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Abstract
In high-speeddata networks, the bit-err or-rate specification on the sys-
tem can be very stringent, i.e., 10� 14. At such error rates, it is not feasi-
ble to evaluate the performanceof a designusingstraightforward, simula-
tion based,approaches.Neverthelessperformanceprediction beforeactual
hardware is built is essentialfor the designprocess.

This work intr oducesa stochasticmodel and an analysis-based,non-
Monte-Carlo method for performanceevaluation of digital data communi-
cation circuits. The analyzedcircuit is modeledby a number of interacting
finite statemachineswith inputs describedasfunctions on a Mark ov chain
state-space.The composition of theseelementsresults in a typically very
large Mark ov chain. Systemperformance measures, such as probability
of bit errors and rate of synchronization loss,can be evaluated by solving
linear problemsinvolving the large Mark ov chain’s transition probability
matrix. This paper first describesa dedicatedmulti-grid method usedto
solve thesevery largelinear problems.The principal bottleneck in suchan
approach is the sizeof the Mark ov chain state-space,which grows expo-
nentially with systemcomplexity. The secondpart of this paper intr oduces
a novel, graph based,data structure capableof efficiently storing and ma-
nipulating transition probability matrices for several million stateMark ov
chains.The methodsare illustrated on a real industrial clock-recovery cir-
cuit design.

1 Intr oduction
High-speedcommunicationsystemshaveextremelytight bit-error-rate
(BER) specifications.For SONET/SDHapplicationsit is not uncom-
mon to have BER requirementsin the order of 10� 14. Suchspeci-
ficationsarepractically impossibleto verify throughstraightforward
simulationbecauseof theextremelylongsequencethatwould needto
besimulatedin orderto getmeaningfulerrorstatistics.In theabsence
of aperformanceanalysistool, designersrely ontheexperienceof pre-
viousdesigns,intuition, andgoodluck. This environmentdiscourages
innovative solutionsandnon-incrementalapplications.

On the otherhand,the designprocessof communicationsystems
would benefitsignificantlyfrom theexistenceof a reliabledesignper-
formanceevaluationcapability. Sucha capability would permit the
evaluationof a numberof alternative algorithms,architectures,circuit
techniques,andtechnologiesin a shorttime andwithout thecommit-
mentof expensive resources.

A situationthatillustratestheneedfor areliableevaluationcapabil-
ity of theBER occurredin thedesignof a SONET-typeapplicationat
awell-known micro-electronicscompany. Thespecificationfor amul-
tiplexerchip requiredaBERof 10� 14. Theprototypeimplementation,
basedon themodificationof anexistingdesigndeliveredperformance
that was more than an order of magnitudebellow the specification.
The designerssuspectedthat the main causefor the errorsis the in-
terferencenoisein the PLL-basedclock recovery circuit, inducedby
the restof the chip’s circuitry. A numberof circuit, technology, and
packagingremedieswereproposed,but thedesignerswerefrustrated
by their inability to predicttheireffectiveness.

Thispaperintroducesamethodfor performanceevaluationof digi-
tal datacommunicationcircuit designs.Ouranalysismethodcomputes
theprobability of errorsdirectly from thedesigndescription,without
relying on thesimulationof long sequences.Thesystemundereval-
uationis describedasa numberof finite-statemachines(FSMs) with
someof their inputsbeing random. The randomprocessesdescribe
stochasticmodelsfor theincomingdata,noise,andjitter. Therandom

inputsaremodeledasfunctionson thestate-spaceof Markov chains.
It is shown that underthesecircumstancesthe entire systemcan be
modeledby a largerMarkov chain. Thequantitiesof interestfor our
system,suchastheprobability of a detectionerror, or themeantime
betweenfailuresdueto detectionerrorsarethusavailablefrom stan-
dardMarkov chainanalysis.

The first challengeis to develop numericalmethodscapableof
handlingtheextremelylargetransitionprobabilitymatricesassociated
with Markov chainsthatcaneasilyreachmillions of statesfor moder-
ately complex systems.In this work we employ a specializedmulti-
grid methodwhich takesadvantageof the underlyingproblemstruc-
ture and is capableof solving million stateproblemsin lessthanan
hourona beefed-upworkstation.

