
An Evolutionary Approach To Timing Driven FPGA Placement.

ABSTRACT:

We propose a novel evolutionary approach to the problem of
timing-driven FPGA placement. The method used is evolutionary
programming (EP) with incremental position encoded in the
population. This uses considerably less memory compared to a
method with direct position-encoding for members of the
population. The algorithm has been implemented in C++, and the
results on MCNC benchmark circuits are presented. The results
are superior to those obtained using conventional Simulated
Annealing (SA) based approach. The results of an EP-SA
approach using the proposed evolutionary programming method
are also presented.

1. INTRODUCTION:

FPGAs play an important role in short turn-around time
designs. With increase in their utilisation and with advances in
technology, timing-driven layout and design using FPGAs have
become very important. Conventionally, the issue of timing is
addressed at various phases of design - by reducing the number of
logic levels during synthesis and technology mapping, and by
identifying critical paths and ensuring shorter routing delays for
those paths during routing. In FPGA designs, placement plays a
crucial role, as it directly influences the timing and routability,
primarily because of limited routing resources. Hence the issue of
timing has been sought to be incorporated at the placement phase
of the CAD flow itself, as it is one of the most important stages in
FPGA designs. Timing-driven placement has been studied
extensively [5,6,7,9]. Path-based approaches consider timing
explicitly, in addition to the physical constraints, while in net-
based approaches, the issue of timing is incorporated into a
suitable physical constraint.

In this paper, we propose a new Evolutionary Programming
(EP)-based solution for the placement of modules on island-style
FPGAs. The EP algorithm uses as its members of population,
strings denoting incremental encoding of the block positions. The
incremental encoding saves considerable memory during the
process of evolution. Results obtained with this method are found
to be better than those of simulated annealing (SA)-based
methods. The rest of the paper is organised as follows. Section-2
deals with problem formulation and evolutionary strategies.
Section-3 deals with the proposed algorithm in detail, and section-
4 presents the results on technology-mapped MCNC benchmark
circuits. We conclude this paper in section-5.

2. PROBLEM FORMULATION AND
EVOLUTIONARY STRATEGIES:

The objective of timing-driven placement is to place a set of
logic blocks on the FPGA array structure such that the maximum
delay of the circuit is minimised, satisfying timing criteria on the
nets. We restrict our attention to island-style FPGAs, though the
method proposed can be easily extended to row-based structures
as well. The FPGA consists of an array of logic blocks (LBs) and
routing channels. Each logic block has 4 inputs and an optional
clock. In addition, each LB has two equivalent output pins, and
both of them are available for routing. Each channel is assumed to
have a fixed number of tracks. Also, the channels are assumed to
be unsegmented, each segment spanning the distance of one logic
block. Two IO pads can fit in the space of each LB along the
periphery of the chip. Fig. 1 shows the architecture of the FPGA
considered.

One of the major constraints in incorporating timing
information at the placement stage is the need for accurate delay
estimates. Delay estimation in FPGAs has been addressed in [3].
Traditionally, simulated annealing has gained importance as a
method that can effectively use such reasonable estimates for
constrained optimisation. Genetic Algorithms (GAs) and
Evolutionary Programming are other popular methods that help in
optimisation in a multimodal landscape [2,8]. The main difference
between GA and EP is that EP does not rely on the crossover
operator for evolving solutions [2]. GAs and EP operate on a
family of potential solutions to determine the best of the available
solutions, and continuously improve them. This search method is
directed, and is known to be robust in locating the global optimum
of a multimodal function. Evolutionary approaches to placement
have been addressed in [1,4].

Since multiple iterations (generations) are involved in the
optimisation process, usually the computation of exact delays and
timing-slacks is avoided, and fast estimates are used. We use a
net-based approach, as a path-based approach would be
computationally costly in iterative methods. Details of the
algorithm are provided in the ensuing section.

