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Abstract

In this paper we present a novel and fast estimation technique
that produces tight latency lower bounds for Data Flow Graphs
representing time critical segments of the application of interest.
Our proposed technique can be used to compute a tighter earliest
scheduling step for nodes (operations) in the Data Flow Graph and
thus be used to improve the result quality of any technique requiring
the computation of suchASAP values.

1 Introduction

In many CAD applications scheduling appears as a sub-problem –
in High-Level Synthesis, for example, one is concerned with the
generation of an RTL specification that best meets performance,
area, and other constraints. Since the scheduling problem is NP-
Complete,[1] the ability to generate tight lower-bounds on perfor-
mance (i.e., latency) is important – it indicates, for instance, how
far results produced by heuristic algorithms (i.e., upper bound esti-
mates) might be from the optimum schedule. This paper presents
a novel lower bound technique that produces tight latency lower
bounds and outperforms the results produced by state-of-the-art ap-
proaches, such as the one reported in [5], when applied to a number
of benchmark examples. The worst case complexity of the pro-
posed technique isO(n2), wheren is the number of operations in
the application. Our method can handle multi-cycle and pipelined
functional units.

2 Previous Work

In Rim and Jain,[4] an Integer Linear Programming (ILP) formu-
lation relaxation of the general scheduling problem is proposed for
generating performance estimates under resource constraints. The
relaxation is based on the fact that each operationi in a DFG can-
not start before time-stepASAP(i) and should not start later than
C � (c � ALAP(i)), whereC is the number of control steps to
minimize, andc is the critical path in the graph. The problem is
decomposed into several sub-problems (one for each type of re-
source) and since they are solved independently, the bound result-
ing from the maximum taken over all sub-problems will provide a
lower-bound to the original problem. An algorithm similar to list
scheduling is proposed where the priority function is the increasing
ALAP values of the operations. The complexity of the algorithm
isO(n+ cC), wheren is the number of nodes in the DFG. Exper-
imental results demonstrate the superiority of this technique over
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other methods. However, one can find simple DFGs where this ap-
proach produces poor results.

A recursive technique with complexityO(n2 + nc2) was pro-
posed by Langerin and Cerny [2] for lower bound performance es-
timation. Langerin and Cerny’s algorithm applies recursively the
lower-bound algorithm of Rim and Jain to each node in the DFG
(as for computing theASAP), and then determines the lower bound
performance of the complete schedule, again using Rim and Jain al-
gorithm.

Tiruvuri and Chung [5] proposed yet another lower-bound tech-
nique which is based on the fact that operations can fall into three
non-overlapping intervals: (a) operations that can be completed by
cycle i; (b) operations that can be completed in the lastj cycles;
and (c) operations that should be scheduled between cyclesi and
j. This subdivision is based on theASAP andALAP values com-
puted for each operation. By scanning all possiblei and j such
that i + j � c, they compute the number of cyclesh necessary
to perform the operations of a particular type in the (c) interval –
this number is obtained by dividing the number of operations in
that interval by the number of available resources for that type. The
lower-bound is defined as the maximum value ofi+h+j among all
types of operations. The complexity of the lower-bound estimator
for an entire DFG isO(n + c2).

Rabay and Potkonjak [3] presented a survey on lower and upper
bound estimation techniques and a thorough motivation for com-
puting tight bounds. Most of the surveyed estimates depend on
pre-computed values for theASAP andALAP time steps of each
operation in the data flow graph. Indeed, most of the lower bounds
found in the literature use such values to create a relaxed version of
the scheduling problem. It follows that, by improving the estimate
on the interval window in which an operation can be scheduled, one
has the potential to improve any such lower bounds. So, in addition
to its intrinsic value, our technique can be used in conjunction with
any such lower bound estimates to improve their quality.

3 Lower Bound for Performance

A dataflow graph will be modeled by a directed acyclic graph,
G(I;E), where nodesI represent operations to be carried out on
functional resources, and edgesE represent data dependency be-
tween operations. A nodei 2 I of typeo 2 O has its delay denoted
by l(o) and the data introduction interval denoted bylp(o), in case
the resources that can implementi are pipelined. If operationi is
carried out in non-pipelined resources, the functionlp(o) is defined
as zero. For simplicity, we writel(o) = l(node type(i)) = l(i) if
nodei is of typeo.