Theremainingchallengeis to storeandperformcomputationswith
the extremely large TransitionProbability Matrices(TPMs) associ-
atedwith Markov chainsthat can easily reachmillions of statesfor
moderatelycomplex systems.For this purposewe introducea novel
graph-baseddatastructurecalledConditionally OrderedConditional
Probability DecisionGraphs(COCPDGs). COCPDGs arecapable
of storingandperformingoperationsefficiently with TPMs resulting
from multi-million sizechainstatespaces.In contrastto alternative
datastructures,proposedin thepast,COCPDGs areefficient for any
practical interconnectionstructureof the model FSMs. COCPDG
storagerequirementstypically grow sub-linearlywith the sizeof the
Markov chain state-space.The cost of computingthe productof a
COCPDG-encodedTPM with anarbitraryunstructuredvectoris lin-
earin thesizeof thevector. Multiplication of theCOCPDG-encoded
TPM with structuredandgraphencodedvectorscanbeperformedin
sub-lineartime, but the useof structuredvectorsseverely limits the
choiceof thenumericalmethodfor eigencomputationsandlinearsys-
temsolutions.

In this work we demonstratethe useof the COCPDG to encode
a TPM resultingfrom themodelingof a realindustrialclock anddata
recoverycircuit. Foroneexample,theMarkov chainhasmorethantwo
million statesandtheTPM has1.35billion non-zeros.With our data
structurewe encodethematrix with about160MBytesandperforma
matrix-vectormultiply in approximately20 secs.Theclock anddata
recoverycircuit performancemeasuresarecomputedthroughasimple
power iterationin severalhours.

2 Modeling and PerformanceEvaluation
Throughoutthepaper, we will beusingtheCDR circuit [1, 2] shown
in Figure1 to illustratethestochasticmodelandtheperformanceeval-
uation techniques.The framework we presenthereis by no means
restrictedto this particularcircuit, andthegeneralmodelwe describe
canbeusedfor otherdiscrete-timemixed-signalprocessingcircuits.

The CDR circuit in Figure 1 consistsof two coupledfeedback
loops. The first one (upper left) is a traditional “analog” charge-
pumpphase-locked loop (PLL) with a crystalreferenceanda voltage-
controlledoscillator(VCO) thatcangeneratemulti-phaseclocks(e.g.,
a ring-oscillator). The secondloop (lower right) is digital, and has
the purposeof selecting“the best” of the clock phasesgeneratedby
the first loop in order to retime/alignthe data. This phaseselection
is continuallyupdatedby the loop. The currentlyselectedphaseand
the incomingdataare“compared”in the phasedetector(PD) which
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Figure1: Clockanddatarecoverycircuit
producesa digital phaseerror signal. The digital output of the PD
is furtherfiltered to producetheactualdigital signalthat controlsthe
phaseselectionmultiplexer.

For atiming recoverycircuit, theBERspecificationfor theretimed
datahasto be met for a given datacharacteristicsin the presenceof
jitter. Moreover the phasedetectorcanproducea phaseerror signal
only whena transitionoccursin thedatasignal.Theinputdatastream
is usuallyspecifiedin termsof the longestpossiblebit sequencewith
no transitionsandamaximaldrift in frequency. Theinputdatajitter is
specifiedby eye opening,usuallydefinedasuncorrelatedtiming jitter
from abit to thenext. Sometimescorrelatedor cumulative jitter, i.e.,a
randomwalk, mayalsobespecified.Therearealsospecificationson
therecoveredclock jitter.

In this paper, we aregoing to concentrateon thedigital phasese-
lection loop. Themajor jitter sourcein mostCDR applicationsis the
incomingdata,but the internally generatedclock jitter dueto device
noiseor interferencefrom othercircuits canalsobecomesignificant.
Oncethe internalclock jitter hasbeencharacterizedusingtechniques
coveredelsewhere,it caneasilybecapturedin our modelsandanaly-
sis.

It is virtually impossibleto simulatetheBER for thewholeclock
recovery systemat onceusingdetailedtransistor-level modelsfor the
wholecircuit. Thesizeof theproblem(in termsof thevariablesandthe
numberof differentialequationsthatdescribeit) is simply too largeto
handle,now or in theforeseeablefuture.Moreover, we areconfronted
with a mixeddigital-analogcircuit with large time constantfeedback
loops,i.e.,stiff. Theonly useof transientsimulationat thecircuit level
is for connectivity verification, andsimple functional verification of
thelaid-outcircuit. Obviously, sucha verificationis far from ensuring
thatthedesignmeetstheBERspecification.To tacklethesystemlevel
problem,wehave to developintelligentmodelsthatsimplify theprob-
lem,but at thesametime,capturethecharacteristicsof thecircuit that
is essentialfor its operation.

