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ABSTRACT

In this paper, we develop a new standard cell placement
tool, Dragon2000, to solve large scale placement problem effec-
tively. A top-down hierarchical approach is used in Dragon2000.
State-of-the-art partitioning tools are tightly integrated with wire-
length minimization techniques to achieve superior performance.
We argue that net-cut minimization is a good and important short-
cut to solve the large scale placement problem. Experimental re-
sults show that minimizing net-cut is more important than greed-
ily obtain a wirelength optimal placement at intermediate hierarchi-
cal levels. We run Dragon2000 on recently released large bench-
mark suite ISPD98 as well as MCNC circuits. For circuits which
have more than 100k cells, comparing to iTools1.4.0, Dragon2000
can produce slightly better placement results (1:4%) while spend-
ing much less amount of time (2� speedup). This is also the first
published placement result on the publicly available large industrial
circuits.

1. INTRODUCTION

Placement is a classical problem in VLSI physical design. A lot
of effective placement tools have been proposed in the last twenty
years [6, 8, 7]. Although they were quite successful at their release
time, as the VLSI circuit size gets larger and the deep sub-micron
(DSM) technology becomes dominant, these tools are obsolete or
not effective anymore. It is time to re-think and develop a new
placement tool which can handle the large industrial circuits.

Previous work on the placement problem falls into two classes:
constructive and iterative. It is generally believed that placement
iterative approaches can produce better results than constructive ap-
proaches but are slower. When the circuit size gets larger and larger,
quality degradation is expected for the flat iterative approaches.
The multi-level hierarchical technique is regarded indispensable for
solving today’s complex VLSI placement problem without sacrific-
ing quality [6, 7, 10, 2].

Almost all previously published placement algorithms use
MCNC benchmark suite for testing. This suite was released in
1992 with most circuits having less than 30k cells. However, cir-
cuits designed in today’s industry have typically more than 100k
cells. While MCNC circuits become outdated, there is no new
benchmarks released for placement. Some new placement tools [2]
use large circuits obtained from industry for testing. Unfortunately,
these circuits can not be accessed to other researchers due to the
security reason. This makes it extremely difficult to evaluate and
compare with these placement tools. In 1998, Alpert modified and
released 18 industrial circuits from IBM to form the ISPD98 parti-
tioning benchmark suite [1]. ISPD98 circuits are much larger (from
10k to 200k cells) and therefore closer to the current VLSI design
than MCNC circuits. Although they were originally released for the
purpose of partitioning, they should be modified and used in place-

ment as well. Howevr, there is no reported placement results on
these circuits yet.

In this paper we aim at developing a placement tool which can
handle large industrial circuits. We argue that the top-down hi-
erarchical approach should be the correct way to solve the large
sized placement problem. We successfully integrate the state-of-
the-art partitioner and placement technique into one fast and power-
ful placement tool, Dragon2000. Comparing Dragon2000 to highly
optimized commercial iTools (formerly TimberWolf), Dragon2000
can produce slightly better placement results using much less
amount of runtime (2� speedup). Dragon is for wirelength mini-
mization, it can also be used as part of a congestion minimization
process [9].

The rest of the paper is organized as follows: In Section 2,
we briefly describe the flow and algorithms used in Dragon2000.
In Section 3, we will explain the detailed implementation of
Dragon2000. Experimental results will be shown in Section 4 fol-
lowed by Conclusion in Section 5.

2. OVERVIEW OF DRAGON2000

The top-down based hierarchical approach is the backbone of
Dragon2000. In this section, we will have a brief overview of the
general hierarchical placement approaches and algorithms used in
Dragon2000.

A typical top-down hierarchical placement approach can be gen-
eralized as follows: at a given hierarchical level, the layout area
is partitioned into several global bins. All cells of the circuit will
be distributed into these global bins to minimize a certain place-
ment objective. This cell distribution problem is called a hierar-
chical placement problem. If a cell is distributed into a particular
global bin, it will be placed within the area of this bin in the final
layout. As we proceed to finer levels, the number of global bins in-
creases and the physical size of global bins decreases. Thus we can
get more and more detailed information about physical locations of
cells as we proceed. The top-down approach terminates when there
are only a few cells in each global bin.