We now start the derivation of our lower bound on performance.
The intuition behind our new lower bound, now on referred to as
TASAP, is based on the simple fact that an operationi in the DFG
can only start executing after all other operations in whichi de-
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Figure 1:ASAP andTASAP values for a simple DFG, assuming
a datapath with one adder and one multiplier, both taking one cycle

pends have terminated. We can write a recursive definition for the
TASAP as follows:

TASAP(i) =

�
1; if prec(i) = fsourceg
max

�
max(h;i)2E(TASAP(h) + l(h)); p(i)

	
; otherwise

(1)

wherep(i) is a lower bound on the time necessary to finish execut-
ing all operations that precedei andprec(i) is the set of immediate
predecessors of nodei.

The question that follows is how to compute the termp(i) of
Equation 1. One simple approach would be to count the number
of operations of each typeo, divide it by the number of available
resources of typeo, and finally multiply it by the latency required
to execute one operation of typeo. We could then assign top(i)
the greatest value obtained among all the operations types. More
formally:

p(i) = max
o2O
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0; if k(i; o) � 0l
k(i;o)

resource count(o)

m
lp(o) + l(o) � lp(o); if lp(o) 6= 0l

k(i;o)
resource count(o)

m
l(o); otherwise.

(2)

whereresource count(o) is the number of resources of typeo and
k(i; o) is the number of nodes of typeo that precedes nodei.

Equation 1 together with 2 is already an improvement over the
traditionalASAP and can be computed inO(n). Figure 1 shows a
DFG and the improvement that one can obtain over the traditional
ASAP for each node in the graph.

As discussed in the sequel, Equation 2 can still be improved, so
as to better deal with cases where nodes of a given type are con-
centrated in different temporal time windows. The key observation
is that when a large number of nodes (more than the number of
available resources) are potentially ready to execute around a given
clock stepclk, the lower boundp(i) would naturally (and mistak-
enly) assume that the execution of the nodes can be distributed from
the first clock step. Our goal is to generate ap(i) that properly dis-
tributes the operations in the interval defined byclk and the current
step, i.e., the step at which nodei can be scheduled.

We now discuss how to improve the quality ofp(i) by looking at
successive time windows defined by theTASAP of all nodes that
precedei. Given theTASAP for all nodes that precede nodei, our
algorithm to computep(i) examines the distribution of the nodes
of a particular type in various temporal windows of different sizes.
For instance, if the maximumTASAP of the immediate predeces-
sors of nodei is equaly cycles, one needs to examiney temporal
windows for concentration of operations, as shown in Table 1.

Figure 2 shows the visual interpretation of the interval windows.
The horizontal doted lines delineate they possible windows inter-
vals in which predecessor nodes ofi can be scheduled for execution.
For the sake of illustration, and without loss of generality, we as-
sume that the in degree ofi is two, beingi1 andi2 its predecessors,
and thatTASAP(i1) � TASAP(i2) = y.

[1 to y]
[2 to y]
: : :
[y � 2 to y]
[y � 1 to y]
[y to y]

Table 1: Temporal windows

For each of such intervals, we count the numberk(i; o; x; y) of
nodes of typeo that precedes nodei that can potentially be started
in the interval window defined byx andy. Since nodei cannot
start until all nodes in any of these windows have completed exe-
cution, and allk(i; o; x; y) nodes in each window[x to y] cannot
start before control stepx, it follows that nodei cannot start before�
x+

l
k(i;o;x;y)

resource count(o)

m
l(o)

�
. If we compute this for all typeo of

operations and pick the greatest value, we have a lower bound on
the start of nodei. Note that it is not necessary to look at all com-
binations for the values ofx andy, because some interval windows
combinations dominate others. This is so because the dominated in-
terval windows (those not listed in Table 1) cannot have more nodes
than any of the windows listed in Table 1. The following equation
formalizes this new lower boundp(i):

p(i)=max
o2O

max
1�x�y
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0; if k(i; o) � 0l
k(i;o;x;y)

resource count(o)

m
lp(o) + l(o) � lp(o); if lp(o) 6=0l

k(i;o;x;y)
resource count(o)

m
l(o); otherwise.

(3)

wherey is the greatestTASAP for the predecessors of nodei and
k(i; o; x; y) is the number of nodesi0 of typeo that precedei such
thatx � TASAP(i0) � y.

As it should be expected, the tighter lower bound corresponds
always top(i) computed with Equation 3. In Figure 3 we show a
comparison of theASAP and theTASAP computed withp(i) of
Equations 2 and 3. For this example, while the plainASAP leads
to a bound of 12 cycles, the improved bound computed with Equa-
tion 3 is of 18 cycles. If DFGs contain several windows with high
concentration of a particular type of operation (as the one shown
in Figure 3), the proposed bound will lead to a chain of cumulative
improvements overASAP.