The componentsin the digital phaseselectionloop, suchas the
phasedetectorandthedigital filter, arehighly nonlinearcircuitswith
switching behavior if viewed from a differential equation(DE) per-
spective. A DE model noiseanalysisbasedon linearization(time-
invariantor time-varying) is neitherusefulfor, nor applicableto, this
problem,becausethenoiseor datajitter is too largefor the lineariza-
tion to remainvalid. Moreover, theinternaldevice noisesources(e.g.,
thermalnoise)have little significance.The loop componentsare“al-
most” ideally functioningdigital circuitsandhencecanbemodeledas
discrete-timedigital systems.On the otherhand,jitter andthe phase
error betweenthe selectedclock phaseanddataarecontinuousvari-
ables.

Thesimplestmodelthatcapturestheessentialbehavior of thedigi-
tal phaseselectionloopin Figure1 canbeexpressedwith thefollowing
differenceequation

Φ � k � 1��� Φ � k�
	 Gsgn� Φ � k��� nw � k��
�� nr � k� (1)

whereΦ is thephaseerrorbetweenthe incomingdataandthe recov-
eredclock. The phasedetectoris simply modeledas a memoryless
nonlinearfunctionwhichproducesthesignumof its inputattheoutput.
nw andnr arerandomprocessesthatmodelthe jitter of the incoming
data.nw is a zero-meanwhite, i.e.,uncorrelatedin time,noiseprocess
thatis usuallyGaussian.nw modelstheeyeopeningof thedataandits
characteristicscanbereadilydeducedfrom thesystemspecifications.
nr is usuallya nonzero meanwhite noiseprocess.From (1) onecan
seethat if nr hasnonzeromeanthanthephaseerrorwill have a deter-
ministic drift in the absenceof the signumterm which is responsible
for phasecorrections.Onecanalsoobserve thattherandompartof nr
hasa cumulative effect on thephaseerror: If thesignumtermandnw
wasnot presentin (1) thanthe phaseerror would be a randomwalk
with drift for a nonzeromeanwhite nr . Almost all jitter specifications
on theincomingdatacanberepresentedtogetherby nw andnr by as-
signingappropriateamplitudedistributions(e.g.,Gaussianwith certain
meanandvariance).For instance,onecaneven“mimic” deterministic
sinusoidallyvaryingjitter by assigningtheamplitudedistributionof nr
appropriately.

Thehardwareimplementationof thephasedetectorhasto operate
at the full dataspeed,henceit needsto be implementedby a rela-
tively simplestatemachine.Thesameis true for any digital filtering
thatmight bedoneat theoutputof thephasedetector. Let usassume
that S� k� is a vector representingthe stateof the finite statemachine
(FSM) that implementsthephasedetectorandthefilter. We will now
rewrite/revise(1) in the following moregeneralform which will cap-
turea realimplementation

Φ � k � 1��� Φ � k�
	 f � Φ � k��� nw � k��� S� k��
�� nr � k� (2)
S� k � 1��� g � Φ � k��� nw � k��� S� k��
 (3)

Above, the functions f andg specify the phase-detector-filter FSM:
g givesthe next stateof the statemachinegiven its presentstateand
presentnoisyphaseerrorvalue.Similarly, f producesa valueindicat-
ing the phasecorrection. In the implementationof Figure1, f takes
threepossiblevalues0, G, 	 G indicatingnocorrection,phasedelayor
advancerespectively. G is thesmallestphaseincrementavailablefrom
theinternalclock.

ThecombinedvectorX � k����� Φ � k��� S� k��
 representsthe statevari-
ablesof thesystemdescribedby thenonlineardifferenceequationsin
(2). Sincetherearenoisesourcesasinputsto thesystem,X � k� is best
characterizedasa stochasticprocess.We would like to analyzethis
stochasticprocessin orderto evaluatethevarioussystemperformance
measures.

Whenthe noisesourcesnw andnr arewhite, i.e., uncorrelatedin
time,X � k� is aMarkov process,thatis, givenits currentstate,its future
is independentof its past. One way to analyzethe systemin (2) is
using the machineryof discrete-timeMarkov chains,which requires
thatwediscretizethephaseerrorandalsothenoisesourcesto obtaina
discretestate-space.Thegranularityof thediscretizationof thephase
errorandthenoisesourcesis dictatedby thenumberof clock phases
andthemagnitudeof thenoisesourcenr . Thediscretizationgrid needs
to befine enoughto accuratelycapturethesmall jumpsin phaseerror
dueto nr .