3. EVOLUTIONARY PLACEMENT:

Each member of the population is indicative of a particular
solution to the problem, which is evaluated. The encoding of the
potential solutions into such member strings, and the definition of
the evolution strategy characterise the evolutionary programming
method. During each generation, a large number of such member
strings are evaluated for suitability, and the best members of the

R. Venkatraman,
Centre for Electronics Design and Technology,

Indian Institute of Science,
Bangalore, India.

e-mail: rvenkat@ieee.org

Lalit M. Patnaik,
Microprocessor Applications Laboratory,

Indian Institute of Science,
Bangalore, India.

e-mail: lalit@micro.iisc.ernet.in

(a) FPGA Structure (b) Routing Architecture

(c) Logic Block Architecture

Fig. 1. Architecture of the FPGA Considered

population are carried over to the next generation using a selection
policy. The resemblance of the evolutionary programming
approach to the natural process of evolution is complete with a
suitable mutation mechanism, wherein small random changes are
made in the evolutionary environment. The evolutionary
environment consists of the population and the conditions under
which the members of the population operate. Small changes in
the environment help in getting out of local minima in a
multimodal setup, so that convergence is only towards the global
minimum.

3.1. The Population:

As mentioned earlier, each member is a string that has a
solution coded into it. A direct method of encoding a solution is to
use the (x,y) co-ordinates of the blocks in the FPGA array that are
occupied by the blocks to be placed. However, this method would
be heavily demanding on memory, as a large number of such
solutions are considered during each generation. To overcome this
constraint, we propose a relative encoding of the positions. During
any particular iteration, a base (reference) placement is considered
for all members of that generation. The initial base placement is a
random one, and is progressively evolved over generations.
During each generation, each logic block is allowed to move to
one of its adjacent (surrounding) positions only. Each member
string is a binary string. Binary strings are known to be efficient in
representing the search space and are easy to be handled by the
evolutionary operators [2,8]. The length of the string is equal to
the number of blocks to be placed, and each bit is associated with

a particular LB. Each bit indicates whether the corresponding
block is to be moved from its present base position or not. If it is
to be moved, a new vacant position from among the adjacent
surrounding blocks is chosen randomly. If no moves are possible,
the blocks are retained in their original positions. A small array is
used to hold the new position assigned for each block,
corresponding to the fittest member of the population of the
present generation. The values in this array are incorporated into
the base position for the subsequent generation. The population is
evolved across generations using a selection operator, and
mutation.

3.2. Fitness Function:

The fitness function is a function of the goodness of each
member. We have incorporated the routing delay and the timing
information of the nets as well as the congestion factor in
evaluating the overall fitness function [3]. The dimensions of the
bounding box for each net and the congestion of the bounded area
are used to compute the delay estimate for each net. Initially, this
information for all the nets is stored, corresponding to the base
placement. This pre-computation reduces the computation
required during each iteration because the delays of only those
nets whose associated blocks are moved have to be recomputed.

Let tn denote the delay computed for each net n, and the
maximum allowed delay be Tn. The fitness function provides a
credit to nets that satisfy timing constraints and imposes a penalty
on those that violate timing requirements. The fitness function is
of the form,

Routing
Channel

IO Pad

Logic
Block

Wire
Segments

Logic
Block

Switch
Block

F(P) = A/(B + C(P)),

where, A and B are constants, P is a placement solution and C(P)
is the cost parameter.

C(P) = Σ ∆ti (P) ,

where ∆ti (P) is defined as,

∆ti (P) = (ti (P) - Ti) * PENALTY / Ti , if ti ≥Ti

 (Ti - ti (P)) * CREDIT / Ti , if ti <Ti

The penalty factor is chosen to be much larger than the credit
factor, so that violations are penalised greatly. Thus, in a given
generation, high fitness strings are those whose corresponding
placements have less violations.

The values of the constants depend on the problem instance
under consideration. The results we present are for A=1000, 10 ≤
B ≤ 20. The penalty and credit factors differ by a factor of 5-10,
and credit is roughly equal to B/10. These values have been found
to be suitable to the benchmark circuits we have worked with.

