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Abstract––In this paper, a corner block list — a new
efficient topological representation for non-slicing floorplan
is proposed with applications to VLSI floorplan and building
block placement. Given a corner block list, it takes only
linear time to construct the floorplan. Unlike the O-tree
structure, which determines the exact floorplan based on
given block sizes, corner block list defines the floorplan
independent of the block sizes. Thus, the structure is better
suited for floorplan optimization with various size
configurations of each block. Based on this new structure
and the simulated annealing technique, an efficient floorplan
algorithm is given. Soft blocks and the aspect ratio of the
chip are taken into account in the simulated annealing
process. The experimental results demonstrate the algorithm
is quite promising.

1. Introduction

  Floorplaning is a critical phase in physical design of VLSI
circuits and has received much more attention recently due to the
increased importance of hierarchical design and IP blocks. To
optimize the floorplan, topological representation is one of the
most important and fundamental issues. The representation
structure affects the effectiveness and the efficiency of the
optimization algorithm directly.
  VLSI floorplans are often grouped into two categories: slicing
structure and non-slicing structure. A slicing floorplan can be
obtained by recursively cutting a rectangle into two parts by
either a vertical or a horizontal line. The slicing floorplan covers
a limited design space, but can be expressed by an efficient
binary tree or Polish expression. There are O(n! 23n-3/ n1.5)
combinations of the slicing tree. It takes only O(n) time to
derive a floorplan from a representation[1].
  For the non-slicing structure, the problem is much harder.
Onodera et al.[2] enumerated floorplans by four relationships
between two blocks. The number of combinations of their
representation model is O(2n(n+2)).
  Sequence pair (SP) [3] and Bounded-Slice line Grid (BSG) [5]

are two elegant models for non-slicing floorplans. In SP, two
permutations are used to present the topological relations of
blocks. The number of combinations of the SP is O((n!)2). From
SP to its corresponding placement, it takes O(n2) time[3] [4]. In
BSG, a special n�n grid is applied for the placement of n blocks.
BSG has O(n2) time complexity and n!C(n2, n) combinations,
which has much redundancy.
  Recently, Guo at el [6] presented an ordered tree to represent

non-slicing floorplans. O-tree has very small solution space
O(n!22n-2/n1.5) and O(n) time complexity. However, it can only
represent a special placement—LB-compact placement, which is
obtained by compressing blocks toward the left and bottom
boundary of the chip. Most importantly, O-tree structure is not a
topological representation.
  In this paper, we present a new topological representation —
corner block list, which can represent general non-slicing
floorplans. It defines a floorplan independent of the block sizes.
Using corner block list, we propose a simulated annealing
algorithm for VLSI floorplan.
  The advantages of corner block list are as follows:
  1. The time complexity to transform a corner block list to a
placement configuration is O(n).
  2. The number of combinations of corner block list is O(n! 23n-

3/ n1.5). Figure 1 shows the comparison of combination numbers
of BSG, SP, CB and O-tree in log scale. The functions are
normalized by n! which is the complexity of placement of cells
with a standard width and height.

  3. Corner block list takes only n(3+[lg n]) bits to describe,
where [lg n]denotes the minimum integral number which is not
less than lg n. A corner block list needs fewer bits than SP, BSG
and the same as binary tree.
  4. Corner block list represents the floorplan independent of the
blocks sizes, so we can use corner block list to optimize the
blocks with multiple configurations of widths and heights. This

Figure 1 Comparison of combination number of 4 modes
normalized by n!



  

is its advantage over O-tree structure.
  The organization of this paper is as follows: In section 2, a
class of floorplan and some concepts are introduced. Then in
section 3, a corner block structure is presented. In section 4,
based on simulated annealing algorithm and corner block list, an
efficient floorplan and block placement algorithm is presented.
In section 5, experiment results for some MCNC benchmarks are
presented. Finally, conclusion and acknowledgments are given.

2. Preliminaries

  In this section, we define a class of floorplans that is a
simplified version of general floorplan.

