Efficient Algorithms For Polygon To Trapezoid
Decomposition And Trapezoid Corner Stitching *

Qiao Li

Sung-Mo (Steve) Kang

Computer & Systems Research Laboratory
University of Illinois at Urbana-Champaign
1308 W. Main St., Urbana, IL 61801

ABSTRACT

In non-Manhattan geometry layout extraction, polygon to
trapezoid decomposition is an indispensable step. Its ef-
ficiency and the organization of generated trapezoids sig-
nificantly affect the performance of layout extractors. We
present a new polygon to trapezoid decomposition algo-
rithm used in our layout extractor {LEX. The concept of
edge pair and scanline interval are introduced to provide
improved efficiency over conventional scanline algorithms.
Definitions for trapezoid corner stitches are provided as well
as integrated algorithms on corner stitching trapezoids gen-
erated. Complexity analysis shows that our scanline algo-
rithm has an expected computation time of O(nlogn), and
an expected space of O(y/n), where n is the number of non-
vertical edges in the given layout.

Keywords

Non-Manhattan layout extraction, polygon to trapezoid de-
composition, edge pair, scanline interval, scanline algorithm.

1. INTRODUCTION

For non-Manhattan geometry layout extraction, polygon to
trapezoid decomposition is an indispensable step. Not only
because trapezoids are more amenable to geometry opera-
tions such as neighbor finding, but also because a polygon
in itself may not refer to a layout object at all. A polygon is
defined by a sequence of points. Two adjacent points form
an edge. The opaque side of the polygon lies to the left of an
edge. Therefore, the donut shaped layout object in Fig. 1
(for example, a guard ring) can be represented by two poly-
gons P; and P». Neither P, nor P> can be taken out of the
context of each other.

*This research was supported in part by a grant from Semi-
conductor Research Corporation (SRC contract 98-DJ-613).

- D

P —

Figure 1: Polygons Figure 2: Trapezoids

A trapezoid (Fig. 2) is defined to consist of two parallel
vertical edges, and two other edges which are not necessarily
parallel. Only one of the two parallel vertical edges can
degenerate into a point.

Edge based scanline algorithms [1; 3; 2; 7] have been exten-
sively used in polygon to trapezoid decomposition as they
are fast and memory efficient. Different from earlier scan-
line algorithms, our algorithm is edge pair based rather than
edge based and through the use of scanline intervals much
improves scanline processing, trapezoid detection and trape-
zoid generation. To facilitate later device extraction, we ex-
tended the definitions of corner stitches [6] to trapezoids,
and provide algorithms on corner stitching trapezoids while
they are generated.

Sec. 2 provides a review of earlier scanline algorithms. Sec. 3
and Sec. 4 detail our data structures as well as the scanline
algorithm based on them. In Sec. 5 we extend definitions of
corner stitches to trapezoids and present algorithms to cor-
ner stitch trapezoids while they are generated in our scan-
line algorithm. Finally, Sec. 6 and Sec. 7 provide complexity
analysis and experimental results.

2. REVIEW AND MOTIVATION

In a scanline algorithm, a scanline is constructed to be swept
on sorted polygon edges along x-axis from —oo to co. The
scanline keeps only sorted records of edges being intersected
to reduce memory requirement, and stops only at registered
stop points to improve run time. At each stop point a list of
events to be processed on the scanline is maintained. Events
are caused by the need for processing of either new starting
edges, or old ending edges, or crossing edges. Specific oper-
ations to be done at stop points are algorithm dependent.

In most earlier algorithms, at each stop point, one counter

for each side of the scanline has to be swept along the scan-
line to decide whether trapezoids have to be generated. This
demands some delicate handling when more than 2 edges
cross a point as in Fig. 3.

|
e | e
1 1 ! 1 !
| |
1
I 1 I
e, 1 | €, 1 I
| 1 | 1
1 | 0 I
| S | S
| 1 e |
| |
e ! 2 I
3 1 ! |
| |
| 1 | 1
€4 | €4 |
0 i 0 0 i 0

Figure 3: Trapezoid detection through counting

That sweeping has to be done at every stop point is because
most scanline algorithms [3; 7] suffer from not knowing the
ranges of effect of newly introduced edges, or newly termi-
nated edges, or newly crossed edges. Chiang et al. [2] alle-
viated the problem by first decomposing individual polygon
into trapezoids, and then feeding the generated trapezoids
into the scanline algorithm. As decomposition is done on an
individual polygon basis, overlapping trapezoids (at least
from different polygons) have to be allowed. Also, before
individual polygon can be decomposed into trapezoids, its
edges have to be organized into TOP/BOTTOM pairs. All
of them consume extra computation time.

