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Abstract —An integrated tool called DAISY (Delta–Sigma Analysis and
Synthesis) is presented for the high–level synthesis of 16 modulators. The
approach determines both the optimum modulator topology and the re-
quired building block specifications, such that the system specifications –
mainly accuracy and signal bandwidth – are satisfied at the lowest possi-
ble power consumption. A genetic–based differential evolution algorithm
is used in combination with a fast dedicated behavioral simulator that in-
cludes the major nonidealities of the building blocks to realistically analyze
and optimize the modulator performance. Experimental results illustrate
the effectiveness of the approach. Also, an overview of optimized topolo-
gies as a function of the modulator specifications for a wide range of values
shows the capabilities and performance range covered by the tool.

I. INTRODUCTION

The use of 16 converters as interface blocks between the
digital and analog world has increased significantly over the last
years in applications ranging from instrumentation to telecom-
munications [1]. This is due to their interesting speed–accuracy
trade off accomplished through oversampling and noise shap-
ing. The application fields in which they appear are, however,
very different and so are their specifications. It is clear that for
a given set of performances – mainly accuracy (Signal-to-Noise
Ratio SNR) and signal bandwidth (BW) – often more than one
topology is feasible. However, typically preference is given to
one solution which has the lowest cost in terms of power con-
sumption (and chip area). This leads then to the optimum topol-
ogy for the desired performance.

We present in this paper an approach to accomplish this
topology selection and high–level modulator design based on
a simulation-based optimization approach using a genetic algo-
rithm. We have developed to this end a dedicated behavioral 16

simulator that takes most important nonidealities of the building
blocks into account. The simulator has been programmed in C
and is fast enough to be executed inside an optimization loop.
It has been interfaced to a genetic algorithm (or if desired can
be interfaced to any other algorithm) but it can of course also be
used stand alone through an efficient GUI. The result of our ex-
perimental tool is thus the optimum topology for the given 16

specifications, together with the required specifications for the
building blocks.

The complete flow is visualised in figure 1. All interfaces
between the tools used are implemented as to ensure a com-
pletely automated synthesis run. Compared to other tools like
TOSCA [2] and SD-OPT [3], our tool has more integrated
functionality (postprocessing, visualization and optimization are
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Fig. 1. Flow of the proposed methodology.

seamlessly integrated with the simulator). An efficient GUI for
the simulator and synthesis module provides flexibility to both
the novice and advanced 16 ADC designer. The TOSCA tool
has no synthesis capabilities but only provides simulation. Com-
pared to the SD-OPT tool [3], our approach combines both the
optimum topology selection and the block specifications deriva-
tion in one simultaneous optimization process, and uses gen-
eral behavioral simulation instead of handcrafted and topology–
specific equations inside the optimizer. In addition, SD-OPT
uses a simulated annealing type of algorithm while we use a
genetic algorithm for the optimization which is believed to be
more suited for large and complex search spaces and for parallel
implementation [4].

This paper is organised as follows. In section II, an overview
is presented of the dedicated behavioral 16 simulator. This is
illustrated with some examples. Then, in section III, the other
components of the synthesis loop of figure 1 are elaborated. In
section IV we will then present synthesis examples to illustrate
the effectiveness of the methodology. We believe that it is the
first time that optimized topologies for a wide range of modula-
tor specifications (mainly dynamic range and signal bandwidth)
are reported in the open literature. Finally, in section V, conclu-
sions are drawn.

II. OVERVIEW OF THE 16 SIMULATOR

There are several places in a design flow where it is necessary
to have a fast simulator for 16 modulators. In this work, we
need a fast simulator to iteratively synthesize the modulator at
the architecture level. It is very well known that the complete
simulation of a modulator is computationally inefficient when
performed using common circuit simulators. In fact, the only
method currently available that can assure fast enough simula-



+ I(z) I(z)+
-

v y1
a 2

+

+

I(z)+

-+ b1c1

-

+ y2

+

I(z)+

x

-
a1

+

11/(a  a  ) 2

a 3

-+ bc

-

+

1/a3

22

y3
a4

Fig. 2. The 4th order cascade 2-1-1 16 modulator architecture.

tion times is a behavioral simulation.
We have developed such a general behavioral 16 modulator

simulator [5] and implemented it in C – which assures speedy
processing, which is not the case when implemented in mathe-
matical tools like MATLABT M . The simulator is implemented
as a library of core functions. In addition, a graphical frontend
was developed that renders the use of the simulator very conve-
nient. The core library can be interfaced directly (as is the case
within the synthesis tool) or it can be used through the flexible
GUI which requires no familiarity with the tool.