2.1 Mosaic Floorplan
  A floorplan divides the chip into rectangular rooms with
horizontal and vertical segments. Each room is assigned to no
more than one block. We define a class of floorplan, mosaic
floorplan. A floorplan belongs to the class of mosaic floorplan if
and only if it observes the following three properties.
  1. Floorplan of No Empty Space: There is no empty space in
the floorplan, i.e. each room is assigned one and only one block.
The class of floorplan of this property covers the set of the
slicing floorplan (figure 2.1) and contains the floorplan that
cannot be sliced (figure 2.2). In a no empty space floorplan, the
internal segments intersect and form T-junctions. A T-junction is
composed of two segments: a non-crossing segment and a
crossing segment. The non-crossing segment has one end
touching point in the interval of the crossing segment.
  2. Topological Equivalence on Segment Sliding: The topology

is defined to be equivalent before and after the non-crossing
segment of the T-junction slides (Figure 2.3 (a) and (b)). The
segment positions are to be determined by the exact widths and
heights of the blocks.
  3. Non-Degenerate Topology: There is no degenerate case
where two distinct T-junctions meet at the same point. If a
degenerate situation happens, we separate two T-junctions by
sliding a non-crossing segment of a T-junction by a small
distance.

2.2 Constraint Graph
  A constraint graph for a floorplan is a graph G = (V, E), where

the nodes in V are segments which slice the space and form the

rooms of the floorplan with additional nodes used for boundaries
of the placement, and the edges in E are the rooms of placement
blocks. The edges in E are directed. There are two kinds of edges:
one with the direction from a left node to a right node, another
with the direction from a bottom node to a top node. A node is a
source node of an edge if the edge is an outgoing edge of the
node. A node is a destination node of an edge if the edge is an
incoming edge of the node. There are two kinds of constraint
graphs: the horizontal constraint graph (HCG) and vertical
constraint graph (VCG). In HCG, we use a west pole “W” and an
east pole “E” to represent the left and right boundary of the chip.
The edges represent the horizontal relation directed from left to
right. In VCG, we use a south pole “S” and a north pole “N” to
represent the bottom and top boundary of the chip. The edges
represent the vertical relation directed from bottom to top. In the
sequel, for simplicity we mix the usage of the edge and the
block.
  Figure 2.4 illustrates the corresponding horizontal constraint
graph and vertical constraint graph of the floorplan in figure 2.2.

2.3 Corner Edge and Corner Block
  For an edge that points to east or north pole, we define it to be
a corner edge. The block that its two constraint edges are corner
edges in both HCG and VCG is defined to be a corner block. For
example, in figure 2.4, block “d” is a corner block, while “a” “b”
and “e” are not.
  Lemma 2.1: Given a mosaic floorplan of one or more blocks,
there exists a unique corner block.

2.4 Orientation of Corner Block
  We define the orientation of a corner block according to the
joint of its left and bottom segment and the T-junction containing
the joint, e.g. the bottom left corner of block d in figure 2.2. At
this point, the T-junction has only two kinds of orientations: T
rotated by 90 degrees (figure 2.2) and by 180 degrees
counterclockwise. If T is rotated by 90 degrees, we define the
corner block to be vertical oriented, and it is denoted by a “0”.
Otherwise, we define the corner block to be horizontal oriented,
and it is denoted by a “1”. For example, in Figure 2.2, the
orientation of corner block d is vertical and is denoted by “0”.

2.5 Corner Block Deletion and Insertion
1) Corner Block Deletion
  If the corner block is horizontal oriented, to delete the corner
block we shift its left segment to the right boundary of the chip,
and pull the attached T-junctions along with the segment. If the
corner block is vertical oriented, we shift its bottom segment to
the top boundary of the chip, and pull the attached T-junctions
along with the segment.
  For example, for the floorplan in Figure 2.2, the corner block
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d is vertical oriented, thus we shift its bottom segment to the top
boundary of the chip, pull up the attached T-junctions and delete
block d (figure 2.5).
  We can operate the deletion on the corresponding constraint
graphs directly. For example, after we delete constraint edges
“d” in both constraint graph HCG and VCG, the new constraint

graphs are modified as shown in figure 2.6. Because the corner
edge “d” is vertical, its source node is pulled to the north pole
and merged into the north pole, so the edges “a” and “g” become
the incoming edges of the north pole.

Lemma 2.2: Given a mosaic floorplan, the revised
floorplan after corner block deletion remains to be mosaic.

2) Corner Block Insertion
Corner block insertion is the inverse of deletion. If the

inserting corner block is vertical oriented, we push down the
horizontal segment at the top side of the chip covering a
designated set of T-junctions, and then get a room for the
inserting corner block (figure 2.7). If the corner block is

horizontal oriented, we push left the vertical segment at the right
of the chip. The process to insert the corner block in the
constrained graph also can be derived similarly.
  Lemma 2.3:Given a mosaic floorplan, the revised floor -plan
after corner block insertion remains to be mosaic.

