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Abstract

In high-speeddata networks, the bit-err or-rate specification on the sys-
tem can be very stringent, i.e., 10~1. At sucherror rates, it is not feasi-
ble to evaluate the performance of a designusing straightforward, simula-
tion based,approaches.Neverthelessperformance prediction before actual
hardware s built is essentialfor the designprocess.

This work intr oducesa stochasticmodel and an analysis-basednon-
Monte-Carlo methodfor performanceevaluation of digital data communi-
cation circuits. The analyzedcircuit is modeledby a number of interacting
finite state machineswith inputs describedasfunctions on a Mark ov chain
state-space.The composition of theseelementsresultsin a typically very
large Mark ov chain. Systemperformance measuies, such as probability
of bit errors and rate of synchronization loss,can be evaluated by solving
linear problemsinvolving the large Mark ov chain’s transition probability
matrix. This paper first describesa dedicated multi-grid method usedto
solve thesevery largelinear problems.The principal bottleneckin suchan
approachis the size of the Mark ov chain state-spacewhich grows expo-
nentially with systemcomplexity. The secondpart of this paper intr oduces
a novel, graph based,data structur e capableof efficiently storing and ma-
nipulating transition probability matricesfor several million state Mark ov
chains. The methodsare illustrated on arealindustrial clock-recovery cir-
cuit design.

1 Intr oduction

High-speedcommunicatiorsystemsave extremelytight bit-errorrate
(BER) specificationsFor SONET/SDHapplicationst is not uncom-
mon to have BER requirementsn the orderof 1014, Suchspeci-
ficationsare practically impossibleto verify throughstraightforvard
simulationbecaus®f the extremelylong sequencéhatwould needto
be simulatedin orderto getmeaningfulerror statistics.In the absence
of aperformanceanalysigool, designersely ontheexperienceof pre-
viousdesignsjntuition, andgoodluck. This ervironmentdiscourages
innovative solutionsandnon-incrementapplications.

On the otherhand, the designprocessof communicatiorsystems
would benefitsignificantlyfrom the existenceof areliabledesignper
formanceevaluation capability Sucha capability would permit the
evaluationof a numberof alternatve algorithms,architecturescircuit
techniquesandtechnologiesn a shorttime andwithout the commit-
mentof expensve resources.

A situationthatillustratestheneedfor areliableevaluationcapabil-
ity of the BER occurredin the designof a SONETFtype applicationat
awell-knowvn micro-electroniceomparny. Thespecificatiorfor amul-
tiplexer chip requireda BER of 10-14. The prototypeimplementation,
basedn themodificationof anexisting designdeliveredperformance
that was more than an order of magnitudebellow the specification.
The designerssuspectedhat the main causefor the errorsis the in-
terferencenoisein the PLL-basedclock recovery circuit, inducedby
the restof the chip’s circuitry. A numberof circuit, technology and
packagingremediesvere proposedhut the designersvere frustrated
by their inability to predicttheir effectiveness.

This papelintroducesa methodfor performancevaluationof digi-
tal datacommunicatiorcircuit designs Ouranalysisnethodcomputes
the probability of errorsdirectly from the designdescription without
relying on the simulationof long sequencesThe systemundereval-
uationis describedasa numberof finite-statemachineg FSMs) with
someof their inputs beingrandom. The randomprocesseslescribe
stochastianodelsfor theincomingdata,noise,andjitter. Therandom

inputsare modeledasfunctionson the state-spacef Markov chains.
It is shawn that underthesecircumstanceshe entire systemcan be
modeledby alarger Markov chain. The quantitiesof interestfor our
system suchasthe probability of a detectionerror, or the meantime
betweenfailuresdueto detectionerrorsarethusavailable from stan-
dardMarkov chainanalysis.

The first challengeis to develop numericalmethodscapableof
handlingthe extremelylargetransitionprobabilitymatricesassociated
with Markov chainsthatcaneasilyreachmillions of statesor moder
ately complex systems.In this work we emplg a specializedmulti-
grid methodwhich takes advantageof the underlyingproblemstruc-
ture andis capableof solving million stateproblemsin lessthanan
houron abeefed-upvorkstation.

