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Abstract

A new verification technique for �� analog-to-digital
converters (ADC) is proposed. The ADC is partitioned into
functional blocks, and adaptive regression models for each
partition are constructed using transistor-level simulation
data. Non-idealities in circuit behavior are captured by the
adaptive regression technique from the collected data. The
algorithms have been implemented in a simulation
program ARSIM (Adaptive Regression Simulator), which
performs data sampling, model building, and simulation.
Experimental results using ARSIM are shown on a
second-order �� modulator, and they demonstrate the
effectiveness of our technique as a fast and accurate
approach for verifying �� converters.

1 Introduction

Delta-Sigma modulation has become a dominant
technique for implementing analog-to-digital conversion
(ADC). As compared to other popular techniques like flash
and pipelined A/D conversion, the performance of ��
modulators is not dictated by matching of component val-
ues, which facilitates the design of high performance sys-
tems without precise analog circuitry [1]. Its ability to trade
off between speed and resolution, and relaxed requirements
on performance and matching of analog components en-
abled by oversampling and digital filtering, have made ��
converters an attractive choice for silicon VLSI technology
that is optimized for digital implementation.

As observed from the simple first-order �� modulator
in Figure 1, the quantized output signal is given by

pi = xi�1 + (ei � ei�1): (1)

Thus, the modulator differentiates the quantization error
while the signal remains unchanged except for a delay.

While oversampling has advantages in the form of noise
shaping, it also presents a bottleneck to the simulation of
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Figure 1: (a) A first-order �� modulator and (b) its equiv-
alent sampled data representation.

�� converters. Due to oversampling, thousands of clock
cycles are needed for sufficiently simulating these ADCs to
calculate their signal-to-noise and distortion ratio (SNDR).
With increasing complexity of designs, circuit simulators
such as SPICE may take an inordinate amount of time for
simulation. This problem not only affects the design cycle
time for �� data converters but also makes their verifica-
tion a cumbersome task.

A well known technique for modeling and simulat-
ing a �� modulator is using difference equations for the
sampled-data operation of a modulator, which is usually im-
plemented in switched-capacitor circuits. As the operation
of switched-capacitor modulator generates sampled data for
each clock, it can be represented in the discrete-time domain
as in Figure 1. Such a technique is well suited for obtain-
ing an ideal model. However, capturing non-idealities of
the analog components into the difference equations is a
non-trivial task. This limitation renders simple difference
equation models inaccurate for simulation purposes.

Another approach for the accurate modeling of analog
components in the modulator is to generate analytical be-
havioral expressions for each circuit non-ideality. In [2],
analytical expressions were generated for a second-order
modulator, for each circuit non-ideality such as integrator
leakage, slew rate, sampling jitter, etc.; then, each expres-



sion was included in the difference equation simulations to
find the effects of the modeled non-idealities. However,
the overall effect of the non-idealities cannot be calculated
by simply summing up individual analytical equations as
there may be complex interactions between two or more
non-ideal effects. Even though it could be possible to an-
alyze the circuit for simple modulators, as the complexity
of the �� modulator increases, accurate analytical model-
ing would require expertise and may be prone to errors in
analysis.

Today, the �� converter architecture has become quite
complicated with many stages and a reduced power sup-
ply voltage to comply with the digital logic in mixed-signal
circuits. Increasing demand for low-power designs [7] has
lead to low voltage designs. However, to maintain signal in-
tegrity in such low-voltage designs it becomes necessary to
add more analog components such as voltage doublers for
switches which make the analysis even more difficult. As
a result, analytical models tend to make some simplifying
assumptions, which are unrealistic and may severely affect
simulation results.

More efficient modeling and simulation techniques have
also been proposed which take into account the sampled-
data operation of switched-capacitor �� modulators [3, 4,
5, 6], which are reviewed in Section 2 in detail.

We are using an adaptive regression technique called
Multivariate Adaptive Regression Splines (MARS) [8, 9]
for sampled data simulation. MARS has earlier been ap-
plied to classify faulty and fault-free circuits to enhance
fault coverage [10] and to model a faulty circuit to speed
up statistical fault simulation [11]. This paper explores the
application of MARS as an accurate performance simula-
tion tool for �� modulators and develops an efficient tool
achieving better accuracy with smaller memory require-
ments than table-based techniques in [5, 6].