3. Corner Block List

  The corner block list is constructed from the record of a
recursive corner block deletion. For each block deletion, we
keep a record of block name, corner block orientation, and
number of T-junctions uncovered. At the end of deletion
iterations, we concatenate the data of these three items in a
reversed order. Thus, we have a sequence S of block names, a
list L of orientations, and a list T of T-junction information.
Note that at the nth deletion, there is only one block in the
floorplan. The orientation and T-junction information of the nth
block do not matter. Thus, the orientation and number of T-
junction of the nth block is not included in lists L and T.

T-junctions of the deleted corner block. The number of 1s
corresponds to the number of attached T-junctions. Each string
of 1s is ended with a 0 to separate from the record of the next
corner block deletion.

  Definition 3.1: The three tuple (S, L, T) is called a corner
block list.
  Example 3.1: We use the floorplan of figure 2.2 as an
example. First, block d is deleted. d is vertical oriented and there
is one T- junction attached at the bottom edge of block d. Thus,
we keep a record (d, 0, 10) (Fig. 2.5(b) and Fig. 2.6). Block a, b,
g, e, c, f are deleted successively. We concatenate these record
in a reverse order of deletion and derive a corner block list (S, L,
T), where S=(fcegbad), L=(001100), and T=(001010010).

3.1 Algorithms to Transform Between Corner Block
List and Floorplan

Algorithm 3.1 Transformation from floorplan to corner
             block list

    While there is a corner block available, repeat
(1). Delete the corner block.
(2). If the corner block is not the last one, record (block
name, orientation, T-subsequence).

Add the last block to the block name list and concatenate all
records in a reverse order of deletion to construct the list (S,
L, T).
From lemmas 2.1 and 2.2, the sequence of corner block

deletion is unique. Thus, we can derive the uniqueness of the
corner block list.

Theorem 3.1: Given a mosaic floorplan, there exists a
unique corner block list corresponding to the topology of the
floorplan.
Algorithm 3.2 Transformation from corner block list to
             floorplan
   (1). Initialize the floorplan with block S[1];

      (2). For i = 2 to n do
Insert block S[i]  with an orientation L[i] and

covering the T-junctions according to the record in list
T. If the number of covering is more than the T-
junctions available, exit and report error.

A corner block list may not correspond to a floorplan, this is
because of the constraints of list T. The number of erased T-
junctions should not be more than the T-junctions available on
the side of insertion.

Theorem 3.2: The resultant floorplan of algorithm 3.2 is
mosaic if the solution exists.

3.2 The Complexity
  Summing up all the contributions of corner block list (S, L,
T), we have block sequence S taking n[lg n] bits and orientation
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list L taking n-1 bits, while list T taking no more than 2n-3 bits,
we derive the storage size of the representation.
  Theorem 3.3: The storage size of corner block is no more
than n(3+[lg n]) bits.
  Theorem 3.4: The number of combinations of corner block
list can be expressed as O(n! 23n-3/ n1.5).
  Theorem 3.5: The computational complexity of algorithm
3.1 is O(n).
  Theorem 3.6: The computational complexity of algorithm
3.2 is O(n).
Remarks: The number of combinations of corner block list is
equal to the number of slicing tree structure, O(n! 23n-3/ n1.5),
while the set of slicing floorplan is a subset of mosaic floorplan.
The gain on a larger coverage is obtained from the elimination of
redundancy.
Example: Figure 3.1 illustrates the redundancy of slicing tree
structure. The floorplan can be represented by five Polish
expressions: abHcHdHeV, abcHHdHeV, abHcdHHeV,
abcHdHHeV, abcdHHHeV, while it takes a unique corner block
list representation: abcde, 1110, 0001110. Note that in Polish
representation, only the first expression is considered in
searching process[1].

4. Floorplan and Block Placement Algorithm

  Our algorithm is based on simulated annealing algorithm[7].
The creation of a neighboring solution can be based on:
  1) Randomly exchange the order of the blocks
  2) Randomly choose a position in L, change 1 to 0, or 0 to 1;
  3) Randomly choose a position in T, change 1 to 0 or 0 to 1
  4) Rotate the module for 900,180oand 2700.
  5) Reflect the modules in both horizontal and vertical
orientations.
  The 4th and 5th operations are used in the process of
optimization of wire length.
  For the floorplan problem with soft blocks, we prepare some
alternate blocks to substitute the original one. In the simulated
annealing process, we exchange not only the geometric positions
of the blocks but also the alternate blocks with different aspect
ratio. In our floorplan algorithm, we choose 16 alternate blocks,
and apply the following operation:
  6) Randomly choose a block, than randomly choose an
alternate block to substitute the original one.