Theremainingchallengés to storeandperformcomputationsvith
the extremely large Transition Probability Matrices (TPMs) associ-
atedwith Markov chainsthat can easily reachmillions of statesfor
moderatelycomplex systems.For this purposewe introducea novel
graph-basedlatastructurecalled Conditionally OrderedConditional
Probability DecisionGraphs(COCPDGs). COCPDGs are capable
of storingand performingoperationsefficiently with TPMs resulting
from multi-million size chain statespaces.In contrastto alternatve
datastructuresproposedn the past, COCPD Gs areefficient for ary
practicalinterconnectiorstructureof the model FSMs. COCPDG
storagerequirementgypically grow sub-linearlywith the size of the
Markov chain state-space.The cost of computingthe productof a
COCPDG-encodedr PM with anarbitraryunstructured/ectoris lin-
earin thesizeof thevector Multiplication of the COCPDG-encoded
TPM with structuredandgraphencodedrectorscanbe performedin
sub-lineartime, but the use of structuredvectorsseverely limits the
choiceof the numericalmethodfor eigencomputationsandlinearsys-
temsolutions.

In this work we demonstrateéhe useof the COCPDG to encode
a TPM resultingfrom the modelingof arealindustrialclock anddata
recoverycircuit. For oneexample theMarkov chainhasmorethantwo
million statesandthe TPM has1.35billion non-zerosWith our data
structurewe encodethe matrix with about160 MBytes andperforma
matrix-vectormultiply in approximately20 secs. The clock anddata
recovery circuit performanceneasurearecomputedhroughasimple
power iterationin severalhours.

2 Modeling and Performance Evaluation

Throughoutthe paper we will be usingthe CDR circuit [1, 2] shavn
in Figurel to illustratethe stochastienodelandthe performanceval-
uationtechniques. The framevork we presenthereis by no means
restrictedto this particularcircuit, andthe generalmodelwe describe
canbeusedfor otherdiscrete-timamixed-signalprocessingircuits.
The CDR circuit in Figure 1 consistsof two coupledfeedback
loops. The first one (upper left) is a traditional “analog” chage-
pumpphase-lockdloop (PLL) with a crystalreferenceandavoltage-
controlledoscillator(VCO) thatcangeneratenulti-phaseclocks(e.g.,
a ring-oscillator). The secondloop (lower right) is digital, and has
the purposeof selecting“the best” of the clock phasegeneratecy
the first loop in orderto retime/alignthe data. This phaseselection
is continually updatedby the loop. The currentlyselectedohaseand
the incoming dataare “compared”in the phasedetector(PD) which
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Figurel: Clock anddatarecovery circuit

producesa digital phaseerror signal. The digital output of the PD
is furtherfiltered to producethe actualdigital signalthat controlsthe
phaseselectionrmultiplexer.

For atiming recovery circuit, the BER specificatiorfor theretimed
datahasto be metfor a given datacharacteristicsn the presenceof
jitter. Moreover the phasedetectorcan producea phaseerror signal
only whenatransitionoccursin the datasignal. Theinput datastream
is usuallyspecifiedin termsof the longestpossiblebit sequenceavith
notransitionsanda maximaldrift in frequeng. Theinputdatajitter is
specifiedby eye opening,usuallydefinedasuncorrelatediming jitter
from abit to thenext. Sometimesorrelatedor cumulatie jitter, i.e.,a
randomwalk, may alsobe specified. Thereare also specificationson
therecoveredclockjitter.

In this paper we aregoingto concentraten the digital phasese-
lectionloop. The majorjitter sourcein mostCDR applicationds the
incomingdata,but the internally generatectlock jitter dueto device
noiseor interferencefrom other circuits can alsobecomesignificant.
Oncetheinternalclock jitter hasbeencharacterizedisingtechniques
coveredelsavhere,it caneasilybe capturedn our modelsandanaly-
sis.

It is virtually impossibleto simulatethe BER for the whole clock
recovery systemat onceusingdetailedtransistorlevel modelsfor the
wholecircuit. Thesizeof theproblem(in termsof thevariablesandthe
numberof differentialequationghatdescribet) is simplytoo largeto
handle now or in theforeseeabléuture. Moreover, we areconfronted
with a mixed digital-analogcircuit with large time constanfeedback
loops,i.e., stiff. Theonly useof transiensimulationatthecircuit level
is for connectiity verification, and simple functional verification of
thelaid-outcircuit. Obviously, sucha verificationis far from ensuring
thatthedesignmeetshe BER specification.To tacklethesystemlevel
problem,we have to developintelligentmodelsthatsimplify the prob-
lem, but atthe sametime, capturethe characteristicef the circuit that
is essentiafor its operation.