3.3. The Operators - Selection and Mutation:

The selection process we follow is one of proportional
representation. Only the best strings are carried on to the next
generation, and the number of instances of representation that
each string receives in the next generation depends on the fitness
value. Thus, highly fit strings replicate and find their way into the
next generation. Since the strings in our method are bonded with
the base placement, to maintain the direction of movement that
brought about a better placement, the value of the new position is
also copied to the next generation for each member. However, if a
string is to be replicated, the additional copies get the usual
random movement assignment. Here again, to conserve memory,
only the movement to the adjacent blocks is coded as (-1,0,1) in
both x and y directions.

The process of mutation plays a very crucial role in the
operation of the algorithm. Usually, mutation involves randomly
changing member strings at arbitrary positions, with a small
probability, pMut, so that solutions are not stuck up at local
minima as a result of the proportional selection scheme. However,
this level of mutation is insufficient for our method of
evolutionary programming, as a result of the relative position
encoding used. Such a mutation would result in only very small
disruptions in the evolutionary environment that would be
overshadowed by the proximity to a local minimum. Hence, we
define two other operators operating on the other part of the
environment, namely the base placement on which the members
of the population are defined. These operators are the moves and
the swaps of LBs. During each generation, a small percentage of
blocks (pMov) are moved away from their present position to
other vacant blocks. Also, the positions of a small percentage of
pairs of blocks (pSwp) are swapped. The selection of blocks is at
random. The number of blocks moved and swapped is
progressively reduced over generations, so that better solutions
are more likely to be preserved.

The overall placement algorithm is listed in Fig. 2.

4. RESULTS:

We have implemented the proposed algorithm in C++ in a
Linux environment. We have tested the algorithm on the MCNC
benchmark suite. We have considered various values of the
mutation probability pMut, and found experimentally that for the
benchmark circuits we have used, values between 0.03 and 0.08
give good results. Initially, about 2% of the blocks were moved
and 2% of the blocks were considered for swaps. This number
was progressively decreased with evolution. The population size
we assumed was between 2 to 4 times the number of blocks to be
placed.

Our evolutionary placement algorithm was used to place the
logic blocks, while we used a simulated annealing schedule to
place the IO pads along the periphery of the FPGA chip. The
parameters used for EP for the benchmark circuits are listed in
Table-1.

The input to the placement algorithm was a netlist after SIS
optimisation and technology mapping. The SIS script used for this
purpose is given in Fig. 3.

xl_part_coll -m -g 2 -n 4
xl_coll_ck -n 4
xl_partition -m -n 4
simplify
xl_imp -n 4
speed_up
xl_rl -n 4
xl_partition -t -n 4
xl_cover -e 30 -u 200 -n 4
xl_coll_ck -n 4

Fig. 3. SIS Optimisation and Technology
Mapping Script

Procedure EvolutionaryPlace {
Define random binary strings for the population;
Define random initial placement;
Generation := 0;
While (Generation < MAX_GENERATION) do {

Precompute fitness of base placement;
For each member of the population do

Compute fitness;
Compute the maximum fitness of

the generation;
Change base placement;
Select strings;
Mutate strings;
Move and Swap blocks;
Generation := Generation+1;

}
}

 Fig. 2. The Evolutionary Placement Algorithm

Circuit No. of
Blocks

No. of IO
Pads

No. of
Nets

Array
Size

Population
Size

No. of
Generations

pMut* PSwp* pMov*

5xp1 47 17 54 10 x 10 175 15 0.05 0.02 0.03
b9 61 62 102 10 x 10 200 30 0.07 0.02 0.02
Cc 37 41 58 12 x 12 200 30 0.05 0.02 0.02

Clip 119 14 128 12 x 12 250 15 0.04 0.02 0.02
Comp 52 35 84 10 x 10 150 15 0.05 0.02 0.02
Count 93 51 128 12 x 12 150 15 0.04 0.02 0.02
f51m 47 16 55 10 x 10 150 15 0.04 0.02 0.02
Lal 61 45 87 10 x 10 150 15 0.04 0.02 0.02
Ldd 50 28 59 10 x 10 150 25 0.04 0.02 0.02

Pcler8 55 44 82 10 x 10 150 20 0.04 0.02 0.02
*: Initial values.

