
SPARTA: Simulation of Physics on a Real-Time Architecture

Benjamin Bishop, Thomas P. Kelliher, Mary Jane Irwin

Department of Computer Science and Engineering

The Pennsylvania State University

University Park, PA 16802

Abstract - In this paper, we discuss hardware accel-
eration for real-time physical modeling that would allow
for realistic virtual environments. Additionally, we pro-
pose algorithms and their architectural implementation
(SPARTA), which is speci�cally tuned for real-time use.
We expect performance orders of magnitude higher than
general-purpose CPUs.

1 Introduction

The goal of the SPARTA project is to accelerate phys-
ical modeling of solid objects through the use of spe-
cialized hardware in order to achieve real-time perfor-
mance. Physical modeling is necessary for creating re-
alistic virtual environments. Using physical modeling,
it is possible to simulate realistic object collision and
deformation. Currently, much of the work in physical
modeling is targeted at the �lm industry. Real-time
physical modeling hardware would enable many addi-
tional applications such as Virtual Reality. Physical
modeling hardware that could operate at much faster
than real-time could also be useful in robotic motion
planning. Such a system could plan movements by con-
sidering large numbers of possible motions looking for
some desired outcome (similar to the way Deep Blue
plays chess [1]).

2 Background

A wide range of techniques exist for physical model-
ing of solid objects [2, 3, 4, 5, 6]. Rigid body tech-
niques [2, 5] tend to be computationally e�cient on gen-
eral purpose CPUs. Since the object is not allowed to

deform, collision detection is the only signi�cant compu-
tational challenge. The disadvantages of this approach
include collision detection performance and inability to
model object deformations.

More general techniques [4, 6] often represent the ob-
ject as a collection of mass points connected by springs.
This approach can yield very visually appealing results,
but spring force computation can be problematic. The
problem is that spring force computations can become
unstable. Previous work [4] advocated the use of com-
plex numerical methods [7] in order to reduce the num-
ber of steps required for spring force computation. The
disadvantages of this approach include spring force com-
putation performance and collision detection performance.

3 The SPARTA project

Currently, we are developing an FPGA-based proof-
of-concept coprocessor accelerator board. This section
gives details about the algorithms in use. We also dis-
cuss the advantages of SPARTA over general purpose
CPUs and address the shortcomings of an FPGA-based
approach.

3.1 Algorithms

We have selected the Mass-Spring model for use in SPARTA.
Mass-Spring systems allow for modeling of many mate-
rials (jello, metal, cloth, stone, etc.). In addition, large
numbers of simple spring force computations can be
performed e�ciently in hardware. Note that this \many
simple steps" method is a di�erent approach then pre-
vious work. We expect that this method will be easier
to implement in hardware.

Overview
The type of computations performed in the Mass-Spring
model can be broken down into two types: spring force
computation and collision detection/resolution. These
two types have very di�erent computational require-



ments. Collision detection/resolution is very compu-
tationally intensive. In spite of large speedups due to
early exiting, our initial simulations on an x86 show that
collision detection/resolution is about 30 times slower
than a single spring force computation. The following
pseudo-code is a simple high-level outline of the algo-
rithms used:

/* Spring step */

for every object

for every spring

find force due to displacement from resting

-length

increment velocity of both points

find force due to damping

increment velocity of both points

/* Collision detection/resolution step*/

for every pair of objects

if bounding boxes intersect

for every face in object1 and line segment

-in object2

if bounding boxes intersect

find face-line intersection

if intersection is on the line segment

-and intersection is on face

fix velocities

Collision detection/resolution
One of the main problems in collision detection is the
computational cost of checking every object against ev-
ery other object for collisions (N2 object checks). How-
ever, this problem can be solved e�ciently [8] for larger
Ns. After the initial check, only the objects which have
overlapping bounding boxes must be checked for colli-
sions.

In the most simple form of low-level collision detec-
tion, points of one object are checked to see if they
lie within another object. This method can be imple-
mented very e�ciently if all objects are assumed to be
convex. Each point of the �rst object is checked against
all planes formed by faces of the second object. If the
point is \below" all planes, then a collision has occurred.
This scheme is not feasible for SPARTA, since it is not
possible to guarantee that deformable objects are con-
vex.