The componentsn the digital phaseselectionloop, suchasthe
phasedetectorandthe digital filter, are highly nonlinearcircuits with
switching behaior if viewed from a differential equation(DE) per
spectve. A DE model noise analysisbasedon linearization(time-
invariantor time-varying) is neitherusefulfor, nor applicableto, this
problem,becauséhe noiseor datajitter is too large for the lineariza-
tion to remainvalid. Moreover, theinternaldevice noisesourcege.g.,
thermalnoise)have little significance.The loop componentsare“al-
most”ideally functioningdigital circuitsandhencecanbemodeledas
discrete-timedigital systems.On the otherhand,jitter andthe phase
error betweenthe selectedclock phaseand dataare continuousvari-
ables.

Thesimplestmodelthatcapturegsheessentiabehaior of thedigi-
tal phaseselectiorioopin Figurel canbeexpressedvith thefollowing
differenceequation

®k+1] = @ [k] — Gsgn(®[k] + nw[K]) +nr K] @

where® is the phaseerror betweerthe incomingdataandthe recors-
eredclock. The phasedetectoris simply modeledas a memoryless
nonlinearfunctionwhich produceghesignumof its inputatthe output.
ny andn; arerandomprocesseshatmodelthejitter of theincoming
data.ny is azero-mearwhite, i.e., uncorrelatedn time, noiseprocess
thatis usuallyGaussianny, modelsthe eye openingof thedataandits
characteristiceanbe readily deducedrom the systemspecifications.
n; is usuallya nonzeo meanwhite noiseprocess.From (1) onecan
seethatif n, hasnonzeromeanthanthe phaseerrorwill have a deter
ministic drift in the absencef the signumterm which is responsible
for phasecorrections Onecanalsoobsene thattherandompartof n,
hasa cumulatve effect on the phaseerror: If the signumtermandny,
was not presentin (1) thanthe phaseerror would be a randomwalk
with drift for anonzeromeanwhite n,. Almostall jitter specifications
ontheincomingdatacanbe representetbgetherby ny andn, by as-
signingappropriatemplitudedistributions(e.g.,Gaussiamnvith certain
meanandvariance).For instancepnecaneven“mimic” deterministic
sinusoidallyvaryingjitter by assigningheamplitudedistribution of n;
appropriately

The hardwareimplementatiorof the phasedetectorthasto operate
at the full dataspeed,henceit needsto be implementedby a rela-
tively simplestatemachine. The sameis true for ary digital filtering
that might be doneat the outputof the phasedetector Let usassume
that SkK] is a vectorrepresentinghe stateof the finite statemachine
(FSM) thatimplementsthe phasedetectorandthefilter. We will now
rewrite/revise (1) in the following moregeneraform which will cap-
turearealimplementation

®[k+1] @ [K] = F(P[K] + (K], SIK]) + e [K] @
Sk+1] 9(P[K] + nwlk], SK]) ®)

Above, the functions f and g specify the phase-detectefilter FSM:
g givesthe next stateof the statemachinegivenits presentstateand
presennoisyphaseerrorvalue. Similarly, f producesa valueindicat-
ing the phasecorrection. In the implementatiorof Figurel, f takes
threepossiblevalues0, G, —G indicatingno correction phasedelayor
adwancerespectiely. G is thesmallesphasdéncrementvailablefrom
theinternalclock.

The combinedvector X[K] = (P[K], Sk]) representshe statevari-
ablesof the systemdescribedyy the nonlineardifferenceequationsn
(2). Sincetherearenoisesourcesasinputsto the system X[K] is best
characterizeds a stochastigorocess.We would like to analyzethis
stochasti@rocessn orderto evaluatethe varioussystemperformance
measures.

Whenthe noisesources, andn, arewhite, i.e., uncorrelatedn
time, X[K] is aMarkov processthatis, givenits currentstate jts future
is independentf its past. Oneway to analyzethe systemin (2) is
usingthe machineryof discrete-timeMarkov chains,which requires
thatwe discretizethe phaseerrorandalsothe noisesourcego obtaina
discretestate-spaceThe granularityof the discretizatiorof the phase
errorandthe noisesourcess dictatedby the numberof clock phases
andthemagnitudeof thenoisesourcen;. Thediscretizatiorgrid needs
to befine enoughto accuratelycapturethe smalljumpsin phaseerror
duetony.