The behavioral models are implemented as time–domain de-
scriptions of the building blocks. Equation (1) illustrates this
for the integrator where α represents the gain error and β and γ

represent the pole errors. Several nonidealities can be mapped to
these coefficients. We will not go into detail here but refer to the
literature [5], [6], [7], [8], [9], [10], [3]. The difference equation
derived from this z-domain transfer function can be evaluated
quickly.

H(z) =
αz−1

1 − βz−1 + γ z−2
(1)

Many building block nonidealities have been included in the
behavioral models, such as finite OTA gain, finite OTA GBW
(gain–bandwidth), nonzero switch on–resistance and compara-
tor offset and hysteresis. Other nonidealities are being included.
We will now consider some simulation examples. All inputs to
the tool are made through the graphical user interface. We will
only include figures of the resulting outputs. The selected inputs
for our example are:
• topology : cascade 2-1-1 (see figure 2)
• number of simulation points : 16384
• oversampling ratio (OSR) : 24
• input frequency : 0.1 MHz
• sampling frequency (fs) : 50 MHz
• input amplitude : 0.25 V
• reference voltage : 1 V
The signal bandwidth then follows from these inputs according
to: BW = fs /(2*OSR). The resulting power spectral density plot
is shown in figure 3. One can clearly observe the noise shaping.
The peak represents the input signal and the vertical line indi-
cates the considered signal bandwidth. The upper (light-grey)
curve is the accumulated noise spectral density. The resulting

Fig. 3. The power spectral density plot of an ideal modulator for the given
inputs.

Fig. 4. The power spectral density plot for a finite OTA gain of 3000 and a finite
OTA GBW of 50 MHz.

signal–to–noise ratio (SNR) is 79.32 dB which contains the in-
tegrated noise in the considered bandwidth. Note that no non-
idealities were included in this simulation. It is straightforward
to examine the performance degradation of the circuit nonideal-
ities by filling in the nonideal parameters in the input window.
If we keep the previous inputs and additionally specify:

• finite OTA gain : 3000
• finite OTA GBW : 50 MHz

the resulting plot is shown in figure 4. The SNR now drops to
64.94 dB.

It is also possible to perform parameter sweeps. Suppose we
are interested to know what the minimum GBW of the opera-
tional amplifiers should be in order not to degrade the perfor-
mance. Remember that the model for the GBW includes finite
settling time of the integrators [5]. Sweeping the GBW from 10
to 300 MHz results in the plot of figure 5 (30 points were taken).
It can be determined from the plot that the GBW should be at
least 100 MHz to prevent SNR degradation in this example. By
sweeping the normalized input amplitude, we get a SNR versus
normalized input amplitude curve where one can clearly see the
point where overloading of the modulator occurs. This is illus-
trated in figure 6. The CPU time for one simulation is less than 1
second (including postprocessing) which is extremely fast. This
is also necesarry since this simulation will be called at every
iteration of the high–level synthesis.



Fig. 5. SNR as a function of the GBW (varied from 10 MHz to 300 MHz).

Fig. 6. The SNR versus normalized input amplitude.

III. THE OPTIMIZATION METHOD AND POWER MODELING

We will discuss in this section several blocks of the synthesis
loop as shown in figure 1. The 16 simulator core was already
elaborated on in the previous section. The input specifications of
the tool are the desired dynamic range (in dB), the signal band-
width (in Hz) and the reference voltage (in V) as well as some
technology data such as the minimum capacitor value. The tool
then returns the optimum topology with the lowest power con-
sumption to achieve these specifications as well as the required
specifications for all of the building blocks in the selected mod-
ulator topology. The optimization algorithm is a genetic algo-
rithm.