It is proposed in [7] that only trapezoids on a band following
the scanline are kept in memory to enable device extraction
within the scanline algorithm. The same technique could
be put into use in our scanline algorithm as well. Never-
theless, doing so will not only restrict devices extracted to
be primitive, but also require significant modification of the
scanline algorithm whenever a new device model is added to
the extractor. We opt for an independent device extractor
and a stand-alone scanline algorithm in which:

1. Rather than decomposing individual polygon into over-
lapping trapezoids and then working on the trapezoids
to generate new trapezoids, we sweep the scanline from
—o0o to co once, and generate non-overlapping trape-
zoids.

2. Edge pairs are used as input to the scanline algorithm.
They provide the propagation direction and range of
effect, and consequently no TOP/BOTTOM pairing
information is needed.

3. Through the use of scanline intervals, we can detect
when a trapezoid has to be generated and totally rid
ourselves of sweeping counters along both sides of the
scanline at every stop point.

4. Efficient algorithms on corner stitching generated trape-
zoids are integral parts of our scanline algorithm.

3. FUNDAMENTAL DATA STRUCTURES

Each pair of adjacent points v;, vi+1 in a polygon repre-
sentation {wv1,...,Vn,Unt1(= v1)} makes a directed edge
{vi,vit1}. As earlier scanline algorithms, only non-vertical
edges are considered. An edge {(z1,¥1), (2,y2)} is, FORWARD
when x1 < z2, and BACKWARD when x1 > x».

s, [00]
Polygon mask [01]

€, (Forward Edge)
s, [01]
(x15, ¥15) 3 Polygon mask [10]

(x1s, y1s)

s, [11]

s, [01]

y S, [00]

(xle, yle)
€, (Backward Edge) (x2e, y2e)

Figure 4: Edges Figure 5: Scanline intervals

3.1 Edge Pair

It can be proved that each pair of adjacent edges ' (e1, e2) of
a polygon forms an edge pair from the following three mu-
tually exclusive categories: starting edge pair, ending edge
pair, and extending edge pair, as in Fig. 6. Adjacent edges
e1, es form, starting edge pair when e; is BACKWARD and
ez is FORWARD; ending edge pair when e; is FORWARD and
e> is BACKWARD; extending edge pair when e; and es are in
the same direction. As their names imply, a starting edge

Starting Edge Pairs

Ending Edge Pairs

Extending Edge Pairs
Figure 6: Edge Pairs

pair (e1, es) specifies that e; and es start from the same
x-coordinate. An ending edge pair (e1, e2) similarly states
that e; and e; end at same x-coordinate. An extending edge
pair (e1, e2) says that es starts from the same x-coordinate
as e; ends. For example, for the first edge pair example
given in Fig. 6, as e, follows ei, differs from e; in direction,
and the direction of e; is BACKWARD, (e1, e2) makes a starting
edge pair.

Each non-vertical edge will be put into two edge pairs, one
with the non-vertical edge ahead of it in the polygon repre-
sentation, one with the one after it. For our purposes, edge
direction is only used while constructing edge pairs. And
once put into an edge pair, a BACKWARD edge e will swap its
starting coordinate and its ending coordinate such that all
edges will have starting x-coordinate smaller than ending
x-coordinate.

3.2 Scanlinelnterval

Scanline intervals at stop point x are non-overlapping in-
tervals formed by edges crossing the scanline at x (Fig. 5).
With scanline intervals, trapezoid detection no longer re-
quires sweeping of two counters along the scanline at each

'Edges separated by vertical edges only are adjacent as well
as the first edge and the last edge of the polygon.

stop point, rather, as we shall see, it simply becomes a by-
product of the processing for scanline intervals at each stop
point.

Each scanline interval maintains its staring x-coordinate,
upper /lower bounding edges, mask value, and for each layer,
the number of polygons on it covering is kept so that lay-
outs with overlapping polygons on the same layer can be
handled correctly. Whenever a polygon on layer ! begins
to cover scanline interval s, the bit on the mask of s corre-
sponding to layer [is set, and the number corresponding to
l gets incremented. Whenever a polygon on layer [ceases to
cover scanline interval s, the number corresponding to [is
decremented, and when this number is 0, the corresponding
bit on the mask is reset.