We have developed an efficient algorithm to compute Equation 3
recursively with Equation 1.(see Algorithm 1) For each nodei we
define a matrixq(i; x; o) as the set of all predecessors nodes ofi
that can start at interval window starting atx. Initially, all elements
in q(i; x; o) are set to empty sets. Lines 1 to 6 compute Equation 1.
Lines 7 to 11 computeq(i; x; o) for each nodei. Equation 3 is com-
puted on lines 15 to 20. Lines 11 to 23 determine the concentration
of operations in the several windows.

The overall complexity of Algorithm 1 isO(n2), wheren is
the number of nodes in the DFG. Lines 1 to 10 have three nested
loops – this gives a worst case time complexity ofO(e� n� jOj),

i

[1 to y]
[2 to y]

[y to y]

i1
i2

Figure 2: Pictorial description of interval windows
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Figure 3:ASAP andTASAP computed with Equations 2 and 3.
It is assumed one datapath with one adder and one multiplier, both
taking one cycle

wheree is the upper bound on the in-degree of nodes andjOj is
the number of different operation types in the DFG. Lines 11 to 23
have quadratic complexity ofO(n�jOj). The recursion introduces
a multiplication factor ofn, giving a total complexity ofO(e �
n2 � jOj + n2 � jOj) for the entire DFG. Sincee and jOj are
generally bounded by small constants, the worst case complexity of
the algorithm can be rewritten asO(n2).

The proof that Algorithm 1 computes a valid lower bound is
given by the following theorem:

Theorem 3.1 Given a DFGG(I; E) and a nodei 2 I,TASAP(i)
computed with Equations 1 and 3 give a valid lower bound on the
start time of nodei.

Proof If we assume for now that the lower bound on the start time
of a node is given only by Equation 1, it is straight forward the
proof, sinceTASAP(i) = ASAP(i).

We now prove by induction on the size of the interval windows
that p(i) given by Equation 3 is a valid lower bound on the start
time of nodei.

The Base is for the case in which the start and end time of the in-
terval windows are smaller or equal to one, i.e., all windows[x to y]
such thatx � 1 andy � 1. There is just one window in which the
start and end time is smaller or equal to one:[1 to 1]. For this
interval window, we determine all nodes inG of a particular type
o that can be scheduled at this window, i.e., all nodesi0 such that
1 � TASAP(i0) � 1. Given this number and the number of avail-
able resources of typeo, Equation 3 does produce a valid lower
bound for windows wherex; y � 1:

p(i) = max
o2O
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0; if k(i; o) � 0l
k(i;o;1;1)

resource count(o)

m
lp(o) + l(o) � lp(o); if lp(o) 6= 0l

k(i;o;1;1)
resource count(o)

m
l(o); otherwise.

(4)

Our Induction Hypothesis is that Equation 3 provides a valid
lower bound on the start time of a nodei if one considers only
the interval windows[x to y] such thatx; y � m � 1, i.e., win-
dows [1 to m � 1], [2 to m � 1], : : : , [m � 2 to m � 1], and
[m� 1 tom � 1], since all other windows are dominated by these

Algorithm 1: Tighter ASAP
Input: A DFGG(I; E) and a nodei.
Output: The lower bound on the start of nodei
TASAP(G(I;E); i 2 I)

1. if pred(i) = source
2. return 1
3. else
4. lb 0
5. foreach ip such that(ip; i) 2 E

6. lb max(lb; TASAP(G;ip)+l(ip))
7. q(i;TASAP(G;ip);node type(ip))  

q(i;TASAP(G;ip);node type(ip)) [ fipg
8. for x = 1 to x �TASAP(G;ip)
9. foreach o 2 O

10. q(i; x; o) q(i; x; o) [ q(ip; x; o)
11. foreach o 2 O

12. k  0; intervalBegin 1
13. for x = 1 to x � lb

14. k k + jq(i; x; o)j
15. if k = 0
16. tmp 0
17. else iflp(i) 6= 0

18. tmp  
l

k
resource count(o)

m
lp(i) + l(i) � lp(i) +

intervalBegin

19. else
20. tmp 

l
k

resource count(o)

m
l(i) + intervalBegin

21. if tmp < x

22. k 0; intervalBegin x+ 1
23. lb max(lb; tmp)
24. return lb

(see Table 1). The Induction Hypothesis does address all nodes with
TASAP � m� 1.