A Markov chainMC is completelycharacterizedy its transition
probability matrix (TPM) P = [pjj]

pij = Pr (X[k+1] = xj | X[K =x) @
wherethestateset{x,, - - - ,x_} is thereachabletatespaceof theMC,
which is a subsetof the Cartesianproductof the discretizedphase
values{@y,---,@u} andthestateset{ss,---,sy} of the phasedetec-
tor/filter FSM. The entriesof P arecompletelyspecifiedby the differ-
enceequationsn (2) andthe probabilisticcharacterizatioof the dis-
cretizednoisesources.P is a very large but highly structuredmatrix.
The structureis inducedby the phasedetector/filter=FSM andthe dif-
ferenceequationsin spiteof its size,thematrix canbeefficiently con-
structedasa compositionof smallercomponentsepresentingpuilding
blocks of the systemusinga graphbasedrepresentatiomdescribedn
the sequel. This representatiomales it possibleto manipulateand
storeP evenwhenthe total statespaceis very large. Figure2 shavs
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Figure2: Model of clock anddatarecovery circuit

a moredetailedcompositionaimodelof the clock recosery systemof
Figurel describedyraphicallyin the above formalism. This represen-
tation canbe generalizedo networks of FSMswith stochastidnputs
to describevarioushigh-speedommunicatiortircuits.

Now thatwe describedour systemin the MC formalism,we can
computevariousquantitieghatcharacteriz¢he stateof thesystemasa
stochastiprocessFor the clock recorery systemwheneer the phase
errorplusthedatajitter, i.e., ®[K] + nw[K] in (2), becomesarger/smaller
thanhalf a clock cycle, the systemmight potentially producebit er
rors. It would be highly desirableto computethe probability of this
event happening. This probability can be directly obtainedform the
steady-stat@robability distribution of reachablestates,which is the
mostbasicanalysisfor MCs. This involvescomputingthe eigervec-
tor correspondingo the eigemvalue 1 of the stochastiamatrix P [3].
Anothermeasuref performancdor CDR circuitsis the averagetime
betweercycleslips. Thistranslatesnto thecomputatiorof meantran-
sition timesbetweencertainsetsof M C stateswhich is anotherstan-
dardcomputationn MC analysis.It involvessolving a linear system
with the (modified) TPM.

3 Numerical Methods

The TPM, P, of a MC is commonlycalled a stochasticmatrix [3]:
From its definition, we immediatelydeducethat it hasnon-ngative
entries(they areall probabilities),andits row sumsareequalto 1 (a
row expressesll the possibilitiesin agivenstate),.e.,

PILL,..., 1" =[1,1,...,1"

It follows that P has& = [1,1,...,1]T asa right-eigenector corre-
spondingto the eigervaluel. Let usdenotethe stationarystateproba-
bilities with nj;; = Pr (Zn] = o) astheentriesof the 1 x L row vector

n = [ng]. n satisfieq3]

n=nkP Q)

Being a probability distribution, the vectorn hasnonngative entries
andthe sumof its entriesis equalto 1, andit is a left-eigervectorof
P correspondingo the sameeigervalue 1. The computationof n is
themostbasicanalysisfor M Cs. Theinformationin n alreadymales
it possibleto computesomeperformancemeasuregor the modeled
systemasdiscussedn Section2. Moreover, computationof n is the
prerequisitefor computingother performancequantitiessuchas the
autocorrelatiorof a function definedon the statesof the MC. Hence,
we concentraten methodsfor computingn, which canbe posedei-
ther as an eigevalue problemthrough(5), or asthe solution of the
following homaeneousdinearsystem

(PT-)n"=0 (6)

with thenormalization
ng=1 (1)

A variety of standardterative techniquexanbe usedto solwe these
problems.Thesetechniqueshowever, do not exploit the propertiesof
MCs.

Fortheeigevalueproblem they rangefrom simplepower iteration
to subspacerojectionmethodssuchasthe Krylov subspacenethods
Arnoldi and Lanczos. For the solution of the linear systemone can
emplgy Gaussiarelimination (specializedversions),(block) Jacobi,
Gauss-Seidebr SORiterations,and Krylov subspacenethods,such
asGMRESandthemethodsasednthelLanczoshiorthogonalization
procedure.The feasibility andconvergencebehaior (for the iterative
ones)of thesetechniquesrevery muchapplicationdependentlf the
TPM is availableexplicitly, storedin asparsalatastructureary of the
above methodscanbe used. In somevery large problems,however,
matrix information may be available only implicitly throughmatrix-
vector products,which limits the solution options. It is known that
iterative methodamay exhibit very slow convergence or maynoteven
corverge, unlessproperlypreconditioned.