Shown in the next section, creation and deletion of a scan-
line interval are accomplished through split and merge oper-
ations introduced by edges. Intuitively, when an edge starts,
it splits the scanline interval wherein its starting point re-
sides. When an edge ends, two scanline intervals separated
by it merge.

4. DECOMPOSITIONALGORITHMS
4.1 EdgePairing

Earlier scanline algorithms suffer from not knowing the ef-
fect ranges of events to be processed at each stop point.
Counters have to be swept along the scanline, as while prepar-
ing edges from polygons for scanline processing, much infor-
mation implicit in the polygon representation is lost. From
Fig. 6, we can see that an edge pair (e1, e2) disambiguously
dictates how the polygon coverage of the polygon they be-
long to change before and after the x-coordinate they share,
and the change is confined by e1 and es. Thus, feeding edge
pairs rather than edges to the scanline algorithm, we will
know both the effect ranges of events and mask operation
to be performed for all the scanline intervals within the effect
range of an event.

Algorithm 1. (Edge Pairing)

1 Given adjacent edges (e1,e2)

2 if (e1 and e are in the same direction) then

3 if (e1 is a FORWARD edge) then

4 if (e2 above e;) then

5 Build extending edge pair (e1, e2, —)
6 else

7 Build extending edge pair (e1, e2, +)
8 else

9 if (e2 above e1) then

10 Build extending edge pair (e2, e1, —)
11 else

12 Build extending edge pair (e2, e1, +)
13 if (e; is a BACKWARD edge) then

14 if (e1 below e2) then

15 Build starting edge pair (e1, €2, —)

16 else

17 Build starting edge pair (e2, e1, +)

18 else

19 if (e1 below e2) then

20 Build ending edge pair (e, e2, —)

21 else

22 Build ending edge pair (e, e1, +)

Each edge pair construction takes three parameters, lower
and upper edges in the pair, and an action of either '+’
or ’—’, specifying what operation will be performed on the
polygon coverages of scanline intervals enclosed by those two
edges when this edge pair is to be processed. For example,
for the first starting edge pair in Fig. 6, as e; is above e,
+ is passed to the starting edge pair construction routine.
It can be seen from the figure that polygon coverage to the
right of the stop point is incremented comparing to the left
of the stop point. Each kind of edge pair also has its own
processing method,

Algorithm 2. (Ending Edge Pair Processing)

—_

Given ending edge pair (e1, e2, a).

Update all scanline intervals between e; and es with
action a.

3 Merge scanline intervals separated by e: and es.

V]

Algorithm 3. (Starting Edge Pair Processing)

1 Given starting edge pair (e1, e2, a).

2 Find scanline intervals s1, s2, where starting points
of e; and e, reside.

3 Split s1 with e1, s2 with es.

4 Insert new scanline intervals into the scanline.

5 Update all scanline intervals between e; and e> with

action a.

Algorithm 4. (Ezxtending Edge Pair Processing)

1 Given extending edge pair (e1, e2).

2 Find scanline intervals s» where starting point of e
resides.

3 Split s2 with es.

4 Update all scanline intervals between e; and e2 with

action a.
5 Merge scanline intervals separated by e;.

To make our scanline algorithm work for arbitrary layouts,
many technical details have to be considered. In the follow-
ing subsections, we present some of the significant issues.
Others such as handling for edge crossing at ending points,
handling for edges with common segments are omitted for
bervity.

4.2 Crossing EdgesHandling

To avoid computing unnecessary crossing points, only edges
bounding the same scanline interval in the current scanline
are checked for crossing points. Thus, only when either one
of the bounding edges of a scanline interval changes, will a
crossing point be calculated.

Before processing a point where edges cross, we construct a
list of edges crossing it in top to bottom order from head
to tail. Edges with higher slopes are at the tail while those
with lower slopes are at the head. Notice that, after this stop
point, the list of edges in top to bottom order will be ex-
actly the reverse of the list before this stop point. Edges with
lower slopes will be at the tail while those with higher slopes
will be at the head. Meanwhile, scanline intervals affected
by an edge e’s crossing this point are those lower bounded
by edges in the list before the processing between e’s origi-
nal position (exclusive) and e’s position after the processing
(inclusive). For example, in Fig. 7. The list before the pro-
cessing in top to bottom order is {e1, e, e3}. The list after

Figure 7: Changes of scanline intervals over crossing point

the processing in top to bottom order is {es,e2,e1}. Scan-
line intervals affected by ei’s crossing this point are those
scanline intervals lower bounded by e» and e3. Ase; changes
from element #1 to element #3, the scanline intervals af-
fected are lower bounded by element #2 and element #3 in
the list before the processing.