2 Sampled Data Simulation and Previous
Work

In this section, essential issues involved in analog sam-
pled data simulation are discussed and previous approaches
to modeling switched-capacitor �� modulators are re-
viewed.

Switched-capacitor circuits have become a popular
method of implementing �� modulators due to their com-
patibility with CMOS technology and better accuracy. As a
result the operation of the modulator needs to be analyzed
in the discrete-time domain. Sampled data techniques use
the clocked operation of the switched-capacitor circuits to
formulate difference equations in the discrete-time domain.
The two phase non-overlapping clock, �1 and �2, shown in
Figure 6 serves to separate the sample and integrate opera-
tions. After each clock, the state of the circuit settles to cer-
tain values as given by the output voltage of each integrator

stage. The state at each discrete-time point depends on the
circuit non-idealities such as switching resistance, slew rate,
finite gain of the op-amp, and clock jitter. The state of the
circuit could be settling to a certain value during switching,
but the transition state, which may be ringing or slewing
is not important and only the final voltage level at the end
of that clock cycle will have a bearing on the next state of
the circuit. However, this voltage level tends to be differ-
ent from the ideal value as a result of a cumulative effect of
all the non-idealities. Our objective is to model each inte-
grator in the presence of all the non-idealities using sampled
data points for different values of input, previous output and
quantized output.

The simple difference equation model for an ideal inte-
grator in the discrete-time domain, as shown in Figure 1,
can be obtained from the ideal integrator transfer function
in Equation 2 and is given by yi = yi�1+xi�1�pi�1 where
yi is the output of the integrator at the end of the i th time
step, xi�1 and yi�1 are input and output of the integrator at
the end of (i� 1)th time step and pi�1 is quantized output.

H(Z) =
Z
�1

1� Z�1
(2)

A more accurate model would need to include integrator
non-idealities such as finite gain, slew rate and sampling
jitter. Some non-idealities such as the integrator leakage
due to the finite gain of an op-amp can be included in the
ideal model easily by adding a leakage factor, A, as given
by Equation 3.

H(Z) =
Z
�1

1�A� Z�1
(3)

In the above equation A is given by fA(P ;N ) wherePis

are the circuit parameters and Njs are the non-idealities.
The DC gain of the integrator is now given by H0 =
1=(1 � A), instead of being infinity when A is 1 for the
ideal model. However, A itself may not be a fixed value for
a circuit, and may vary depending on the state of the inte-
grator because of its dependence on operating voltage level,
slew rate, clock feedthrough, and other non-idealities of the
circuit. Therefore, accurately modeling non-idealities into
the ideal transfer function may not be as simple as a sim-
ple constant leakage factor. Also, some of the earlier work
assume white noise for the quantization error which simpli-
fies the analysis but limits the kind of input one can use to
get accurate results. Finally, the complexity of the currently
used higher order, low-voltage �� modulators [7] would
make the analytical technique an infeasible approach to the
modeling problem.

In [3, 4], it was proposed to use state variable anal-
ysis utilizing the sampled data property of the switched-
capacitor �� modulator. Although state equations are use-
ful to describe the characteristics of a circuit, it is a known



fact that forming state variable matrices is a difficult proce-
dure even for small circuits.

Table-based techniques have been proposed in [5] [6].
These techniques can model non-idealities without need-
ing to deal with detailed analytical modeling of individ-
ual non-idealities. They represent the integrators by two-
dimensional tables with input and previous output of the in-
tegrator for each dimension. Since most input/output pairs
will not be same as the stored values and would be located
between discrete values, an interpolation process is required
to calculate the output from the table model. The interpola-
tion routine could be a major factor in simulation time for
the table-based technique.

Instead of storing each data point, the proposed tech-
nique computes an expression model for the modulator us-
ing an adaptive regression technique. The model building
process is a one time procedure performed before simulat-
ing the model, and the storage overhead is avoided. Also, as
explained in next section, the interpolation process is moved
into the model building process, which eliminates interpo-
lation calculations at every time point.