A Markov chainMC is completelycharacterizedby its transition
probabilitymatrix (TPM) P ��� pi j �

pi j ������� X � k � 1��� x j �� X � k��� xi  (4)

wherethestateset ! x1 �#"#"#"$� xL % is thereachablestatespaceof theMC,
which is a subsetof the Cartesianproductof the discretizedphase
values ! φ1 �#"&"#"'� φM % andthestateset ! s1 �&"#"#"$� sN % of thephasedetec-
tor/filter FSM.Theentriesof P arecompletelyspecifiedby thediffer-
enceequationsin (2) andtheprobabilisticcharacterizationof thedis-
cretizednoisesources.P is a very largebut highly structuredmatrix.
Thestructureis inducedby thephasedetector/filterFSM andthedif-
ferenceequations.In spiteof its size,thematrixcanbeefficiently con-
structedasacompositionof smallercomponentsrepresentingbuilding
blocksof the systemusinga graphbasedrepresentationdescribedin
the sequel. This representationmakes it possibleto manipulateand
storeP even whenthe total statespaceis very large. Figure2 shows
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Figure2: Modelof clock anddatarecoverycircuit
a moredetailedcompositionalmodelof theclock recovery systemof
Figure1 describedgraphicallyin theabove formalism.This represen-
tationcanbegeneralizedto networks of FSMswith stochasticinputs
to describevarioushigh-speedcommunicationcircuits.

Now that we describedour systemin the MC formalism,we can
computevariousquantitiesthatcharacterizethestateof thesystemasa
stochasticprocess.For theclock recoverysystem,whenever thephase
errorplusthedatajitter, i.e.,Φ � k�(� nw � k� in (2),becomeslarger/smaller
thanhalf a clock cycle, the systemmight potentiallyproducebit er-
rors. It would be highly desirableto computethe probability of this
event happening.This probability canbe directly obtainedform the
steady-stateprobability distribution of reachablestates,which is the
mostbasicanalysisfor MCs. This involvescomputingtheeigenvec-
tor correspondingto the eigenvalue1 of the stochasticmatrix P [3].
Anothermeasureof performancefor CDR circuits is theaveragetime
betweencycleslips.This translatesinto thecomputationof meantran-
sition timesbetweencertainsetsof MC states,which is anotherstan-
dardcomputationin MC analysis.It involvessolvinga linearsystem
with the(modified)TPM.
3 Numerical Methods
The TPM, P, of a MC is commonlycalled a stochasticmatrix [3]:
From its definition, we immediatelydeducethat it hasnon-negative
entries(they areall probabilities),andits row sumsareequalto 1 (a
row expressesall thepossibilitiesin agivenstate),i.e.,

P � 1 � 1 �#)&)#)'� 1� T �*� 1 � 1 �#)#)&)'� 1� T
It follows that P hasξ �+� 1 � 1 �#)#)#)$� 1� T as a right-eigenvector corre-
spondingto theeigenvalue1. Let usdenotethestationarystateproba-
bilities with η , i - �����.� z� n��� σi 
 astheentriesof the1 / L row vector
η �*�η , i - � . η satisfies[3]

η � η P (5)

Being a probability distribution, the vectorη hasnonnegative entries
andthe sumof its entriesis equalto 1, andit is a left-eigenvectorof
P correspondingto the sameeigenvalue 1. The computationof η is
themostbasicanalysisfor MCs. Theinformationin η alreadymakes
it possibleto computesomeperformancemeasuresfor the modeled
systemasdiscussedin Section2. Moreover, computationof η is the
prerequisitefor computingother performancequantitiessuchas the
autocorrelationof a functiondefinedon thestatesof the MC. Hence,
we concentrateon methodsfor computingη, which canbe posedei-
ther as an eigenvalue problemthrough(5), or as the solution of the
following homogeneouslinearsystem� PT 	 I 
 ηT � 0 (6)

with thenormalization

η ξ � 1 (7)

A variety of standarditerative techniquescanbe usedto solve these
problems.Thesetechniques,however, do not exploit thepropertiesof
MCs.

For theeigenvalueproblem,they rangefrom simplepoweriteration
to subspaceprojectionmethods,suchastheKrylov subspacemethods
Arnoldi andLanczos. For the solutionof the linear systemonecan
employ Gaussianelimination (specializedversions),(block) Jacobi,
Gauss-Seidelor SORiterations,andKrylov subspacemethods,such
asGMRESandthemethodsbasedontheLanczosbiorthogonalization
procedure.Thefeasibility andconvergencebehavior (for the iterative
ones)of thesetechniquesarevery muchapplicationdependent.If the
TPM is availableexplicitly, storedin asparsedatastructure,any of the
above methodscanbe used. In somevery large problems,however,
matrix informationmay be availableonly implicitly throughmatrix-
vector products,which limits the solution options. It is known that
iterativemethodsmayexhibit veryslow convergence,or maynoteven
converge,unlessproperlypreconditioned.