However, as scanline intervals split and merge, an edge may
not remain a lower/upper bounding edge of one scanline
interval all the time. Therefore it may register at one stop
point as lower/upper crossing edge more than once. For
example, edges e; and e3 in Fig. 7, the crossing edge pair of
(e1, e3) registered at stop point z1 should be substituted by
crossing edge pairs (e1, e2) and (e2, e3) at stop point z2. Or
alternatively, they can be easily ignored while constructing
the descending slope edge list for edges crossing at this stop
point.

Algorithm 5. (Crossing Edges)

1 Given n edges crossing the same point

2 Construct list of these n edges in ascending slope

3 fori«+1to|%] do

4 for j<i+1ton—1ido

5 if (e; is a FORWARD edge) then

6 Increment coverage to scanline interval
lower bounded by e;.

7 else

8 Decrement coverage to scanline interval
lower bounded by e;.

9 if (en—; is a FORWARD edge) then

10 Decrement coverage to scanline interval
lower bounded by e;

11 else

12 Increment coverage to scanline interval
lower bounded by e;

13 done

14 e; and en—; switch their positions in the list.

15 Calculate crossing points for scanline intervals

with either e; or e,—; as a bounding edge.
16 done

4.3 Trapezoid Detection and Generation
During the processing of a stop point, new scanline intervals
may be introduced and old scanline intervals may cease to
exist. The following arrangements are made to tackle these
cases:

1. Before processing at a stop point, preserve images of
all scanline intervals 2.

2By making a scanline interval and its image share data,
this image making requires minimal time and memory.

2. Newly created scanline interval shares the image of the
scanline interval it splits.

3. Scanline interval ceasing to exist checks its mask against
that of its image before merges with another scanline
interval.

Intuitively, trapezoid detection is accomplished by realizing
that when the mask of a scanline interval changes from that
of its image after a stop point processing, a trapezoid has
to be generated. A good example of our processing arrange-
ment is shown in Fig. 8 where all polygons are on the same
layer. At z2, eo spilts s12, no trapezoid is to be generated,
as after the split, s22 and s23 ® are both covered by polygons
just as s12. At x3, due to e1, s21 and s22 merge into ssi,
and ss2 changes from with polygon coverage to s3; with no
polygon coverage. Thus, a trapezoid has to be generated,
and scanline interval image s22 of s3; is singled out as the
seed for trapezoid generation.

LSyl Sy [0]

el SaE 1 sal

Szl el

Syl '
Sgolol | Sip Syl Sso 01
Sg3l21 e,

Syt

Syl ! Szl

LSl L Sl Saslol L Sl

X X, X3 Xy X5

T

Ts
T

T

Figure 8: Trapezoid detection and generation

The above arrangements handle Manhattan geometries ade-
quately. However, in case of crossing edges, more processing
is needed. First of all, the scanline interval lower bounded by
e after the processing has to take the image created for the
scanline interval lower bounded by e before the processing.
Second, a scanline interval is separated from its image by
other scanline intervals and other scanline interval images.
For example, in Fig. 7, s3 after the processing is separated
from its image by scanline interval s4 and the image taken
for sy before the processing 4. Finally, it should be real-
ized that only when there isn’t an edge bisecting all scanline
intervals and scanline interval images involved at this cross-
ing point such that those above it have the same mask, and
those below it has the same mask, do we need to generate
trapezoids. As the algorithm handling this takes the points
we made above literally, we omit its pseudo code here.

To minimize the number of trapezoids generated, each trape-
zoid generated is made as tall as possible. A trapezoid is
generated from a sequence of scanline interval images shar-
ing the same mask value if one of them has been picked
out during the processing of this stop point as a seed for
trapezoid generation.

3Also s24 due to split from es (starting pairing edge of es).
“Image taken for sy before the processing is the image for
scanline interval s» after the processing, as they are both
lower bounded by edge e;.

Algorithm 6. (Trapezoid Generation)

1 Given sorted list of scanline interval images.
2 Generate trapezoids from seeded scanline intervals with
neighboring same-mask scanline intervals.