A. Genetic algorithm

As optimization algorithm we employed the differential evo-
lution algorithm used in [11], which we altered slightly. It is a
genetic algorithm that searches for a global optimum and uses
continuous parameter values. Both the topology and building
block specifications are optimized simultaneously. Among the
changes are the inclusion of parameter bounding and stop crite-
ria. We will not go into the details of the algorithm here – for
that we refer to [11] – but we will show its effectiveness for our
purpose in section IV.

B. Optimization parameters

The optimization parameters can be divided in parameters
that control the topology, such as the type of the modulator
structure and the oversampling ratio, and parameters that rep-
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Fig. 7. Representation of a population member in the genetic algorithm.

resent the building block specifications such as the OTA gain,
GBW, output swing, the finite switch on–resistance, compara-
tor offset and hysteresis. One population member in the ge-
netic algorithm is therefore represented as shown in figure 7.
These parameters are passed to the simulator together with the
signal bandwidth specification, so that the simulator can deter-
mine the correct sampling frequency (being two times the band-
width times the OSR). The simulator then calculates the value of
the dynamic range. Also, the sensitivities to the building block
specifications are derived which are needed to make the design
robust. The power model uses the same optimization variables
to estimate the power consumption of the entire modulator (see
subsection III-D).

C. Cost function formulation

As in most optimization problems, the formulation of the cost
function is crucial. The first part of our cost function is a penalty
term proportional to the absolute value of the relative (linear)
deviation of the simulated and specified dynamic range specifi-
cation:

cost1 = K1abs

(

10DRsim − 10DRspec

10DRspec

)

(2)

where K1 is a constant dependent on the fact whether the speci-
fication was met (0.1) or not (1E6).

A second part of the cost function takes the relative power
consumption into account:

cost2 = K2Prel (3)

where K2 is another constant that is set to 1E11 based on ex-
perimental results. Relative means that we are not interested in
the absolute value of the power but in how the power changes
when the optimization variables vary. How the relative power
consumption Prel is derived is the subject of subsection III-D.

Finally, the total cost is given by:

cost = cost1 + cost2 (4)

It is, however, also possible that the genetic algorithm pro-
poses bad combinations of parameters (e.g. out of range) or that
the resulting dynamic range is too sensitive to the building block
specifications. Then, a “high” cost is assigned (e.g. 1E7) to such
solutions. The rejection of solutions that are too sensitive to the
building block specifications ensures the robustness of the ob-
tained parameter vector. This sensitivity information is returned
by the simulator together with the dynamic range.

D. Power model

We have implemented a simple but effective model as power
estimator. A first consideration we have made is the fact that
the major part of the power consumption of the modulator is



determined by the operational amplifiers. This is reflected in the
following equation:

P ∼ IBIAS OTA ∼
gmVGST

2
(5)

On the other hand, we have:

GBWOTA =
gm

2πCeq
(6)

and thus:

P ∼ Ceq GBW VGST (7)

When designing for minimum OTA power consumption, one
will try to maximize gm by choosing the overdrive voltage VGST

as low as possible. We have then chosen to take the following
expression as a relative power estimator:

P ∼ GBW Ceq (8)

where the equivalent capacitance is approximately given by:

Ceq = CS + CP +
(CS + CP + CI)(αCI + CO)

CI
(9)

Here, CS and CI are the sampling and integration capacitors,
CP is the parasitic input capacitance and CO the parasitic capac-
itance of the output transistors of the OTA. The parasitic capaci-
tance of the integration capacitor αC I is technology dependent.
CP and CO are implementation dependent and therefore to first
order neglected in the power model and α is an input to the tool.
The ratio of CS to CI equals the modulator coefficient of the
corresponding integrator. In our estimator, we have taken the
order of the modulator topology under test into account. This
includes also a scaling coefficient between the different stages
which is also done in a practical implementation and thus re-
duces the power consumption of successive stages. In addition,
a penalty coefficient was added for each OTA’s power figure as
a function of the gain requirement. Large gains will require e.g.
gain boosting stages [12] and thus consume more power.