A family of iterative techniques,specific to MC problems,are
aggregation/disaggregation-type methods[4]. Thesetechniquesarise
from andarerelatedto the lumpabilityanddecomposabilityconcepts
in MCs. Herewe discussonly lumpability. Assumethatwe aregiven
an N-stateMC. We partition theseN statesinto n disjoint setswith
n 0 N, andform anew stochasticprocessby definingnew statescorre-
spondingto then sets.Thevalueof thenew stochasticprocessat time
k is thenew statethatcorrespondsto thesetthatcontainsthestateof
the original chainat time k. This procedurecould be usedto reduce
a MC with a very large numberof statesto a processwith a smaller
numberof states,calledthe lumpedprocess.It is often the casethat
we are only interestedin thesecoarser states. For example, in the
modelof theclock recovery circuit, we areinterestedin thephaseer-
ror which is only a componentof thestatevector. Therearemultiple
stateswhichcorrespondto thesamephaseerrorvalue.With theabove
procedure,wecandefinea processwhich is exactlyequalto thephase
error. However, thecrucialquestionis, whetherthenewly definedpro-
cessis Markov for any initial probabilitydistribution for thestatesof
theoriginal MC. If so,wecantreatthenew processwith MC methods
andhencereducethe sizeof the problem. Unfortunately, the answer
to this questionin mostcasesis no,otherwisethemodelwe originally
developedwasredundantandcouldhave beensimplified.

If we loosenthe condition for the newly definedprocessto be
Markov from any to someinitial probability distribution, andif such
aninitial distributionexists,theMC is calledweaklylumpable. In this
case,the computationof the TPM for the reducedMC requiresboth
theTPM of theoriginalMC andtheinitial probabilitydistribution[3].
This is basicallythestartingpointfor aggregation-disaggregationtech-
niquesfor MCs that areusedto acceleratethe convergenceof basic
iterative methodssuchas Jacobiand Gauss-Seideland possibly the
Krylov subspacemethods. For instance,let Jacobibe the iterative
method.After performinganumberof stepsof Jacobi,thecurrentiter-
atefor thestationaryvectorandtheTPM for theMC is usedto com-
putea reducedstationaryvectoranda reducedTPM for the weakly
lumpedchain. Then, the reducediteratevector is usedas the initial
guessto solve theweakly lumpedchainexactly. Next, thesolutionof
thelumpedproblemtogetherwith theinitial guessis usedto producea
correctionto thefiner level iterate.Thesestepsarerepeatedtill conver-
gence[4]. This techniquewasgeneralizedto morethantwo lumping
levelsby HortonandLeutenegger[5]. Themulti-level methodutilizes
a setof recursively lumpedversionsof theoriginal MC to achieve ac-
celeratedconvergence.It canbeinterpretedasanalgebraicmulti-grid
method.

Themulti-level algorithmcanachieve muchbetterperformanceif
the specialstructurein the MC or the underlyingmodel composed
of finite-statemachinesis exploited to developa coarseningor lump-
ing strategy. For the modelof the clock recovery circuit in Figure2,
we employeda coarseningstrategy which lumpsthe two statescorre-
spondingto consecutivediscretizedphaseerrorvalues.In thisway, the
lumpedproblemsresembletheoriginalproblembut with coarserphase
errordiscretization.However, thecoarsenedproblemsdo not capture
all the behavior of the original model. For instance,for someof the
problems,thephaseerrorgrid is too coarsefor theeffect of thesmall
noisenr in (2) to be representedaccurately. Nevertheless,the coarse
problemsretainenoughcharacteristicsof thefineproblemsoasto help
acceleratetheconvergence.
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We implementedsucha multi-level algorithm in [6], where the

lumpingandexpandingstepsareinterleavedwith simpleGauss-Jacobi
iterationsand the coarsestproblem is solved exactly with a direct
method.In this implementation[6], weuseflat sparsestoragefor both
thefineandthecoarseproblemsandthisseverelylimits thesizeof the
problemthatcanbehandled.In orderto overcomethis limitation, we
introduceanovel, graphbased,datastructurecapableof modelingsys-
temswith statespaceslargerby abouttwo ordersof magnitude.The
datastructureis describedin detail in thefollowing section.