Dragon2000 is divided into two phases, global placement (GP)
and detailed placement (DP). A top-down hierarchical approach is
used in the GP phase. We recursively solve the hierarchical place-
ment problem and quadrisect each global bin into four smaller bins
at each level. Overlap between cells are allowed in the GP phase.
In fact, all the cells belong to the same bin are placed at the center
of the bin. The DP phase takes the output from GP and produces
an overlap free layout. Then it iteratively improves the legal lay-
out using a greedy heuristic. Due to the computational complexity,
the DP heuristic is only capable of performing optimization locally.
Thus it is expected that the top-down hierarchical GP phase should
finish majority of work in placement.

Wirelength and net-cut are two popularly used objectives in dif-
ferent hierarchical placement algorithms. It is commonly believed
that partitioning tools (minimizing net-cut) are much more mature



and effective than wirelength minimization tools. On the other
hand, wirelength at different hierarchical levels is a more accurate
estimation of the final wirelength than net-cut. In order to achieve
high performance, we integrate wirelength and net-cut together in
the GP phase of Dragon2000 to take advantage of both objectives.
Intuitively, net-cut correlates with wirelength. By using the Rent’s
rule and experimental data, we theoretically proved that the wire-
length obtained from a top-down approach using the net-cut objec-
tive is indeed bounded.

Theorem 1 In a top-down quadrisectional approach, the total
wirelength at the final level H is between the total net-cut and the
total net-cut times 2H: Cut �WL � (2 logNc) �Cut, where Nc

is the number of cells in the circuit.

Due to the page limit, we have to omit the actual proof here.
Please contact us to obtain the complete proof.

3. DETAILED IMPLEMENTATION OF DRAGON2000

The top-down hierarchical approach is used in the GP phase of
Dragon2000. We integrate net-cut and wirelength together to solve
the hierarchical placement problem at each level. Specifically, we
start our GP from level 1 with four global bins. We go from level
h to level h + 1 by partitioning each subcircuit in a global bin at
level h into four parts to reduce net-cut. Global bins at level h will
be split into four smaller bins correspondingly. Thus there will be
4h+1 global bins and 4h+1 subcircuits at level h+1. We have a post
bin swapping stage at the end of each level. In this stage we swap
all 4h+1 subcircuits in level h + 1 around to minimize the overall
wirelength. GP terminates when each global bin contains less than
about seven cells.

A traditional top-down hierarchical placement approach confines
locations of subcircuits at level h+1 within the region of the global
bin where the subcircuits reside in at the previous level h. This ap-
proach can greatly reduce the computational complexity. However,
it can never correct wrong decisions made at higher levels. Our
GP does not confine locations of subcircuits. This gives cells more
freedom to move to achieve better placement results at each level.
In order to reduce runtime, we limit our wirelength optimization
searches in a local range.

We pick hMetis [5] as the partitioner for Dragon2000 because
of its superior quality and friendly user interface. A low tempera-
ture simulated annealing is used as the base algorithm to minimize
wirelength because it is very easy to implement. The DP phase
of Dragon2000 uses a greedy algorithm to perform local optimiza-
tion and improve the quality of final placement iteratively. We will
discuss implementation details of Dragon2000 in the following sub-
sections.

3.1. Interactions between wirelength and net-cut
At each level in GP, we quadrisect each subcircuit inside a global bin
into four smaller subcircuits before we perform the post bin swap-
ping stage. Based on previous work and intuition, we tried four
approaches in the partitioning stage to improve the performance.
Figure 1 illustrates these approaches. Assume we are about to par-
tition the subcircuit within global bin B0. Cell 1, 2, 3, 4, 5, 6, 7 are
inside B0. Cell 8, 9, 10, 11 are outside B0 but have connections to
cells inside B0. We denote an n-terminal net by net (c1; c2; :::; cn),
where c1, c2, ..., cn are terminal cells of the net.