A family of iterative techniques,specificto MC problems,are
aggregation/disajgregationtype methodg4]. Thesetechniquesrise
from andarerelatedto the lumpability anddecomposabilitgoncepts
in MCs. Herewe discusonly lumpability. Assumethatwe aregiven
an N-stateM C. We partition theseN statesinto n disjoint setswith
n < N, andform anew stochastiprocessy definingnew stateorre-
spondingto then sets.Thevalueof the new stochastigrocessattime
k is the new statethatcorrespondso the setthat containsthe stateof
the original chainat time k. This procedurecould be usedto reduce
a MC with a very large numberof statesto a processwith a smaller
numberof states calledthe lumpedprocess.It is oftenthe casethat
we are only interestedin thesecoarser states. For example, in the
modelof the clock recovery circuit, we areinterestedn the phaseer-
ror which is only a componenbf the statevector Therearemultiple
stateswvhich correspondo the samephaseerrorvalue. With theaborve
procedurewe candefinea processwvhichis exactly equalto thephase
error. However, thecrucialquestions, whetherthenewly definedpro-
cessis Markov for anyinitial probability distribution for the statesof
theoriginal MC. If so,we cantreatthenew proceswith M C methods
andhencereducethe size of the problem. Unfortunately the answer
to this questionin mostcasess no, otherwisethe modelwe originally
developedwasredundanandcould have beensimplified.

If we loosenthe condition for the newly definedprocessto be
Markov from anyto someinitial probability distribution, andif such
aninitial distribution exists,the M C is calledweaklylumpable In this
case the computationof the TPM for the reducedM C requiresboth
the TPM of theoriginal M C andtheinitial probabilitydistribution[3].
Thisis basicallythestartingpointfor aggre@ation-disaggrgationtech-
niquesfor MCs that are usedto acceleratghe cornvergenceof basic
iterative methodssuch as Jacobiand Gauss-Seidehnd possiblythe
Krylov subspacenethods. For instance,let Jacobibe the iterative
method.After performinganumberof stepsof Jacobithecurrentiter-
atefor the stationaryvectorandthe TPM for the M C is usedto com-
pute a reducedstationaryvectorand a reducedTPM for the weakly
lumpedchain. Then, the reducediteratevectoris usedasthe initial
guesgo solve the weakly lumpedchainexactly. Next, the solutionof
thelumpedproblemtogethemwith theinitial guesds usedto producea
correctionto thefinerlevel iterate. Thesestepsarerepeatedill conver
gence[4]. Thistechniquewasgeneralizedo morethantwo lumping
levelsby HortonandLeutengger[5]. The multi-level methodutilizes
asetof recursvely lumpedversionsof the original M C to achieve ac-
celeratecconvergence.lt canbeinterpretedasanalgebraicmulti-grid
method.

The multi-level algorithmcanachieze muchbetterperformancef
the specialstructurein the MC or the underlyingmodel composed
of finite-statemachiness exploited to develop a coarseningor lump-
ing strat@y. For the modelof the clock recovery circuit in Figure2,
we emplo/ed a coarseningstratgly which lumpsthe two statescorre-
spondingo consecutie discretizecphaseerrorvalues.In thisway, the
lumpedproblemsesemblaheoriginal problembut with coarsephase
error discretization.However, the coarsenegroblemsdo not capture
all the behaior of the original model. For instance for someof the
problemsthe phaseerrorgrid is too coarsefor the effect of the small
noisen, in (2) to be represente@ccurately Neverthelessthe coarse
problemgetainenoughcharacteristicsf thefine problemsoasto help
accelerat¢he corvergence.
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Figure3: Graphrepresentationf TPMs

We implementedsuch a multi-level algorithmin [6], wherethe
lumpingandexpandingstepsareinterlearedwith simpleGauss-Jacobi
iterationsand the coarsestproblemis solved exactly with a direct
method.In thisimplementatiori6], we useflat sparsestoragefor both
thefine andthe coarsgproblemsandthis severelylimits the sizeof the
problemthatcanbe handled.In orderto overcomethis limitation, we
introduceanovel, graphbaseddatastructurecapableof modelingsys-
temswith statespacedarger by abouttwo ordersof magnitude.The
datastructureis describedn detailin thefollowing section.

This paperonly reportsresultsfor the useof this datastructurein
conjunctionwith a simple power iteration algorithm. The extension
of themorepowerful algorithms(e.g.,the multi-level algorithm)men-
tionedin this sectionfor usewith matricesrepresentedby the graph
baseddatastructurewill bereportedn future publications.

