span at least one

4 Com P | eXIty An alys IS slotinS. Thefirst step of our proof involvesshowing that the 3U1L
problem is NP-complete.

To do this, we follow the same reduction strategy to 3SAT from

thevertex cover problem[8]. We observedthat ensuring every three

Theorem 1 Complexity of 3-Satisfiability (3SAT) [8]
3SAT problemis NP-compl ete.

Given that the basic synchronous retiming problem can be opti-
mally solved in polynomial time [11], it seems prudent to deter-

mine the complexity of our problem before exploring efficient al- - - v '
gorithms. This section proves that our problem is NP-complete Unit sequenceis spanned by at least oneslot in S' is equivalent to

for the simplified pipelining performance model depicted in Fig- €nsuring that every middle unit istouched by at least onedlot in S'.

; ; : ; Mapping unitsto edgesand slotsto vertices, thisis equivalent to en-
1(a). Th h lent to the more complicated marked MaPPING g , & -
ure 1(a) 'S graph s equivale P suring that all middle edges must be covered by selected vertices,

which is the key point behind the following proof.

3Thus, our optimization problem is to find a minimum abstract latch as-
signment that yields a cycle time of no larger than 46.



Lemmal Complexity of 3U1L Assignment (3U1L)
The 3U1L problemis NP-complete.

Proof (Sketch) First, the3U1L problemisin NP becauseamodified
depth-first-search algorithm can verify that every that every termi-
na dlotisin S, every three unit sequencecontainsasot in ', and
that S is the appropriate sizein polynomial time. To prove 3U1L
is NP-hard, we show that our problem can be reduced to the 3SAT
problem which is known to be NP-complete.

We first construct a graph G = (SU) and a positive integer
K < |9 such that G has a 3U1L assignment with K or less latch
assignment if and only if X is satisfiable. The graph consists of
three different subgraphs. First, for each variable z € Z, we cre-
ate atruth-setting subgraph T; = (§,U;) with § = {t;,7,7,t;} and
Ui = {{ti.,z}.{z,z},{z.t}}. Foreachclausex; € X, thereisa
satisfaction-testing subgraph Aj = (§,U/), consisting of threeslots
and three units joining them to form a cycle with three dots.

S = {ailil,a[il.aglil}
Uj = {{alil,alil} {aolil,aslil}, {aglil.aalil}

The third and last subgraph consists of only communication units
and isthe only subgraph that dependson which literals occur in the
clauses of the 3SAT problem. For each clausex; € X, let the three
literalsinx; bedenotedby pj,q; andr;. Then, let thecommunication
units of A; be given by

U = {{pjalil}.{aj.alil} {rj,aslil}}

The construction of our instance of 3ULL is composed by setting
K = 3|Z| +2|X| and G = (SU) where Sis an union of dl S; and
S’j andU isan union of U;, UJ! and UJ!’. Note, that this construction
clearly has polynomial time complexity.

Now, we show that the original 3SAT problemissatisfiableif and
only if the constructed 3U1L problem is satisfiable. First, suppose
that S C Sisavalid solution of 3U1L for G with |S] < K. S must
contain at least three ot from each T; and at |least two slots from
each Aj. SinceK = 3|Z| 4+ 2|X|, however, we can further conclude
that S must contain exactly three slots from each Tj, two of which
areterminal slots, and exactly two slots from each A;. Notethat the
third (non-terminal) slot chosenin each T; defineswhich variable, z;
or 7, is set to onein the solution to the 3SAT problem. To see how
this truth assignment satisfies each of the clausesx; € X, consider
the three unitsin Uj'. Exactly one of these three units must not be
atachedto aslot in S'n Aj becauseonly two of thethreeslotsin A;
canbein S. Thisdot thus must be connected to aslot z; (z) that
isin S which implies that the clause x; is satisfied. For the other
direction, supposeatruth assignment satisfiesX. Thecorresponding
3U1L solution S containsthree slots from each T;, two of which are
the terminal slots and one defined by the truth assignment, and two
dots from each A;, corresponding to the slots not connected to the
third (non-terminal) slot of T;. Thisset of selected slots ensuresthat
every three consecutive unit sequencehas at |east one selected slot.

|

Figure 4 shows an example of the proposed constructed graph
for the 3SAT problem Z = {z1,25,73,24} and X = {{z1,23,2},
{21,25,24}}. For example, the 3ULL solution S = {z1,2,,73, 2,
ap[1],a3[1],a1[2],a3[2]} identifies the satisfying solution to the
3SAT problemz; = 1,2, =1,z3=0,and z, = 0.