Sorted scanline interval images are passed in step 1 to fa-
cilitate the integrated corner stitching algorithms presented
later on. By passing an ascending list of scanline intervals,
we can make sure that lower trapezoids are generated before
upper trapezoids.

5. EXTENDING CORNER STITCHES TO
TRAPEZOIDS

Marple et al. [4] extend corner stitch definitions [5] to trape-
zoids °. However, the extension is incorrect, as left and right
neighbor iterations fail under certain circumstances. We de-

x|
T LB

RT

Figure 9: Marple’s definition
of corner stitches can result

in incorrect left and right Figure 10: Our definition of
neighbor iterations. corner stitches

fine the corner stitches of a trapezoid T as,

BL points to the bottom-most trapezoid ¢ overlapping T"’s
left edge or containing lower left point of 7" if T and ¢
are lower bounded by the same edge.

LB points to the left-most bottom trapezoid whose top edge
shares a segment of T’s bottom edge.

TR points to the top-most trapezoid ¢t overlapping T”s right
edge or containing upper right point of T if T and ¢
are upper bounded by the same edge.

RT points to the right-most top trapezoid whose bottom
edge shares a segment of T’s top edge.

Though the definitions are somewhat complicated. They are
easily and intuitively integrated in our edge based scanline
algorithm 6 | and take O(1) time in average for each corner
stitch assignment. We use t — Il to denote lower left point
of ¢, t —ur upper right point of ¢.

5.1 Bottom-most Left Stitch - BL

As trapezoids are generated from left to right, BL of a trape-
zoid can be assigned by the time it is being generated. Each
scanline interval maintains BL pointing to the appropriate
trapezoid, and is updated as,

5In [4], trapezoids are defined as with 2 horizontal parallel
edges, with either one of them can degenerate into a single
point.

SWith appropriate assignments of scanline interval images
to scanline intervals, as well as edge merging. Omitted here
for brevity.

Figure 11: BL Figure 12: TR Figure 13: LB Figure 14: RT

1. when scanline intervals merge, BL of the merged scan-
line interval assumes the value of BL of the lower scan-
line interval.

2. when a scanline interval splits, BL’s of both generated
scanline interval assume BL of the one being split.

This, nevertheless, may render BL not pointing a trapezoid
lower than what it should be after several merges and splits
(Fig. 11). However, we can prove that no matter what se-
quence of merges and splits a scanline interval undergoes,
its BL will never be pointing to a trapezoid above the one
it should, and thus, the right trapezoid its BL should be
pointing to could be found by following the RT’s.

Algorithm 7. (BL Assignment)

—_

Given bottom-most scanline interval s constituting
a trapezoid
while (s—BL) do
if (s —BL contains s —1l) then
return (s —BL)
else
(s—BL) < (s—BL—RT)

N OO W

done

It is not possible for s —BL to be NIL through RT following,
as every point on the left edge of s must be on the right
edge of a trapezoid — trapezoids just cannot enclose, and
thus make a scanline interval landlocked.

5.2 Top-most Right Stitch - Tr

By the time, a trapezoid is generated, there is no way we can
tell what its TR is, as to the right of the scanline are scanline
intervals not trapezoids. Thus, we have to rely on trapezoids
generated to its right to notify it of its TR’s availability.

Algorithm 8. (TR Assignment)

Given trapezoid T just generated
t + (T'—BL)
while (T contains ¢t —ur) do
(t—=TR) « T
t < (t—RT)
done

TR W N

For the same reason explain for BL tracking, it is not possible
for ¢ to be NIL through RT following as well.

5.3 Left-most Bottom Stitch - LB

As our scanline algorithm scans from left to right, as soon
as the first trapezoid is generated below a scanline interval
s, the trapezoid to be generated from this s must have that
first trapezoid as LB.

Algorithm 9. (LB Assignment)

1 Given trapezoid T just generated, scanline interval s
immediately above T'

2 if (/(s—LB)) then

3 (s=LB)« T

From Fig. 13, we see that as soon as T4 is generated, LB of
s is assigned, and will not be affected by later generations
Of T2 and Tg.

5.4 Right-most Top Stitch - rr

When a trapezoid T is generated, all trapezoids that should
have T assigned as their RT have been generated. All we
need to do is to go through lower neighbors of T' and assign
accordingly. As for trapezoids bordering T’s lower edge yet
haven’t been generated yet, they shouldn’t have T as their
RT anyway, as they will have larger right x-coordinate than
that of T'.