For collision detection in SPARTA, we de�ne line
segments which are internal to each object. Our algo-
rithm simply �nds the point of intersection between line
segments of one object and faces of the other object. It
then does a bounding check to determine if the point of
intersection is on the line segment and on the face.

Collision resolution is achieved by averaging velocity
of the nearest line segment point and face points along
the face normal. Friction can be modeled by modifying
the velocity not along the face normal. Using the aver-
age velocity of the face to approximate the face veloc-
ity at the collision point can cause problems for sparse
models.

Spring force computation
The goal of spring force computation is to determine the
velocity increments (instantaneous forces) on points due
to spring compression/ decompression. Spring force [9]
can be computed as in the following equation:

F =-kd-bv

where F is the spring force, k is the spring constant
(sti�ness), d is the displacement, b is the damping con-
stant, and v is the relative velocity along the spring.
The bending of metal can be modeled by adjusting the
ideal resting length of the spring. Breakable objects can
be modeled by reseting sti�ness and damping parame-
ters if a spring exceeds a certain length.

The main problem in spring force computation is
instability. Instability is due to the use of a discrete
model to approximate a continuous system. Instability
occurs when the velocity increment at each step over-
compensates for spring compression/decompression at
the previous step. This instability can be controlled by
adjusting the step size and object sti�ness.

3.2 CPU-based Implementation

We have developed a CPU-based physical modeling ap-
plication based on the algorithms discussed above. Fig-
ures 3-6 show a physical modeling simulation of sti� and
deformable blocks. Figures 7-10 show a demonstration
of friction modeling. Figures 11-14 show modeling of
a broken plate using breakable inter-object springs. In
each simulation four snapshots were taken from 400 sim-
ulated frames. Source code and MPEG demo movies



for the CPU-based implementation can be found at
http://www.cse.psu.edu/~mdl/sparta.

3.3 Ideal SPARTA Implementation

The philosophy of the SPARTA architecture is to trans-
late the high-level functions required for spring force
computation and collision detection/resolution into hard-
ware. Since the same complex operations are being per-
formed many times, a pipelined organization is ideal.
Figure 1 shows a block diagram of the Ideal SPARTA
Implementation. This is a single chip ASIC implemen-
tation. Separate specialized pipelines are used for spring
force computation and collision detection/resolution. An
additional unit is required to perform object bound-
ing box checking. A specialized, small, on-chip, high
speed, high bandwidth SRAM memory is used to feed
the pipelines. The control logic controls the pipeline
operation and interfaces to the host CPU.

Memory

Pipe

Spring

Detection/Resolution

Collision 

Pipe

Control

Bound.
Box

Figure 1: Ideal SPARTA Implementation

3.4 Why SPARTA over general purpose pro-

cessors?

3dnow! and KNI [10, 11] are enhancements to general-
purpose CPUs by AMD and Intel respectively. These
enhancements o�er more FLOPS through the use of
SIMD oating point units. This subsection presents an
argument as to why SPARTA would greatly exceed the
performance o�ered by these enhancements.

1. Memory Organization: SPARTA only needs to
store a small amount of information per object. This in-
cludes point positions, point velocities, spring informa-
tion, and face information. This information could �t
onto an on-chip SRAM, allowing for very high speed/high
bandwidth access. We expect the SPARTA collision de-
tection/resolution pipeline to require a large databus
to on-chip memory. Additionally, intermediate values
would be passed through the pipeline eliminating the
need to store them in memory (as in general purpose
processors).

2. Area Utilization: In a general-purpose processor,
chip area is not well utilized during physical modeling
computations. There is a great deal of area devoted to
integer computation, instruction decoding, branching,
etc.

In an ideal SPARTA implementation, the entire spring
force computation and collision detection/resolution pro-
cesses could be pipelined. The whole chip could be de-
voted to oating point units and memory.

3. Bus Bottleneck: In a general-purpose CPU, a bot-
tleneck exists between the CPU and graphics hardware.
SPARTA could avoid this bottleneck since it could be
integrated directly with the graphics hardware.

4. Time Utilization: General-purpose CPUs cannot
dedicate all of their resources to physical modeling. The
CPU must also deal with operating system overhead,
input processing, sound processing, etc.