The second step of the proof requiresthefollowing useful defini-
tions. We define a sequence of unitsto be decomposedinto k stages
by a dot assignment if the units are part of k distinct stages (as de-
fined by the dot assignment). We say asequenceof unitsisaviolat-
ing unit sequence (VUS) if the sequence must be decomposed into
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Figure 4: A 3U1L instanceresulting from a 3SAT instance.

at least 4 stagesin order to satisfy the cycletime constraint, 9, i.e.,
there doesn’t exist any slot assignment that yieldsawell-defined cy-
cletimelessthan or equal to & that decomposesthe sequenceof units
into 3 or fewer stages. We say a sequenceof dotsisaviolating slot
sequence (VSS) if it is spanned by a VUS, i.e,, their existssa VUS
that connectsthe sequenceof dots.

Theorem 2 The pipelinecycletimeislessthan or equal to éif and
onlyif every VUSspanspartsof at least 4 stages, i .e., containsunits
in 4 distinct stages. In other words, the corresponding VSS must
contain at least 3 abstract latches.

Proof (Sketch) <: Wefirst provethat if every VUS spansat |east
4 stages, the cycletime constraint o is satisfied. To prove this, we
prove the equivalent statement that if the cycletime constraint 8 is
not satisfied, there must exist a VUS which constitutes at most 3
stages. To seethis, note that to violate d, there must exist at least
three consecutive stages whose cycle time is larger than 8. These-

quenceof unitsthat correspond to this sequenceof stagesisaVUS,

thereby completing this part of the proof.

= If cycle time constraint o is satisfied, every VUS constitutes
partsof at least 4 stages. Weprovetheabovestatement by contradic-

tion. Assumethat that cycle time constraints 6 is satisfied but that
there exists a VUS with three or less stages. By the definition of
pipeline cycletime, this VUS however implies that & is violated, a
contradiction. [ ]

Finally, we prove NP-completenessof APD problem by restrict-
ing the APD problem such that 1( ff) = 0.2 and 6 = 0.99 and show-
ing areduction to the 3U1L problem.

Theorem 3 The APD problemis NP-complete.

Proof (Sketch) We first show that APD problem € NP. To verify
that a given solution Tt to the APD problem is valid, we must ver-
ify that it haslessthan or equal to K slotsand that it yieldsacircuit
whosecycletime satisfiesthegivencycletime constraint &. Thefirst
partinvolvescounting the number of slotsin rtand the second part of
the problem involvesfinding thelongest sequenceof three stage de-
layswhich can be solved using atrivially modified version of depth
first search. Thus, both of these steps take polynomial time.

Next, to prove the APD problem is NP-hard, we provide a
polynomial-time algorithm that maps any instance of the 3U1L
problem to an instance of the APD problem. First, we construct an
APD probleminstance G’ from aninstanceof 3U1L problem. Every
unitu; in G isdivided into two unit u; 1 and uj » in G'. Moreover, for
each new dlot created, we create two additional slots and add units
in betweenthethree slotsto make adirected ring of size3. Thus, G
consistsof 5U| unitsand |§ + 3|U| slots. The transformation from
G to G’ can be doneeasily in polynomial time.



Figure 5: An example of mapping a 3U1L problem instanceto an
APD problem instance.

Next, we provethat there exists a subset of slotswith cardinality
lessthan or equal to K latchesthat satisfiesany instance of the 3U1L
problem if and only if there exists a latch assignment using K’ =
K+ 3|U| that satisfiesthe constructed instance of the APD problem.