5. Experimental

  The placement algorithm has been implemented in the C
programming language, and all experiments are performed on a
SUN spark20 workstation.

5.1 Test Examples
  MCNC benchmarks are used for the experiments. The largest
example is ami49, which has 49 blocks and 408 nets. In order to

test the effective of the algorithms, especially the ability for large
circuits, we create several examples based on ami33. The
example test66, test99 and test198 have 66, 99, 198 blocks
respectively.

5.2 Experimental Results
  Table 1 is block placement results without soft blocks. Table 2
presents the floorplan results, where each block is soft.  Due to
CB has lower time complexity than sequence pair and BSG, the
running time decrease a lot in the same temperature and inner
loop conditions. The linear time complexity of CB let us obtain a
placement configuration with several hundreds even thousands
blocks in twenty minutes. Table 3 shows placement results with
minimizing area and total wirelength. It is comparable with O-
tree mode. Table 4 shows the floorplanning results using soft
blocks after getting topologies corresponding to placement
results with hard blocks. This means we can use corner block list
to refine the blocks with multiple configurations of widths and
heights under the fixed topology of blocks, which can be got by
placement with hard blocks. Although the usage of placement is
very low, but after refinement of blocks’ shape, we can get very
good floorplan result with very high usage.

6. Conclusion

  CB - a new effective representation for non-slicing floorplan,
has the same computing complexity as that of binary tree of
slicing structure. However, it can not only represent all
floorplans with slicing structure, but also represent non-slicing
floorplans. The time complexity of CB is much lower than the
other non-slicing structures such as SP and BSG. CB has almost
the same time and space complexity as O-tree, however, it is
better suited for floorplan optimization with various size
configurations of each block. Based on CB and simulated
annealing technique, an efficient algorithm for floorplan and
block placement is given. The experiment results demonstrate
that our algorithm is quite promising.
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Table 1. BBL Placement Results Based on CB

Example Area
(mm2) Area usage Runtime

(sec.) Other

Xerox 20.96 0.922 30

Hp 66.14 0.932 32

Ami33 1.201 0.963 36 figure 5.1

Ami49 38.58 0.918 65

Test66 2.383 0.947 86

Test99 3.672 0.946 110

Test198 7.506 0.926 165 figure 5.2

Table 2. Floorplan Results Based on CB
Examples Area(mm2) usage Run time (sec.)

Ami33 1.176 0.983 87
Xerox 19.75 0.979 76

Hp 62.93 0.980 75
Apte 46.63 0.966 78

Ami49 36.09 0.982 179

Table 3. Placement Results with Total Wirelengths
area+0.1*wirelength
(minimum/average)

area + wirelength
(minimum/average)

0.1*area+wirelength
(minimum/ average )

examples area Wire area Wire area Wire

Improve over O-tree
area/ wire (average)

(w1=w2=0.5)

apte 46.079
/46.731

405.845
/429.241

47.429
/47.916

194.950
/202.830

47.230
/48.202

103.832
/177.608

10%/45%

xerox 20.124
/20.347

604.751
/667.713

20.233
/20.378

403.466
/504.108

20.686
/20.953

403.466
/533.916

9%/-12%

ami33 1.2149
/1.2186

54.075
/61.649

1.2255
/1.2343

51.674
/56.726

1.2450
/1.2510

39.431
/48.947

9.2%/5.2%

ami49 38.337
/38.477

973.845
/1164.694

38.378
/39.410

732.844
/870.432

41.749
/45.720

710.220
/775.551

6%/-12%

Table 4. Floorplanning Results with Fixed Topologies of Blocks
examples Placement

area(mm2)/usage(%)
Floorplan

area(mm2)/usage(%)
Improve over
placement (%)

Average
improvement(%)

ami33 1.390 / 83.184 1.216 / 95.099 11.915 5.552
ami49 41.400 / 85.616(Fig. 5.3) 36.980 / 95.851(Fig. 5.4) 10.235 8.526
apte 54.554 / 82.612 47.171 / 95.541 12.929 12.185
hp 69.783 / 88.374 62.849 / 98.143 9.769 6.672
xerox 22.755 / 85.035 19.696 / 98.240 13.205 10.272

Fig. 5.3 Placement result of ami49 Fig. 5.4 Floorplanning result of ami49

Figure 5.2 Placement Result of Test198

Figure 5.1 placement of ami33
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