Algorithm 10. (RT Assignment)

Given trapezoid T just generated.
t + (t—LB)
while (¢) do
(t—RT) « T
t < (t—TR)
done

OO WN

6. COMPLEXITY ANALYSES

6.1 Polygon to Trapezoid Decomposition

Edge pairing takes O(n) time, as it processes each edge in
the layout only once and generates O(n) edge pairs. Pro-
cessing of an starting edge pair or extending edge pair takes
O(logn) time, as scanline intervals are created. Processing
of an ending edge pair, however, takes O(1), as only scan-
line interval merging operation is carried out. For an average
layout, the number of edges crossing at one point is O(1).
Thus crossing edges processing at any point will take O(1)
time. As in the average case [3; 7], at any time, the number
of scanline intervals is O(y/n), and there are O(\/n) stop
points, we have at most O(n) crossing points. To sum up,
our scanline algorithm has a total complexity of O(nlogn).

6.2 Trapezoid Corner Stitching

Each of the corner stitching algorithm is called only once
for each of the trapezoids generated. As in the average
case at any time, the number of scanline intervals is O(y/n),
and there are O(1/n) stop points, we have O(n) trapezoids.
There are four corner stitches for each trapezoid. For every
corner stitch other than BL, every operation is an assignment
for one not previously assigned corner stitch. Operations in
BL assignment are only wasted on split scanline intervals
caused by edges, and there only O(n) edges! Consequently,
BL operation takes O(n) time as well. Thus corner stitching
algorithms have a time complexity of O(n).

From trapezoid corner stitching algorithms, we see that only
the band of trapezoids adjacent to current scanline inter-
vals need to be kept in memory. The expected number of
these resident trapezoids at any time is O(y/n), the same as
the number of scanline intervals at any time. Thus space
complexity of our scanline algorithm with integrated corner
stitching algorithms is O(y/n).

Table 1: Number of trapezoids generated (N), time (T), and
memory (M) usage of our scanline algorithm

Circuit Description N T(s) | M(MB)
cl self 5,630 | 2.75 0.304
c2 cl L overlap c1 | 10,095 | 7.67 | 0.524
c3 cl 5 overlap ¢l | 11,173 | 8.05 0.576
c4 cl slightly off c1 | 12,149 | 9.66 | 0.700

7. EXPERIMENTAL RESULTS

All algorithms given in the paper have been implemented
in roughly 2,000 comment-free C lines. Table 1 shows the
time/memory used by our algorithms for various layouts.
The testing environment is unoptimized gcc-2.8.1 compiled
code running on Sun Ultra-2 with 256 MB of memory.

We take c1, a 45° clockwise rotated copy of a tri-state output
pad layout with 14 layers and 2,016 polygons, and overlap
copies of it onto itself so as to simulate fragmentation. In-
deed the processing time and memory usage increase with
increasing fragmentation. The experimental results corrob-
orate our complexity analysis.

8. CONCLUSION

In summary, we provided a general frame work for poly-
gon to trapezoid decomposition. Our algorithms are more
intuitive and more efficient than earlier algorithms because
of the two data structures, edge pair and scanline interval,
introduced.

9. REFERENCES

[1] J. L. Bentley and T. A. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Transac-
tions on Computing, 6-28(9):643-647, September 1979.

[2] K. W. Chiang, S. Nahar, and C. Y. Lo. Time-efficient
vlsi artwork analysis algorithms in goalie2. IEEE Trans-
actions on Computer-Aided Design, 8(6):640-648, June
1989.

[3] U. Lauther. An o(nlogn) algorithm for boolean mask op-
erations. In 18th Design Automation Conference, pages
555-562, 1981.

[4] D. Marple, M. Smulders, and H. Hegen. Tailor: A
layout system based on trapezoidal corner stitching.
IEEE Transaction on Computer-Aided Design, 9(1):66—
90, January 1990.

[5] J. K. Ousterhout. Corner stitching: A data-structuring
technique for vlsi layout tools. IEEE Transactions
on Computer-Aided Design, CAD-3(1):87-100, January
1984.

[6] W. S. Scott and J. K. Ousterhout. Magic’s circuit ex-
tractor. In 22nd Design Automation Conference, pages
286-292, 1985.

[7] N. P. van der Meijs and A. J. van Genderen. An efficient
algorithm for analysis of non-orthogonal layout. In IEEE
International Symposium on Circuits and Systems, pages
47-52, 1989.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