Letsconsider both directions of theif and only if condition. First,
suppose there exists a latch assignment with K latches that satis-
fiesthe 3U1L problem. We observethat a property of our construc-
tion isthat every five unit sequencein G’ hasacorresponding 3 unit
sequencein G. In particular, every five unit sequencein the con-
structed graph G’ consists of two newly added slots and two slots
that were consecutivein G, one of which must be in the solution
to the 3U1L problem. Consider the slot assignment in which, in
addition to the selected latches in the 3U1L solution, every newly
added slot is assigned a latch. First, notice that this assignment re-
quires less than or equal to K + 3|U| latches. Second, notice that
solution guaranteesthat every five unit sequencein the constructed
graph spansthree latches, that the cycletime iswell-defined and is
lessthan or equal to .

Conversely, supposethereexistsasatisfying latch assignment us-
ing less than or equal to K’ = K + 3|U| latches for an instance of
APD problem. Another property of our construction is that every
three unit sequencein G hastwo corresponding five unit sequences
in G'. Each corresponding five unit sequences spanstwo slots that
were consecutivein G and two newly created slots. Any solution to
the APD problem must assign alatch to one of the consecutiveslots
in G. Consider the solution to the 3U1L problem created by select-
ing these slotsin G. Each three unit sequencein G spansa selected
slot and the number of selected slotsmust belessthan or equal to K,
thereby completing the proof. |

An example of mapping a3U1L problem to an APD problemis
depicted in Figure 5.

5 Proper Decomposition of Violating Unit
Sequence

To solve the general optimization problem, we first introduce the
following definitions. A VUS is Properly Decomposed (PD) by a
dot assignment if the following conditions are satisfied:

Condition 1 Covering condition: The VUSis decomposed into at
least 4 stages by the slot assignment.

Condition 2 Satisfying condition: The VUS does not contain any
(complete) sequenceof stageswhich violate d.

Let M beaset of VUS such that every sequence of unitsis either
asubset of aVUSin M or asuperset of aVUSin M, that isno se-
quencecan just partialy intersect or digoint with al VUSin M.

Lemma?2 Thecycletimeismetifandonlyif all VUS & M areprop-
erly decomposed.

Proof (Sketch) «<: Consider a3-stage sequenceof units, which vi-
olatesthe cycletime. It is either asuperset or a subset of at least a
VUSInM. If itisthesupersetof aVUSin M, it can’t be a3-stageor
less sequence. (Contradiction of the condition 1). If it isthe subset
of aVUSin M, it should be properly decomposed. (Contradiction
of the condition 2).

= Proof by the definition of VUS. |

The key theorem that identifies our optimization approach fol-
lows directly from the above lemma.

Theorem 4 If and only if all VUS € M are properly decomposed
with the minimum slot assignment, then the cycle time is met with
the minimum abstract latches.

6 Branch and Bound Algorithm

There exist a variety of techniques that may be used to solve our
minimization problem. The most genera technique is to cast the
problem as an integer programming problem and use generic IP
solvers. Alternatively, one could definea BDD describing the pos-
sible solutionsfor each V SS and take the product of al suchBDDs.
Any path through the BDD that leads to one represents a valid so-
lution and the path with the minimal number of “1” branches, rep-
resents aminimal solution [15]. Both of these solution strategies,
however, do not take advantageof the structure of the solution space
and thus may beinefficient. In contrast, this section proposesan ef-
ficient branch and bound algorithm that incorporates a new lower
bound technique tailored to our problem. Moreover, we assert that
our branch and bound algorithm is more robust than possible BDD-
based techniquesbecauseit may beterminated early to obtain anon-
optimal solution whereas BDD-based approaches may catastrophi-
caly fail if the BDD-size blowsup.

The nodes in our branch and bound tree represent slots. Each
node has up to two children, one representing the partial solution
in which the dlot is assigned an abstract latch, referred to asa slot-
assigned-child, and the other representing the partial solution in
which the slot isnot assigned an abstract latch, referred to asa slot-
excluded-child. Each node is associated with the set of V SSs that
containthat dot. Eachtime anew abstract latchisaddedto apartial
solution we computethe subset of associatedV SSsthat are properly
decomposed. Wedo not searchthe subtreerouted at asl ot-assigned-
childwhen 1) thenumber of abstract latchesassignedupto that child
node plusthe derived lower bound for that subtreeislarger or equal
to the current best solution or 2) the child node represents a solu-
tion better than the current best, in which case the current best so-
lution is updated, or 3) the cycle metrics associated with any loop
dependency exceeds 8.4 We do not search the subtree routed at a
slot-excluded-04 when we determine thereexist no feasible solution
for aVSS associated with the slot.