3 Proposed Technique

The proposed technique models non-idealities using
mathematical models built from the circuit-level simulation
data. Since our mathematical models are based on circuit-
level simulation, our technique does not make any assump-
tions which would be necessary for analytical techniques.

First, the modulator is partitioned into functional blocks
comprised of integrators. Then, each integrator is simulated
using a circuit simulator to collect data samples. There-
after, the adaptive regression technique, which is explained
in detail in Section 4.2, is used to extract and model the
nonidealities from the data samples. The regression model
thus obtained is used, instead of the transistor-level netlist,
to simulate the entire modulator using our discrete-time do-
main simulator, ARSIM.

The actual relation of the integrator is an unknown, non-
linear 4-dimensional function as given by Equation 4 fol-
lowing the notation in Figure 1.

yi = f(yi�1; xi�1; pi�1) (4)

Equation 4 models the entire non-ideal function consist-
ing of the ideal signal, si, and the non-idealities, ni as
shown in Equation 5. While previous approaches model
the entire signal, yi, ARSIM models only the non-ideality
signal, ni in Equation 5 and during simulation it is added
to the ideal signal obtained from the ideal model. In this
paper, the non-ideality function, n i, is defined as the differ-
ence between the the ideal output and the HSPICE output,
given by I and f respectively in Equation 6.

yi = si + ni (5)

ni = I(yi�1; xi�1; pi�1)� f(yi�1; xi�1; pi�1) (6)

The lack-of-fit (LOF) criterion in modeling techniques
can be quantified using a distance function which may be
defined as the squared-error loss given by Equation 7, where
^fM = ŝi+ n̂i is the modeling function and Xis are the pre-

dictor variables, such as the input and the previous output
values of the integrator in our case.

LOF ( ^fM ) = [yi � ^fM (Xi)]
2 (7)

Rewriting Equation 7 using the two signal components
defined in Equation 5 we get

LOF ( ^fM ) = [si + ni � ŝi � n̂i]
2

= [si � ŝi + ni � n̂i]
2

= [e1i + e2i]
2 (8)

The ideal signal value is typically several orders of mag-
nitude stronger than the non-idealities. From our exper-
iments we observe that the non-ideality function value is
at least 4 orders of magnitude smaller than the ideal signal
value. Hence, if we assume the modeling error for a given
technique to be 1% of the signal value, the accuracy of the
model will be decided by the modeling error, e1i, and the
non-ideality signal, ni, would be completely masked by it.
This would significantly affect the modeling accuracy.

In ARSIM, ^fM is the non-ideality function, n̂i, that we
are modeling and LOF ( ^fM ) is given by [e2i]

2, the mea-
sure of fit that is used in the adaptive regression technique
described in Section 4.2.
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Figure 2: Flowchart for ARSIM.

Figure 2 shows the flowchart of the CAD tool we have
implemented. The ideal difference equations for each
integrator stage are extracted from system specifications.
Transistor-level netlists for individual integrators are sim-
ulated and samples generated using HSPICE, which are
given as input to the model construction routine. Mod-
els for the non-ideality function are built using MARS and
added to the ideal signal value during simulation. The post-
processing stage performs digital filtering and computes the
SNDR curve.



4 Regression-Based Modeling

This section reviews the basic concept of regression and
introduces MARS as a modeling technique for �� mod-
ulators. Regression is a statistical technique for predict-
ing values of one or more responses from a collection of
predictor variable values. Use of well-developed statisti-
cal techniques like adaptive regression for circuit modeling
can overcome some of the drawbacks associated with table-
based techniques. This is particulary true of the compu-
tational overhead involved in interpolating table values to
obtain the required output values at every time point in the
simulation.