This paperonly reportsresultsfor theuseof this datastructurein
conjunctionwith a simplepower iterationalgorithm. The extension
of themorepowerful algorithms(e.g.,themulti-level algorithm)men-
tionedin this sectionfor usewith matricesrepresentedby the graph
baseddatastructurewill bereportedin futurepublications.

4 Efficient Matrix Representationand Manipulation
Flat sparsestorageof the TPM of the MC becomesprohibitive for
problemsizesof over 1 million statesand100nonzerosper row (re-
quiring1 GB of memory).Fortunately, TPMsfor MCsresultingfrom
FSM modelsarenot arbitrary. Typical systemsmodeledwith MCs
arecomposedof a numberof interactingFSMs. Thereforethecorre-
spondingTPM hasastructurethatcanbeexploitedfor efficient repre-
sentation.

As anextremeexample,theTPM for a compositionof n indepen-
dent2-stateMCs is in generala full matrix requiring22n entries.By
exploiting the structureof this matrix, it canactuallybe represented
with only 4n numbersusing Kronecker algebra. For most practical
cases,the interactionbetweenthe componentFSMs is more com-
plex andsomestorage-efficient TPM representationshave beenpro-
posed[7, 8, 9].

Unfortunatelytheseschemesimposeseverelimitationsonthetypes
of interactionsthat the componentsmay have. For examplethe gen-
eralizedKronecker representation[7] canonly describemachinesthat
interactunidirectionally(i.e.,statesof machineA affect thetransitions
of machinesB andC, machineB affectsC, but C canaffect neither
A nor B or a cycle will occur).While thegraphbasedrepresentations
in [9] retainstorageefficiency in thepresenceof cycles,thecomputa-
tional complexity of matrix-vectorproductsis degraded.

We introducea novel graphbasedrepresentationof TPMs which
representsa generalizationof the Conditional Probability Decision
Graphs(CPDGs) [9]. The new representationretainsboth storage
and computationalefficiency even in the presenceof cyclic interac-
tionsamongcomponentFSMs.

Westartby informally reviewing theConditionalProbabilityDeci-
sionGraphs(CPDGs)[9]. Examplesof CPDGsareshown in Figure3
whichencoderespectively thematrices

P � 1
p11 p12 p13
p21 p22 0
0 p32 p332 and Q �43 q11 q12

q21 q225
Thewhite nodescorrespondto rows in the TPM (thepresentstateof
theMC) andthedarkonescorrespondto columns(thenext stateof the
MC). Every pathfrom theroot to theleavescorrespondsto a nonzero
entryin theTPM. Graphsfor coupledmachinescanbeconstructedby
composingtheindividual machinegraphs.

For exampleif we assumethat the two machinesin in Figure 3
areindependent,thegraphfor thecompositionTPM R � P 6 Q (Kro-
necker product)is theoneshown in in Figure4(a). While thenumber

flat graph
independent unidirectional cyclic

dependence dependence
Mem. � a2 
 n na2 an n � an 

CPU � a2 
 n an an � a2 
 n

Table1: Storageandcomputationalcomplexity comparison
of nonzeroesin thecomposedmatrix is theproductof thenumberof
nonzeroesof theindividual matrix sizes(7 / 4 entries),thenumberof
nodesin thecomposedgraphis only thesummationof thenumberof
nodesin theindividual graphs.More generally, whenmachineMC Q
dependson thestateof MC P, its TPM will beoneof

Q1 � 3 q1
11 q1

12
q1

21 q1
225 , Q2 � 3 q2

11 q2
12

q2
21 q2

225 or Q3 � 3 q3
11 q3

12
q3

21 q3
225

conditionalon the presentstateof MC P. In this case,the composed
graphis shown in Figure 4(b). In the most generalcase,both ma-
chinesdependon eachother’s statesandthegraphwill have theform
in in Figure4(c). Notethatevery pathfrom theroot to theleavescor-
respondsto a nonzeroentryin theTPM, whichcanbeobtainedasthe
productof theprobabilitiesof thedarknodesalongthepath.