1. Approach A (Figure 1a): When we partition a subcircuit in a
global bin at any level, nets which have terminal cells outside
this global bin will be removed because these nets are alway
cut no matter how we distribute the inside cells. In Figure 1a,
net (2; 6; 11), (5; 6; 10), (4; 7; 8; 9), (7; 9) are removed when
partitioning subcircuit in B0.

2. Approach B(Figure 1b): When we partition a subcircuit in a
global bin at any level, terminal cells which are outside this
global bin are ignored. In Figure 1b, since terminal cell 8, 9,
10, 11 are ignored, original net (2; 6; 11), (5; 6; 8), (4; 7; 8; 9),
(7; 9) become new net (2; 6), (5; 6), (4; 7), respectively (net
(7; 9) is gone). This method encourages grouping the remain-
ing inside terminal cells together even there are always outside
terminal cells.

3. Approach C(Figure 1c): In approach A and B, we isolated the
subcircuits within a global bin by removing connections be-
tween inside cells and outside cells. Intuitively, this is not
good. The idea of “terminal propagation” was proposed [3]
to solve this problem. It adds to the current subcircuit dummy
cells that are fixed in the appropriate partitions. In Figure 1c,
cell 8 is mapped to a fixed vertex in the lower-left part of B0;
cell 9 and 10 are mapped to two fixed vertices in the lower-
right part of B0; cell 11 is mapped to a fixed vertex in the
upper-right part of B0. This approach encourages cells be dis-
tributed in a global bin which is close to their outside neighbor
cells.

4. Approach D(Figure 1d): In all above approaches, the post bin
swapping stage is used to swich subcircuits around. Instead
of moving the subcircuits in whole, we can also move/switch
single cells around to reduce wirelength at this level. This
idea was first proposed in [7]. Wirelength obtained by this
approach should be better than wirelength obtained by other
three approaches. However, it is not clear whether a optimal
wirelength placement at any hierarchical level will produce a
good final placement.
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Figure 1. Illustration of Approach A, B, C and D.

In order to find out which approach performs the best, we test all
four approaches on several benchmark circuits. Table 1 shows the
experimental results. The best result for each circuit among all four
approaches is shown in the bold face. Quite surprisingly, approach
B out-performs other approaches including approach C (terminal
propagation) which is widely accepted and used in other placement
tools.

In placement tools which use terminal propagation, subcircuits
at each level are confined within the region of the global bin where
they belong to at previous levels. We do not confine locations of
subcircuits at each level because we perform the post bin swap-
ping stage to reduce the overall wirelength after the subcircuits are
formed. This post bin swapping stage is used in approach A, B and
C. The use of the post bin swapping stage might be a reason why
approach B works better in our GP than approach C does. To further
investigate this interesting issue, we implemented the conventional



min-cut scheme with and without terminal propagation. The con-
ventional scheme with terminal propagation is basically the same as
approach C except it does not perform post bin swapping. Similarly,
the scheme without terminal propagation is the same as approach B
without the post bin swapping stage. Table 2 shows the experimen-
tal results comparing two conventional min-cut schemes and their
counter parts in our approaches (approach B and C). Indeed, the ter-
minal propagation can improve the wirelength results over the non
terminal propagation min-cut scheme. However, the post bin swap-
ping stage can help improve performance: approach C (terminal
propagation + post bin swapping) outperforms pure terminal prop-
agation. Finally, it is very interesting to find that the widely used
terminal propagation scheme actually degrade performance while
the post bin swapping stage is used (approach B is better than ap-
proach C).

Another interesting fact is that approach D is not successful ei-
ther. This fact suggests that conserving connecting information be-
tween cells is more important than greedily obtain a wirelength opti-
mal placement at each level. Minimizing net-cut not only can obtain
placement results fast at each level, it also helps to improve the final
placement quality.