Inthe traditional branch and bound approachesto covering prob-
lems, the MIS_QUICK independent-set-based lower bound algo-
rithm [9] is widely used becauseits simple and fast. We general-
izethis agorithm to our optimization problem asfollows. For each
node in the branch and bound tree, we create a lower bound graph
consisting of avertex for each VSS and an edge between every two
VSSs that share at least one slot. Each vertex is labeled with the
number of additional abstract latches needed to be assigned for the
VSSto be satisfied (which, recall, is only one of two conditionsto
be properly decomposed). Each edgeis labeled with the number of

4Thislast conditionis becauseadditional abstract latchescannot decrease
cycle metrics associated with loop dependencies.
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Figure 6: An exampleof the lower bound heuristic.

slots shared between the two V SSs. We define the weight of a ver-
tex asthe sum of connected edge |abels divided by the vertex label.
We identify the vertex with the minimum weight and decrease all
connected vertices by the minimum of the identified vertex's label
and the connecting edgelabel. Wethen removetheidentified vertex
along with all connected edgesand iterate. It can be easily verified
that the sum of theidentified verticies' labelsisalower bound of our
problem. Figure 6 shows an example of one iteration of our lower
bound heuristic.

7 Experimental results

We haveimplemented a prototype of our algorithm in C. To demon-
strate its feasibility and limitations, we applied it to the asyn-
chronous Huffman decoder model depicted in Figure 3 as well as
three scalable asynchronous circuit structures, a linear pipeline, a
pipeline ring, and a pipelined ring-of-ring structure. We tested lin-
ear pipelines and pipeline rings with 20, 25, 30 and 35 slots. The
last structure (ring-of-rings) we tested with 5 rings, each ring con-
taining 10 slots, with 2 dlots shared by crossing rings. Thus each
ring communicateswith 2 adjacent rings, asillustrated in Figure 7.
For all examples, wechooseWilliams' PSO pipelinescheme. For all
scalable examples, the function evaluation delay, the function reset
delay, the completion sensing delay for evaluation and the comple-
tion sensing delay for reset are randomly generated between 10.0
and 30.0, 5.0 and 15.0, 1.0 and 20.0, and 1.0 and 10.0, respectively.

Table 1 showsthe experimental results of our agorithm with and
without thelower bound algorithm (presentedin Section 6) enabled.
When the lower bound algorithm is enabled, the run time is cut by
afactor of up to two orders of magnitudes. Theresults demonstrate
that using our lower bound algorithm, the optimal pipeline configu-
ration for moderately-sized problem isfeasible. It is aso important
to note that for large systems, the run-time can be reduced by ei-
ther removing slots from consideration or pre-assigning slots with
abstract latches. For instance, we ran additional experimentswhere
for each structure, we pre-assigned several selected slots with ab-
stract latches. Asshown in Table 1, the run-times are significantly
reduced.

8 Conclusions

This paper formalizes a new asynchronous pipeline optimization
problem common to a variety of pipelining styles and proves that
it is NP-complete. It then proposes an efficient branch and bound
algorithm for the exact solution. The experimental results suggest
that the algorithm is feasible for moderately sized systems. More-
over, complexity reduction methodsfor its application to larger sys-
tems are al so presented and eval uated.

Therearemany interesting future directionsfor thisresearch. For
example, although the algorithm asdescribed is restricted to models

Figure 7: An asynchronousring-of-rings model.

that do not exhibit choice, the approach can also heuristically be ap-
pliedto systemswith choicemodeled by, e.g., free-choice Petri nets.
The ideais to sequentially apply the agorithm to distinct choice-
free behaviors (e.g., marked graph components) from those with
highest probability to those with lowest probability. Specificaly,
the abstract latches assignedin oneiteration would be assumed pre-
assigned for the remainder of the optimization process. Other more
effective strategies may also be possibleand are an interesting area
of future research. In addition, extensionsthat allow stochastic de-
lays may also be possible and useful.
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