In all cases,graphrepresentationleadsto significantstoragesav-
ings comparedto the flat matrix representationasshown in Table1
(wherea is thenumberof statesin anindividual machine,andn is the
numberof machinesbeingcomposed).Thegraphrepresentationcan
be usedto computethe resultof the multiplication of the underlying
TPM with anarbitraryunstructuredvector. This is doneby recursive
descentin thegraphwhereeverynodein thegraphcorrespondsto ase-
lectionof rowsandcolumns.Thereconvergentpathsin thegraphindi-
catecommonpartialresults,which,whenreused,leadto a decreasein
thecomputationalcomplexity of themultiplication. Thecomplexities
for thethreecasesareshown in Table1. Notethat in theindependent
andunidirectionaldependencecase,themultiplication is linear in the
numberof statesof the composedmachine.Unfortunately, thereare
nosavingsin computationfor machineswith cyclic dependence.From
thediscussionabove it appearsthatCPDGs areonly advantageousin
comparisonwith flat storagewhen machineshave at most unidirec-
tional dependence.Unfortunately, mostpracticalcasesleadto models
with cyclic dependentcomponents.

We now introducea generalizationof CPDGs called Condition-
ally OrderedCPDGs, (COCPDG). We will show that COCPDGs
canmodelmachineswith cyclically interactingcomponentsandstill
exhibit storageandcomputationalcomplexities thatareat mostlinear
in thetotalnumberof states.

We first introducethe conceptsof conditional independenceand
conditionalunidirectionaldependenceneededfor the generalization.
Their formaldefinitionis beyondthescopeof thispaperandweprefer
to explain themthroughanexample:In themodelof theCDR circuit,
in Figure2, theoccurrenceof a datatransitionis modeledby anFSM
the outputof which is eitherTransitionor NoTransition. This FSM
operatesindependentlyof the othercomponents,but both the phase-
FSM andthecounter-FSM dependon it andon eachother.

When the output of the data-FSM is conditionedto be NoTran-
sition, the FSMs that modelthe counterandthe phaseerror become
mutuallyindependent,i.e.,conditionallyindependentandcanbecom-
posedlike in Figure4(a) for maximumsavings in the corresponding
subgraph. In the presenceof data transition, the counter-FSM and
phase-FSM have a cyclic dependencethat we needto break. We do
this by conditioningon thestatesof thecounter-FSM. We distinguish
the casewhen the counteris full. When the counteris not full, the
phase-FSM becomesindependentof the counter, and the cyclic de-
pendencebecomesconditionalunidirectionaldependence, andagain
thecorrespondingsubgraphcanbeefficiently composed.Theremain-
ing situation(datatransitionand full counter),while still containing
cyclically dependentcomponents,can be describedwith reasonable
complexity dueto the significantlysmallersubsetof statesinvolved.
Thestructureof theresultinggraphis illustratedin Figure5.

A graphnodeis labeledby thepresent-stateor thenext-stateof a
componentFSM. In CPDGs, the order of the nodelabelsfrom the
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Figure4: Composedgraphfor TPM of two FSMs
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Figure5: Independenceandunidirectionaldependenceby condition-
ing
root to the leaves is the samefor all the pathsof the graph. In con-
trast, the COCPDG allows reorderingof the labelsin subgraphsso
thatmaximalconditionalindependenceandunidirectionaldependence
is achieved. Allowing differentordersin subgraphsdoesnot increase
eitherthestorageor thecomputationalcomplexity. It only imposesa
permutationon themultiplicationvectors.

5 Examples
We built a compositionalmodelof the clock recovery circuit in Fig-
ure1. It consistsof four interactingFSMswith stochasticinputs.The
first FSM modelsthe datastatisticstaken from SONETsystemspec-
ifications. Thesecondoneis themodelof thephasedetectorandhas
presentdata,previousdataandthenoisesourcenw (modelof theeye
opening)asits inputs.It producesa three-valuedoutput:LAG, LEAD
andNULL. Its output is the input to an up-down counterFSM that
modelsthe loop filter. The counterproducesan UP-DOWN signal
whenit overflows, which is oneof thetwo inputsto theFSM thathas
thephaseerrorasits state.Theotherinput to thephaseerrorFSM is
thenoisesourcenr .

All figuresshow thestationaryprobabilitydensityfunctionsof the
phaseerror Φ and the input to the phasedetector, i.e, Φ 7 nw. The
line above all of thedensityplotsshows thecounterlength,thestan-
darddeviation of the stationaryzero-meanwhite Gaussiannoisenw,
themaximumvalueof thestationarywhite noisenr (with a non-zero
mean,non-Gaussiandistributionwith probabilitydensityfunctioncho-
sento reflectSONETsystemspecifications),andthe BER computed
by integratingthetailsof thedistributioncomputedusingMC analysis.