4.1 Regression Technique
The problem of adequately approximating a function of

several variables is encountered in many different fields of
study. With an increasing number of variables, the number
of data points required to obtain a reasonable approximation
increases exponentially, and is termed the curse of dimen-
sionality. Prior analysis of the circuit can reduce the number
of data points to linear complexity in the number of vari-
ables. However, the basic idea of our approach is to avoid
such a time consuming analysis of the circuit non-idealities
and hence, our regression technique works without any in-
formation about the behavior of the circuit. Moreover, we
are trying to model the transient response of the modula-
tor in the presence of non-idealities, which could be highly
non-linear. Parametric regression techniques, which assume
the entire data to be one single continuous function and try
to find the best fit for the parameters, may result in very
inaccurate approximations even with large number of data
points for our application. MARS on the other hand divides
the input range into several regions and tries to find best fits
using splines for each region in the input space. This results
in two advantages over parametric regression; 1) it is well
suited for high-dimensional problems as the number of data
points needed is much smaller, and 2) it can handle highly
non-linear responses.

Our goal is to model the dependence of the output y on
one or more variables x1; x2; :::; xn, given measurement, or
simulation data fyi; x1i; x2i; :::; xnig. This relationship can
be expressed as in Equation 9. The " is an error component
of the function f(x1; :::; xn), and the expected value E["] is
0.

y = f(x1; :::; xn) + " (9)

For modeling the integrator, y is the output of the inte-
grator, and xis are the input, previous outputs and quantized
output(Vdd or Vss) values. We can represent the output of
an integrator for a �� modulator as in Equation 10. Then,
this regression equation can be the accurate model of the
integrator function in Equation 4.

yi = f(yi�1; xi�1; pi�1) (10)

Data points needed for model generation are obtained
from transistor-level simulations of the individual integra-
tor stages. The data generation procedure is described in
Section 3.

4.2 MARS Modeling
As seen in the previous section, MARS can be an ac-

curate modeling technique for transient simulation of both
linear and non-linear circuits efficiently capturing non-
idealities in circuit behavior.

f(x) =

mX

i=1

wigi(x) + w0 (11)

Equation 11 shows a MARS function, where w is are the
parameters of the approximating functions, g i(x)s are ba-
sis functions, and x is the vector of input variables. In the
above MARS model, f(x) is the same as the f(x) in Equa-
tion 10 and x corresponds to simulation inputs and previous
outputs as explained earlier.
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Figure 3: Example of a MARS tree.

Figure 3 shows an example of a MARS basis function
tree [9], which is built by recursive partitioning and func-
tion representation based on splines. A spline is a series
of locally defined low order polynomials that is used to ap-
proximate data. The local splines have their own end points
called knots. Knots are used to divide the nonlinear func-
tion into several relatively linear parts so that they can be
modeled with less effort. The basic function of the MARS
model is a left/right pair of univariate basis functions b+,
b
� with a particular knot location v for a particular input

variable x.
In Figure 3, each node represents a product of these uni-

variate basis functions. Using a greedy optimization algo-
rithm, two child nodes are created by taking the product of
each of the univariate basis function pairs with the same
parent basis function. Equation 12 and 13 show an example
of two child nodes where vj is a knot location for an input
variable xk .

gchildren+(x) = gparent(x) � b
+(xk ; vj) (12)

gchildren�(x) = gparent(x) � b
�(xk; vj) (13)



Generalized Cross Validation (GCV) [8] is used as a
measurement of fit to determine approximating parameters
wi for the basis function in Equation 11, and knot locations
vj in Equation 12 and 13.

5 Modeling and Validation

In order to validate our modeling technique, we gen-
erated random samples and simulated them using both
HSPICE and our adaptive regression model. Figure 4 and 5
show the non-ideality function for the first integrator stage
obtained from HSPICE and the MARS model when the
feedback level is 0 volt. The average root mean square error
of the model is only 0.3% in this case.
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Figure 4: Non-ideality function from HSPICE.
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Figure 5: Non-ideality function of ARSIM model.

Sample generation is a crucial part of the modeling pro-
cess. It is essential to ensure that simulation conditions dur-
ing the sample generation procedure mimic the actual op-
eration of the integrators. Hence, the output node of the
integrators should be driven to a stable initial value before
the sampling clock becomes active. In the case of integra-
tor 1 the samples were made just before the end of �1, and
for integrator 2 samples were made just before the end of
�2. The switches at the output of the integrators are also

included in each integrator circuit when we generate sam-
ples to accurately model the output load. Also, as we are
dealing with small voltage differences with a magnitude of
10�4 volt or less it is necessary to set appropriate tolerance
options to get accurate results.