4 Efficient Matrix Representationand Manipulation

Flat sparsestorageof the TPM of the MC becomesprohibitive for
problemsizesof over 1 million statesand 100 nonzerosper row (re-
quiring 1 GB of memory).Fortunately TPMsfor M Cs resultingfrom
FSM modelsare not arbitrary Typical systemsmodeledwith MCs
arecomposedf a numberof interactingFSMs. Thereforethe corre-
spondingT PM hasa structurethatcanbe exploitedfor efficientrepre-
sentation.

As anextremeexample,the TPM for acompositionof n indepen-
dent2-stateM Cs is in generala full matrix requiring22” entries. By
exploiting the structureof this matrix, it canactually be represented
with only 4n numbersusing Kronecler algebra. For most practical
cases,the interactionbetweenthe componentFSMs is more com-
plex and somestorage-dfcient TPM representationkave beenpro-
posed?7, 8, 9].

Unfortunatelythesescheme@mposeseverelimitationsonthetypes
of interactionsthatthe componentsnay have. For examplethe gen-
eralizedKronecler representatiofi’] canonly describemachineghat
interactunidirectionally(i.e., statesof machineA affectthetransitions
of machinesB and C, machineB affects C, but C can affect neither
A nor B or acyclewill occur). While thegraphbasedepresentations
in [9] retainstorageefficiengy in the presencef cycles,the computa-
tional compleity of matrix-vectorproductss degraded.

We introducea novel graphbasedrepresentationf TPMs which
representsa generalizationof the Conditional Probability Decision
Graphs(CPDGs) [9]. The new representatiometainsboth storage
and computationalkfficiency even in the presenceof cyclic interac-
tionsamongcomponenFSMs.

We startby informally reviewing the ConditionalProbabilityDeci-
sionGraphg CPDGs)[9]. Exampleswof CPDGsareshavn in Figure3
which encoderespectrely thematrices

P11 P12 P13
P= [Pu P22 0] and Q= {gz gg]
0 p3x2 P33

The white nodescorrespondo rows in the TPM (the presenttateof

theM C) andthedarkonescorrespondo columns(thenext stateof the
MC). Every pathfrom theroot to theleavescorresponds$o a nonzero
entryin the TPM. Graphgfor coupledmachinesanbe constructedy
composingheindividual machinegraphs.

For exampleif we assumethat the two machinesin in Figure 3
areindependenthegraphfor the compositionTPM R=P® Q (Kro-
necler product)is theoneshavn in in Figure4(a). While the number

flat graph

independent unidirectional cyclic
dependence dependence

Mem. || (a®)" na? al n(a"

CPU || (a®)" al al (@)"

Tablel: Storageandcomputationatompleity comparison

of nonzeroesn the composednatrix is the productof the numberof
nonzeroe®f theindividual matrix sizes(7 x 4 entries) the numberof
nodesin the composedyraphis only the summatiorof the numberof
nodesin theindividual graphs.More generally whenmachineMC Q
depend®n the stateof MC B, its TPM will be oneof

ol= [qil qH, sz[qil 0@2} or Qsz{q; qiz}

@1 G2 21 OG22 ®1 %2

conditionalon the presentstateof MC P. In this case,the composed
graphis shavn in Figure 4(b). In the mostgeneralcase,both ma-
chinesdependon eachothers statesandthe graphwill have theform
in in Figure4(c). Notethatevery pathfrom theroot to theleavescor-
respondgo anonzeroentryin the TPM, which canbeobtainedasthe
productof the probabilitiesof the darknodesalongthe path.

In all casesgraphrepresentatioteadsto significantstoragesav-
ings comparedo the flat matrix representatioras shavn in Table 1
(wherea is the numberof statedn anindividual machineandn is the
numberof machinesbeingcomposed).The graphrepresentatiorcan
be usedto computethe resultof the multiplication of the underlying
TPM with anarbitraryunstructuredrector This is doneby recursve
descenin thegraphwhereevery nodein thegraphcorrespondso a se-
lectionof rows andcolumns.Therecowvergentpathsin thegraphindi-
catecommonpartialresults which, whenreused|eadto a decreasén
the computationatompleity of the multiplication. The complexities
for thethreecasesareshavn in Table1l. Notethatin theindependent
andunidirectionaldependencease the multiplicationis linearin the
numberof statesof the composednachine. Unfortunately thereare
no savingsin computatiorfor machineswith cyclic dependence=rom
thediscussiorabove it appearghat CPDGs areonly advantageoun
comparisonwith flat storagewhen machineshave at most unidirec-
tional dependenceJnfortunately mostpracticalcasedeadto models
with cyclic dependentomponents.