IV. SYNTHESIS EXAMPLES

In this section, we will illustrate the synthesis approach with
some examples. In the first example, we present the result of
a system–level synthesis for state–of–the–art specifications. In
a second example results of exhaustive synthesis runs will be
shown.

A. System–level synthesis for ADSL specifications

As a first example, we use the following ADSL specifications:
• peak SNR : 79 dB (after brick-wall filtering)
• signal bandwidth : 1.1 MHz
These are similar as the ones used in [12] where a 4th–order
2-1-1 cascade 16 modulator was used to achieve these speci-
fications. The oversampling ratio used in [12] was 24 resulting
in a sampling frequency of 52.8 MHz. Table I presents a com-
parison of the results published in [12] with the ones that were
obtained by the synthesis tool.

These results are very close to the ones in [12] with the same
topology chosen by our synthesis tool. Of course, large de-
sign margins are taken in a real design, also to compensate for

building block specs published [12] synthesized
topology cascade 2-1-1 cascade 2-1-1

oversampling ratio 24 21
OTA gain > 60 dB > 59.4 dB (938)

OTA GBW > 160 MHz > 92.7 MHz
OTA output swing > 1.8 V > 1.57 V

switch on resistance < 215 � < 253 �

comparator offset < 100 mV < 82 mV
comparator hysteresis < 40 mV < 12 mV

TABLE I

COMPARISON OF THE SYNTHESIZED RESULTS FOR STATE-OF-THE-ART

SPECIFICATIONS WITH PUBLISHED RESULTS OF A WORKING DESIGN.

Fig. 8. The SNR versus normalized input amplitude simulation as verification.

process variations, whereas the tool returns minimum specifica-
tions. The deviation of some specifications is partly due to the
lower oversampling ratio that was selected by the optimizer (e.g.
a higher oversampling ratio requires a higher OTA GBW). The
results were then verified with our simulator. The resulting SNR
versus normalized input amplitude plot that resulted is shown in
figure 8. Figure 9 shows a graphical representation of the mini-
mum cost evolution during the synthesis run. It is clearly visible
that the algorithm quickly finds a feasible solution (correspond-
ing to the largest cost decrease) and then further optimizes for
minimum power consumption.
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Fig. 9. The minimum cost evolution during optimization.
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Fig. 10. The topologies chosen for different modulator specifications.
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Fig. 11. The required OTA GBW for different modulator specifications.

B. Variation in results for different specifications

The second experiment shows how the tool generates differ-
ent results depending on the required specifications. A set of
16 experiments was carried out for a DR ranging from 30 dB to
75 dB and a signal bandwidth ranging from 25 kHz to 1 MHz.
Figure 10 shows the topologies chosen and figure 11 shows the
corresponding required OTA GBW. For the lower specifications
a single–loop 1st or 2nd–order topology (sl1 or sl2) is sufficient,
while for more stringent specifications a cascaded topology (c21
or c211) is required. A cascade 2–1 topology seems to be a good
choice for higher resolutions and signal bandwidths, except for
the very high end where a cascade 2–1–1 was selected. The re-
quired OTA gainbandwidth in figure 11 is, of course, primarily
dependent on the signal bandwidth but is also slightly, although
not linearly, dependent on the SNR. The tool always looks at
the minimum power solution. In figure 12 the relative estimated
power is shown of each optimal solution. It can be clearly seen
how it increases with SNR and signal bandwidth.

V. CONCLUSIONS

A simulation–based approach for the high–level synthesis of
16 modulators has been presented. A dedicated behavioral
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Fig. 12. The relative estimated power for different modulator specifications.

simulation tool that can fastly evaluate different alternatives has
been combined with an evolutionary algorithm and a power esti-
mator model to determine the optimum modulator topology and
building block specifications. Experiments done showed real-
istic results. We are currently extending both the simulator and
the genetic algorithm, including the extension to multi–bit struc-
tures.
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