Ckts #cells App. A App. B App. C App. D
ibm01 12282 4.79 4.71 4.98 4.81
ibm02 19321 13.70 13.91 14.38 13.99
ibm03 22207 13.12 12.83 13.02 12.93
ibm04 26633 17.66 16.58 17.54 17.21
ibm05 29347 38.94 38.21 39.32 39.12

Table 1. Comparison of four different approaches.

mincut w/o mincut w/
Ckts term. prop. term. prop. App. C App. B
ibm01 6.05 5.36 4.98 4.71
ibm02 16.77 15.04 14.38 13.91
ibm03 17.29 14.05 13.02 12.83
ibm04 22.58 18.34 17.54 16.58
ibm05 52.35 49.09 39.32 38.21

Table 2. Comparison of conventional min-cut schemes and our
approaches.

3.2. The Final Stage of GP
The previous subsection shows that a minimum wirelength place-
ment at each level does not help to produce a good final placement.
However, we find that such a “single cell switching” strategy to min-
imize wirelength is extremely helpful in the last level of GP where
there are about seven cells per global bin. After GP stops at the last
level, we switch single cells locally to minimize wirelength. We
use a low temperature simulated annealing algorithm in this final
stage of GP. As shown in [7], since the number of possible loca-
tions for each cell is the number of global bins, the size of solution
space is greatly reduced. Therefore, performing annealing at this
stage is reasonably fast. Table 3 shows the comparison of the final
placement wirelength using this final stage vs. not using this stage.

3.3. DP Heuristics
The simulated annealing approach is the most popular DP algorithm
used in other placement tools. However, due to the huge computa-
tional complexity in the DP phase, simulated annealing at this stage
is very slow. For instance, the DP phase of iTools (formerly Tim-
berWolf) consumes more than 80% of the total runtime on large
circuits. In Dragon2000, since there is relatively little work left
after GP is done. Instead of widely used simulated annealing, a

Ckts w/o final stage w/ final stage % impr.
ibm01 4.99 4.70 5.8%
ibm02 14.71 13.76 6.5%
ibm03 13.56 12.74 6.0%
ibm04 17.07 15.79 7.5%
ibm05 42.19 38.57 8.6%
avg 6.88%

Table 3. Effect of the final GP stage.

greedy algorithm is used in the DP phase. Our DP consists of two
steps. First, all the overlapping cells are spread out to produce a le-
gal placement. Then the greedy cell exchange algorithm is used to
further reduce wirelength. The algorithm randomly chooses a base
cell. Then it decides whether to perform a vertical search or a hor-
izontal search by using a adjustable parameter Rv . Rv is the ratio
of vertical searches and satisfy 0 � Rv � 1 . If a vertical search
is picked to perform, the cell directly above or below the base cell
will be picked as the target cell. Positions of all the cells to the right
of the base and the target cell might also be adjusted to remove the
possible overlap and whitespace. If a horizontal search is picked to
perform, all the W � 1 cells to the left or right of the base cell will
be picked as target cells. All the target cells and the base cells will
be re-arranged horizontally in an exhaustive search manner to look
for possible reduction in wirelength. We empirically set W = 5
and Rv = 20% in our DP.

4. EXPERIMENTAL RESULTS

Dragon2000 is implemented in C++. All the experiments were per-
formed on a 500 MHz PC running under the Solaris-x86 operating
system. We picked five large circuits from MCNC suite and eight
large circuits from ISPD98 suite as our testing circuits. MCNC cir-
cuits are picked because they have been widely used in literature.
However, all MCNC circuits except golem3 are too small (< 30k
cells). The eight ISPD98 circuits we picked are relatively large
(from 60k to 200k cells) in the suite . Due to the existence of very
large cells, the original ISPD98 circuits are not suitable for stan-
dard cell placement. We modified ISPD98 circuits by removing
very large cells. Specifically, we remove cells with the area larger
than twenty times the area of the smallest cell in the circuit. The
degree of a net might decrease due to removing of large cells. Ta-
ble 4. shows the characteristics of the testing circuits we use in this
paper. We compare Dragon2000 with iTools1.4.0 (formerly Tim-
berWolf, http://www.internetcad.com) on all testing circuits. Since
we do not have the access to other older placement tools, we use
numbers reported in literature on MCNC circuits for comparison.
Since ISPD98 circuits have not been used for placement before,
only Dragon2000 and iTools1.4.0 are compared on ISPD98 circuits.