In the Induction Step we have to prove that for windows[x to y]
such thatx; y � m, Equation 3 holds. In order to prove the In-
duction Step we have to show that: (1) there is a valid expansion
of them � 1 windows of the induction hypothesis to accommo-
date nodes withTASAP = m; and (2) the new interval[m to m]
also provides a valid lower bound. By addressing case (1) and (2),
we create the set of interval windows shown in Table 1. To prove
(1), note thatk(i; o; x;m) = k(i; o; x;m � 1) + jM j, whereM
is the set of all nodes such thatTASAP = m. Thus, the expan-
sion of interval[x to m � 1] to [x to m] is a trivial process that
can only improve the quality of the bound (because now we have
the chance to consider more nodes that can be scheduled beforem,
i.e.,k(i; o; x;m) = k(i; o; x;m� 1) + jM j). The added factor of
jM j does not harm the lower bound validity because the inclusion
of the nodes inM into the setk(i; o; x;m�1) is in fact a relaxation
on the start time of the nodes inM . To prove (2) is trivial, since all
nodes inM cannot start before clock cyclem. Since the nodes in
M precede nodei, the time necessary to execute the nodes in the
window [m tom], added to the cycle they can start (i.e., cyclem),
is a valid lower bound. Thus, the lower bound on a nodei can be
computed with Equation 3. 2

4 Results

We have implemented ours and the algorithms in [5] so as to com-
pare the quality of the produced results. The lower bound in [5] ex-
hibits the same time complexity of our algorithm and has for most
cases produced results superior to those of previous approaches,
being thus representative of the state-of-the-art in this area. We
considered several benchmark DFGs. For each DFG we considered
several data-paths varying on number of resources, resource delays,
and pipelining options.



Table 2 summarizes the results obtained by our algorithm and the
algorithm in [5]. The first column identify the DFG. The second
and third columns indicate the number or adders and multipliers,
respectively. Under the Multiplier Delay column we consider vari-
ous types of multipliers, namely with execution delays of one, two,
and a 2 cycle pipelined implementation. For 41 cases, out of 90,
the bound produced by our algorithm is tighter than the bound pro-
duced by [5] (see entries with an asterisk). In 76 cases our approach
produced equal or better bounds when compared to [5].

5 Conclusions and Future Research

We have presented a simple and efficient technique for computing
lower bound on the completion time of a DFG. The proposed tech-
nique can handle multi-cycle operations and pipelined functional
units. For an entire DFG, our algorithm computes the lower bound
in O(n2), wheren is the number of nodes in the DFG. Because of
the simplicity and speed of the proposed technique, one may use
our technique in conjunction with any other lower bound approach
that usesASAP by substituting it with our proposedTASAP. The
same principle can be used to derive aTALAP.

We are currently investigating an extension to our technique
to contemplate chaining, conditional branches, loops, and pre-
scheduled nodes.
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Multiplier Delay
Resources 1 2 2, pipelined

DFG + � Ours [5] Ours [5] Ours [5]
1 1 10� 9 17 17 11� 10
1 2 10� 9 11� 10 11� 10
1 3 10� 9 11� 10 11� 10
2 1 9 9 17 17 10 10

F
IR

F
ilt

er

2 2 5 6 9 9 7� 6
2 3 5 6 7� 6 7� 6
1 1 10 10 19 19 11 11
1 2 8� 7 9 9 9� 8
1 3 8� 7 9� 8 9� 8
2 1 10 10 19 19 11 11

B
ea

m
fo

rm
in

g
2 2 5 5 9 9 6 6
2 3 5� 4 7 7 6� 5
1 1 9� 7 11� 10 10� 8
1 2 8� 7 9� 8 9� 8
1 3 8� 7 9� 8 9� 8

F
F

T

2 1 6 6 9 10 7 7
2 2 5� 4 6 6 6� 5
2 3 5� 4 6� 5 6� 5
1 1 17 18 33 34 18 19
1 2 14� 13 17 18 15� 14
1 3 14� 13 15� 14 15� 14
2 1 17 18 33 34 18 19

A
R

F
ilt

er

2 2 9 10 17 18 12 12
2 3 9 9 12 12 12 12
1 1 12 12 22� 21 13 13
1 2 9 10 12� 11 11 11
1 3 9 10 11 11 11 11
2 1 12 12 22� 21 13 13
2 2 8 8 12� 11 10 10

A
ve

n
h

o
u

s
F

ilt
er

2 3 8 8 10 10 10 10

Table 2: Comparative results for the proposed and state-of-the-art
Lower Bounds
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