5. Flexible Precision: The oating point hardware
on a general-purpose CPU must usually be at least
IEEE single precision. In SPARTA, it may be possible
to reduce this precision in order to speed computation.

6. Implementation Risk/Time: General purpose



CPUs are much more complex than the SPARTA de-
sign. The simplicity of the SPARTA design could lead
to low-risk implementations with fast time-to-market.

3.5 Proof-of-concept Implementation

In order to show that physical modeling performance
improvements are possible through the use of special-
ized hardware, a proof-of-concept implementation of
SPARTA is being constructed. For this implementa-
tion, an Altera EPF10K250 FPGA [12] is being used in
conjunction with a custom board and specialized mem-
ory. An FPGA implementation was selected in order
to minimize design time. An FPGA-based implementa-
tion presents some problems, however. It is very di�-
cult to implement barrel shifters (due to FPGA routing
problems), which leads to high area and low perfor-
mance for normalization steps in oating point opera-
tions. Additionally, it is impossible to implement the
full collision detection/resolution and spring force cal-
culation pipelines in hardware due to area constraints
on the FPGA.

For the FPGA implementation, it is di�cult to ad-
dress the problem of ine�cient oating point units, how-
ever a precision reduction may help to reduce perfor-
mance/area losses. As for the problem of FPGA den-
sity, we plan to implement only the spring force com-
putation pipeline (collision/detection resolution will be
handled by the host CPU or an on-board coprocessor).
The spring force computation pipeline was chosen since
it is smaller. Figure 2 shows a block diagram of the
planned FPGA organization.

4 Future Work

The eventual goal of the SPARTA project is to develop
a physical modeling ASIC, which is orders of magnitude
faster than current processors. We would like to begin
work on the ASIC implementation as soon as the FPGA
implementation is realized.

Additionally, we are developing a public-domain phys-
ical modeling package which is based on the SPARTA
algorithms.

Inter-
face

Mem
Spring

Pipe Control

Interface
Host

Figure 2: FPGA SPARTA Implementation

REFERENCES

[1] C. Tan, F. Hsu, M. Campbell, J. Hoane, G. Brody,
\Deep Blue"
http://www.research.ibm.com/deepblue
http://www.research.ibm.com/resources/magazine/
1996/issue 1/news196.html

[2] W. Armstrong, M. Green, \The dynamics of artic-
ulated rigid bodies for purposes of animation", The
visual computer, Springer-Verlag, 1985.

[3] A. Witkin, W. Welch, \Fast Animation and Control
of Nonrigid Structures", Computer Graphics, Vol.
24, No. 4, August 1990.

[4] D. Bara�, A. Witkin, \Large Steps in Cloth Simu-
lation", Computer Graphics Proceedings, July 1998.

[5] D. Bara�, \Fast Contact Force Computation for
Nonpenetrating Rigid Bodies", Computer Graphics
Proceedings, July 1994.

[6] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer,
\Elastically Deformable Models", Computer Graph-
ics, Vol. 21, No. 4, July 1987.

[7] W. Press, B. Flannery, S. Teukolsky, W. Vetterling,



Numerical Recipes, Cambridge University Press,
1986.

[8] M.lin, S. Gottschalk, \Collision Detection between
Geometric Models: A Survey", Proc. IMA Confer-
ence on Mathematics and Surfaces, 1998.

[9] D. Halliday, R. Resnick, J. Walker, Fundamentals of
Physics, John Wiley and Sons, 1997.

[10] \Inside 3DNow! Technology"
http://www.amd.com/products/cpg/k623d/inside3d.html

[11] \Discover the New PentiumIII Processor"
http://developer.intel.com/design/PentiumIII/prodbref/

[12] \FLEX 10K Device Family"
http://www.altera.com/html/products/f10k.html

Figure 3: Jello - Frame 1

Figure 4: Jello - Frame 2

Figure 5: Jello - Frame 3

Figure 6: Jello - Frame 4



Figure 7: Friction - Frame 1

Figure 8: Friction - Frame 2

Figure 9: Friction - Frame 3

Figure 10: Friction - Frame 4

Figure 11: Plate - Frame 1

Figure 12: Plate - Frame 2

Figure 13: Plate - Frame 3

Figure 14: Plate - Frame 4


	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