Two significant advantages of our technique over table-
based techniques are improved simulation time and model
accuracy. Our technique moves the interpolation procedure,
performed at every time step in the table-based technique,
into the model generation phase, thus significantly improv-
ing the simulation time. More importantly, our technique
models only the non-ideality function which yields accurate
models.

6 Experimental Results
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Figure 6: Second-Order �� Modulator

Simulation results with the proposed modeling technique
are shown in this section. We have modeled and simulated
the second-order modulator shown in Figure 6. The modu-
lator has been implemented in the HP 0.8� technology from
MOSIS using the BSIM3 MOS model with a 5V power sup-
ply voltage. The switched-capacitor integrators operate at
4 MHz with an oversampling ratio of 256, with the corre-
sponding Nyquist sampling rate being 16 kHz. Experimen-
tal results with minimum as well as enlarged switch sizes
are shown to illustrate the effect of increasing non-idealities
on modulator performance. The input to the circuit is a
2 kHz sine wave. The signal-to-noise and distortion ratio
(SNDR) results are obtained by simulating the modulator
for 74k clock cycles. The first 10k data points are discarded
to eliminate any initial circuit transients.

Models for both 0V and 5V DAC feedback are generated
for each integrator stage during the model building phase
and appropriate models are chosen at the beginning of each
clock pulse during simulation depending on the feedback
value.

The total time taken by ARSIM is the sum of sample
generation, model building and simulation times. ARSIM
takes only 46.21 minutes for generating the SNDR curve
with 30 different input signal amplitudes while HSPICE
takes an estimated 1894.4 hours for simulating the modu-
lator shown in Figure 6. Since it would be impossible to



simulate for such a long time, the HSPICE time was es-
timated from the first 100 clock simulations. The overall
speedup is 2460 times over HSPICE for this design. The
details of the simulation times for ARSIM are given below.

� Sample generation for� 400 points for both integrator
stages: 31.26 mins,

� Model building for both integrators: 55 secs,

� Simulating the model of the modulator for 74k clocks
for one SNDR point: 28 secs.

These simulations were performed on a SUN
UltraSPARC

TM
� II machine operating at 400MHz

with 512 MB memory. Figure 7 shows the simulation
result with ARSIM for 30 different input amplitudes for
two circuit implementations.
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Figure 7: SNDR performance for a sampling frequency of
4MHz.

We have performed experiments with 2 different cir-
cuit implementations of the modulator. One with mini-
mum switch sizes and the other with a less optimized circuit
with enlarged switches in order to make the effect of clock-
feedthrough more pronounced. The enlarged switches are
10 times lareger in width and length compared to the nom-
inal switches. Even though the ideal peak SNDR can ap-
proach 100 dB for this second-order modulator with over-
sampling ratio of 256, the nonidealities from the operational
amplifiers and switches significantly reduce the modulator
performance.

Since the signal swing of the integrators is limited by
the power supply and the clipping of the integrator outputs
would significantly affect the performance, usually each in-
tegrator of �� modulator is preceded by an attenuation [2].
In this experiment, the attenuation of 0.1 preceding the first
integrator is selected [3, 5]. For the ideal simulation, the
overall SNDR will not be affected by these attenuations. In
a real circuit implementation, however, signal attenuation
decreases signal power, and causes the SNDR of the mod-
ulator to be affected more by the non-ideality function, re-
sulting in reduced SNDR performance. As observed from

Figure 7 the peak Signal-to-Noise and Distortion Ratio is
70.5 dB, and it decreases with increasing switch sizes, im-
plying that non-idealities have increased.

7 Conclusions

A verification technique for �� modulators using adap-
tive regression modeling has been proposed. The models
derived for each integrator stage have errors less than 0.3%
compared with HSPICE results in our experiments. Further-
more, a speedup of three orders of magnitude is achieved
over HSPICE. Our approach is to model the non-ideality
function instead of the entire non-ideal response, thus mod-
eling the non-idealities in the individual integrator stages
with greater precision.
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