We now introducea generalizatiorof CPDGs called Condition-
ally OrderedCPDGs, (COCPDG). We will shav that COCPDGs
canmodelmachineswith cyclically interactingcomponentsand still
exhibit storageandcomputationatompleities thatareat mostlinear
in thetotal numberof states.

We first introducethe conceptsof conditionalindependencand
conditional unidirectional dependencaeededor the generalization.
Theirformal definitionis beyondthe scopeof this paperandwe prefer
to explain themthroughanexample:In themodelof the CDR circuit,
in Figure2, theoccurrencef a datatransitionis modeledby an FSM
the outputof which is either Transitionor NoTransition This FSM
operatesndependentlyof the othercomponentsbut both the phase-
FSM andthe counterFSM dependon it andon eachother

When the output of the dataFSM is conditionedto be NoTran-
sition, the FSMs that modelthe counterandthe phaseerror become
mutuallyindependent,e., conditionallyindependenandcanbecom-
posedlike in Figure 4(a) for maximumsavings in the corresponding
subgraph. In the presenceof datatransition, the countefFSM and
phaseFSM have a cyclic dependencéhat we needto break. We do
this by conditioningon the statesof the counterFSM. We distinguish
the casewhenthe counteris full. Whenthe counteris not full, the
phaseFSM becomesndependentf the counter and the cyclic de-
pendencéecomegonditional unidirectionaldependenceand again
thecorrespondingubgraplcanbeefficiently composedTheremain-
ing situation(datatransitionandfull counter),while still containing
cyclically dependentomponentscan be describedwith reasonable
complity dueto the significantly smallersubsetof statesinvolved.
The structureof theresultinggraphis illustratedin Figure5.

A graphnodeis labeledby the present-stater the next-stateof a
component=SM. In CPDGs, the order of the nodelabelsfrom the



(a) Independent

(b) Unidirectionallydependent

(c) Cyclically dependent

Figure4: Composedyraphfor TPM of two FSMs

Data
Transition
Counter
Not Full

Phase
Counter

Unidirectionally

Dependent

Data .
NoTransition

Phase
Counter
Independent

Phase
Counter

Cyclically

Dependent

Figure5: Independencand unidirectionaldependencéy condition-
ing

root to the leavesis the samefor all the pathsof the graph. In con-
trast,the COCPDG allows reorderingof the labelsin subgraphso
thatmaximalconditionalindependencandunidirectionaldependence
is achieved. Allowing differentordersin subgraphsloesnotincrease
eitherthe storageor the computationatompleity. It only imposesa
permutatioron the multiplicationvectors.

5 Examples

We built a compositionalmodelof the clock recovery circuit in Fig-

urel. It consistsof four interactingFSMswith stochastignputs. The
first FSM modelsthe datastatisticstaken from SONET systemspec-
ifications. The secondoneis the modelof the phasedetectorandhas
presentdata,previous dataandthe noisesourceny,, (modelof the eye
opening)asits inputs. It producesathree-aluedoutput: LAG, LEAD

and NULL. Its outputis the input to an up-davn counterFSM that
modelsthe loop filter. The counterproducesan UP-DOWN signal
whenit overflows, which is oneof thetwo inputsto the FSM thathas
the phaseerror asits state. The otherinput to the phaseerror FSM is
the noisesourcen;.

All figuresshav the stationaryprobability densityfunctionsof the
phaseerror ® andthe input to the phasedetectoyi.e, ® + ny. The
line above all of the densityplots shavs the counterlength, the stan-
darddeviation of the stationaryzero-mearwhite Gaussiamoiseny,
the maximumvalue of the stationarywhite noisen, (with a non-zero
meanhnon-Gaussiadistributionwith probabilitydensityfunctioncho-
sento reflect SONET systemspecifications)andthe BER computed
by integratingthetails of thedistributioncomputedisingM C analysis.

Theresultsin Figure6 andFigure7 wereobtainedusingthe multi-
level algorithmwith flat sparsestorage In thesefigures,theline belov
thedensityplotsshavs thesizeof thestatespacdor theM C generated
from the model,the numberof multi-grid cyclesrequiredfor corver
gencetheCPUtimefor generatingheflat sparsestoragefor the TPM
of the M C, andthe CPUtime spenffor thestationarydistribution com-
putation.

In Figure6, in thetop plot, the noiselevels are so small that the
CDR systemhasnggligible BER. Whenthe standarddeviation of the
noisesourcen,, thatmodelsthe eye dataopeningis increased times,
the BER increaseso 1.23x 10~11, asseenin the bottomplot in Fig-
ure6.