Theresultsin Figure6 andFigure7 wereobtainedusingthemulti-
level algorithmwith flat sparsestorage.In thesefigures,theline below
thedensityplotsshowsthesizeof thestatespacefor theMC generated
from themodel,thenumberof multi-grid cyclesrequiredfor conver-
gence,theCPUtimefor generatingtheflat sparsestoragefor theTPM
of theMC, andtheCPUtimespentfor thestationarydistributioncom-
putation.

In Figure6, in the top plot, the noiselevels areso small that the
CDR systemhasnegligible BER. Whenthestandarddeviation of the
noisesourcenw thatmodelstheeye dataopeningis increased5 times,
theBER increasesto 1 8 23 9 10: 11, asseenin thebottomplot in Fig-
ure6.

In Figure7, we studytheeffect of thecounterlengthon theBER
performance,all noiselevels being held constant. We set it to 4, 8
and16. We observe that thebestBER performanceis obtainedwhen
counterlength is set to 8, BER performanceis 1.5 timesworsewith
counterlength4, and5 timesworsewith counterlength16. Whenthe
lengthis setto 4, the loop hashigh bandwidth. The systemtendsto
follow thedominantnoisesource,nw, andasa consequencedetection
errorsoccur. Whenthelengthis setto 16,theeffectof thenoisesource
nr becomespredominant:the loop responsebecomestoo slow to fol-
low thedrift causedby nr and,again,bit errorsoccur. Thelength8 is
a goodcompromise,wherebothnoisesourcescontributeto theBER.
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Figure6: Phaseerror probability densityandBER (multi-level algo-
rithm with flat sparsestorage)

counter state-space non-zeros graph multiplication
length size in TPM memory time

(millions) (MBytes) (CPUsecs)
4 589824 405 61 5.23
8 1114112 719 93 10.6
16 2162688 1347 158 20.8

Table2: Informationon COCPDG representationof the TPM of the
MC modelof theclock recovery circuit
Hence,thereis anoptimalcounterlengthfor givenlevelsof noise,the
computationof which is enabledby theaccurateandefficientanalysis
methoddescribedin thepaper.

The numberof non-zerosin the TPM of the MC generatedfrom
the modelof the clock recovery circuit is dictatedby the granularity
of the phaseerror discretization.For the above resultsobtainedwith
flat sparsestorage,we wereforcedto usea relatively largediscretiza-
tion stepresultingin a coarseapproximationfor the probability den-
sity functionsof the noisesourcesnr and nw. It is desirableto use
a finer phaseerror discretizationso that the continuousdensityfunc-
tionsfor thenoisesourcesarecloselyapproximatedfor moreaccurate
results.This is enabledthroughtheuseof thegraphdatastructurein-
troducedin the paper. With finer phaseerrordiscretization,andwith
counterlengthsetto 16, thesizeof thestatespaceis above 2 million.
If flat sparsestorageis usedto representthe TPM with 1.35 billion
non-zeros, 15 GBytesof memorywould be needed.The graphdata
structurerequiresonly 160MBytes,two ordersof magnitudelessthan
whatis requiredby flat sparsestorage.In this case,themultiplication
of the TPM with a flat unstructuredvector takesabout20 secs. All
noiselevels beingheld constant,Table2 shows the sizeof the state
spacefor theMC generatedfrom themodel,thenumberof non-zeros
in the TPM for a flat sparsestorage,thememoryof the graphrepre-
sentation,andtheCPUtime for the TPM-vectormultiplicationusing
thegraphdatastructure,for counterlengthsof 4, 8 and16.

6 Conclusions
This paperintroduceda new, non-Monte-Carloanalysismethod,for
the stochasticanalysisof digital datacommunicationcircuits. The
analysisis basedon themodelingof theunderlyingsystemasa com-
binationof finite statemachinesandMarkov chains.Therelevantsys-
temperformancemeasuresarederivedfrom computationsthatinvolve
the transition probability matrix of a large resulting Markov chain.
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Figure7: Effect of counterlengthon BER performance(multi-level
algorithmwith flat sparsestorage)

Throughtheuseof aspecializedmulti-grid method,very largesystems
canbesolved in reasonabletime on a powerful workstation.Further-
more,a novel graphbaseddatastructurefor the representationof the
Markov chaintransitionprobabilitymatrix wasintroduced,which re-
quirestwoordersof magnitudelessmemorycomparedwith flat sparse
storage.Theusefulnessof thetechniquesintroducedin thepaperwere
illustratedthrougharealindustrialdesign.
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