Table 5 shows the placement results of Dragon2000, iTools1.4.0,
TimberWolf7.0 and TUM [4] for MCNC circuits. Wirelength re-
sults of TimberWolf7.0 and TUM are obtained from [8] and [4], re-
spectively. Runtime comparison is very difficult since different ma-
chines were used in literature. Therefore we do not report the run-
time for TimberWolf7.0 and TUM. On small MCNC circuits (less
than 30k cells), Dragon uses less time than iTools but the wirelength
results are about 5% worse. However, it still outperforms other suc-
cessful university tools like TimberWolf7.0 and TUM.

Table 6 shows the placement results of Dragon2000 and
iTools1.4.0 on large testing circuits which has more than 60k cells
including eight ISPD98 circuits and one MCNC circuit. On average,
Dragon produces placement results with the same quality as iTools
for these circuits while spending much less time (1:9� speedup).
We also observed that Dragon performs better on circuits larger than
100k cells (1:4% better results and 2:1� speedup).



Ckts #cells #nets #pins #rows
in2 12142 13419 125555 72
in3 15059 21940 176584 54
avqs 21854 22124 82601 80
avql 25114 25384 82751 86
golem3 99932 143379 336299 128
ibm11 68119 78843 248889 128
ibm12 69026 75157 301604 128
ibm13 81018 97574 311403 128
ibm14 147088 147605 547333 128
ibm15 157861 183684 653684 128
ibm16 181633 188324 762218 128
ibm17 182359 186764 834953 128
ibm18 210323 201560 817331 128

Table 4. Properties of the testing circuits.

Ckts TW7.0 TUM iTools1.4.0 Dragon
WL WL WL time WL time

ind2 13.53 14.6 12.30 1537 12.88 1461
in3 42.84 45.1 40.13 3154 42.33 2849
avqs 5.41 4.91 4.84 1915 5.17 1420
avql 5.86 5.38 5.19 2043 5.25 1984
golem3 90.39 - 85.44 24380 77.56 8422

Table 5. MCNC circuits comparison.

Ckts iTools1.4.0 Dragon Comparison
WL time WL time impr. spdup

ibm11 39.76 18251 40.82 10301 -2.6% 1.8�
ibm12 69.56 18075 70.38 14198 -1.2% 1.3�
ibm13 49.11 22577 51.02 15456 -3.9% 1.5�
ibm14 118.8 43057 118.0 31894 0.7% 1.4�
ibm15 130.6 54262 130.8 22808 0.0% 2.4�
ibm16 163.8 70320 168.8 39001 -3.0% 1.8�
ibm17 256.6 72094 255.1 38752 0.5% 1.9�
ibm18 191.7 75363 189.6 39603 1.1% 1.9�
golem3 85.44 24380 77.56 8422 9.2% 2.9�
ave 0.1% 1.9�
ave� 1.4% 2.1�

Table 6. Placement results for 60k+ cell circuits (* average value
for 100k+ cell circuits).

5. CONCLUSION

In this paper, we use a top-down hierarchical approach to develop a
powerful standard cell placement tool, Dragon2000. We argue that
net-cut minimization is a good and important shortcut to get high
quality placement results in the shortest amount of time. In fact, ex-
perimental results show that minimizing net-cut is more important
than greedily obtain a wirelength optimal placement at intermediate
hierarchical levels. We run Dragon2000 on recently released large
benchmark suite ISPD98 and old MCNC suite. For circuits which
have more than 100k cells, Dragon2000 can produce slightly better
placement results (1:4%) while spending much less amount of time
(2� speedup) than the highly optimized commercial iTools1.4.0.
This is also the first published placement result on ISPD98 suite.
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