In Figure7, we studythe effect of the counterlengthon the BER
performanceall noiselevels being held constant. We setit to 4, 8
and16. We obsere thatthe bestBER performancas obtainedwhen
counterlengthis setto 8, BER performances 1.5 timesworsewith
counterength4, and5 timesworsewith counterlength16. Whenthe
lengthis setto 4, the loop hashigh bandwidth. The systemtendsto
follow the dominantnoisesource hy, andasa consequencdetection
errorsoccur Whenthelengthis setto 16, theeffectof thenoisesource
n, becomegpredominantthe loop responséecomegoo slow to fol-
low the drift causediy n, and,again,bit errorsoccur Thelength8is
a goodcompromisewhereboth noisesourcescontritute to the BER.



X107 COUNTER: 4 STDnw: 1.00e-02 MAXnr: 2.00e-03 BER: 0.00e+00
T T T T T T T

L L L L L L L L L
-04  -03  -02 -0.1 0 01 0.2 0.3 0.4 05
Size: 36864 Iter: 4 Matrixformtime: 0.06 mins  Solvetime: 1.69 mins

COUNTER: 4 STDnw: 5.00e-02 MAXnr: 2.00e-03 BER: 1.23e-11

= L L L L
-05  -04 0.3 02  -01 0 01 0.2 0.3 0.4 05
Size: 36864 lter: 4 Matrixformtime: 0.29 mins  Solvetime: 1.93 mins

Figure 6: Phaseerror probability densityand BER (multi-level algo-
rithm with flat sparsestorage)
counter|| state-space non-zeros  graph multiplication
length size in TPM memory time
(millions) (MBytes) (CPUsecs)
4 589824 405 61 5.23
8 1114112 719 93 10.6
16 2162688 1347 158 20.8

Table2: Informationon COCPDG representationf the TPM of the
M C modelof theclock recovery circuit

Hence thereis anoptimalcounterlengthfor givenlevelsof noise,the
computatiorof which is enabledy the accurateandefficientanalysis
methoddescribedn the paper

The numberof non-zerosn the TPM of the M C generatedrom
the modelof the clock recovery circuit is dictatedby the granularity
of the phaseerror discretization.For the above resultsobtainedwith
flat sparsestoragewe wereforcedto usearelatively large discretiza-
tion stepresultingin a coarseapproximationfor the probability den-
sity functionsof the noisesourcesn, andny. It is desirableto use
a finer phaseerror discretizationso that the continuousdensityfunc-
tionsfor the noisesourcesarecloselyapproximatedor moreaccurate
results.This is enabledhroughthe useof the graphdatastructurein-
troducedin the paper With finer phaseerror discretizationandwith
counterlengthsetto 16, the sizeof the statespaces above 2 million.
If flat sparsestorageis usedto representhe TPM with 1.35 billion
non-zeos 15 GBytesof memorywould be needed. The graphdata
structurerequiresonly 160 MBytes, two ordersof magnituddessthan
whatis requiredby flat sparsestorage.In this case the multiplication
of the TPM with a flat unstructuredsectortakes about20 secs. All
noiselevels being held constant,Table 2 shavs the size of the state
spacefor the M C generatedrom the model,the numberof non-zeros
in the TPM for a flat sparsestorage the memoryof the graphrepre-
sentationandthe CPUtime for the TPM-vectormultiplication using
thegraphdatastructure for countedengthsof 4, 8 and16.

6 Conclusions

This paperintroduceda new, non-Monte-Carlcanalysismethod,for
the stochasticanalysisof digital datacommunicationcircuits. The
analysisis basedon the modelingof the underlyingsystemasa com-
binationof finite statemachinesandMarkov chains.Therelevantsys-
temperformanceneasuresrederivedfrom computationghatinvolve
the transition probability matrix of a large resulting Markov chain.
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Figure 7: Effect of counterlength on BER performancgmulti-level
algorithmwith flat sparsestorage)

Throughtheuseof aspecializednulti-grid method very largesystems
canbe solvedin reasonabléime on a powerful workstation. Further
more,a novel graphbaseddatastructurefor the representationf the
Markov chaintransitionprobability matrix wasintroduced which re-
quirestwo orders of magnitudelessmemorycomparedvith flat sparse
storage Theusefulnes®f thetechniquesntroducedn thepapemwere
illustratedthrougharealindustrialdesign.
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