Table - 1. Circuit and Algorithm Details.

Circuit By Evolutionary
Programming (EP), ns

By Simulated
Annealing (SA), ns

By SA – EP,
ns

5xp1 34.21 35.87 31.22
b9 37.07 35.87 33.22
cc 28.47 33.47 30.85

clip 57.48 55.26 49.85
comp 49.49 55.79 48.10
count 46.59 51.06 45.68
f51m 55.61 73.81 58.49

lal 32.08 39.74 35.68
ldd 38.55 36.22 33.78

pcler8 32.08 42.16 38.55

Table – 2. Total Net Delay for the Critical Path.

We used VPR, a place and route tool from the University of
Toronto to evaluate the final delay after timing-driven routing.
VPR can be used for placement based on simulated annealing, or
can be used for routing on a given placement. This tool was used
on the placement generated for routing and timing evaluation. The
results obtained for our method and that for the simulated
annealing method are shown in Table-2. Our method clearly
yields better results compared to conventional simulated
annealing based methods.

Better results were obtained on some of the circuits when we
used our evolutionary placement approach on the results of the
simulated annealing method. During this experiment, the moves
and swaps were either disabled or were kept very small (0.1%).
These better results, we attribute to the fact that by disabling the
moves and swaps of blocks, the search-space of the evolutionary
approach is limited to the blocks surrounding any particular block.
Since the result of the SA is already near the global optimum, the
EP approach hastens the convergence by a directed search,
compared to the undirected random search of SA. These results
are given in Table-2.

5. CONCLUSIONS AND FUTURE WORK:

The novelty of the timing-driven placement solution
presented in this paper is the use of new methods of encoding and
mutation that characterise the evolutionary programming
approach used. The method proposed uses very less memory
space compared to traditional methods of evolutionary solutions.

The results obtained are encouraging and the algorithm
outperforms conventional simulated annealing methods with
respect to the results obtained.

Since evolutionary approaches can work fairly easily with
multiple constraints, the proposed method can be extended to
optimise other performance bottlenecks like power dissipation and
signal skew. We are currently working in this direction.

Acknowledgments:

We are thankful to the Collaborative Benchmark
Laboratories, North Carolina State University, for providing us
with the MCNC logic synthesis benchmark suite. We are also
thankful to Prof. Jonathan Rose and his group at the University of
Toronto for having provided us with VPR, their FPGA placement
and routing tool.

References:

[1] J.P. Cohoon and W.D. Paris, “Genetic Placement”, IEEE
Trans. Comp. Aided Design, Vol.-6, No.-11, Nov. 1987, pp
956-964.

[2] D.E. Goldberg, “Genetic Algorithms in Search, Optimization
and Machine Learning”, Addison-Wesley, Reading, Mass.,
1989.

[3] Tanay Karnik and Sung-Mo Kang, “An Empirical Model for
Accurate Estimation of Routing Delay in FPGAs”, Proc. Intl.
Conf. Comp. Aided Design, 1995, pp 328-331.

[4] R.M. Kling and P. Banerjee, “ESP : Placement by Simulated
Evolution”, IEEE Trans. Comp. Aided Design, Vol.-8, No.-
3, Mar. 1989, pp 245-256.

[5] Anmol Mathur and C.L. Liu, “Compression Relaxation – A
New Approach to Timing-Driven Placement for Regular
Architectures”, IEEE Trans. Comp. Aided Design, Vol.–16,
No.–6, June 1997, pp 597-608.

[6] Sudip K. Nag and Rob A. Rutenbar, “Performance-Driven
Simultaneous Placement and Routing for FPGAs”, IEEE
Trans. Comp. Aided Design, Vol.-17, No.-6, June 1998, pp
499-518.

[7] Srilata Raman, C.L. Liu and L.G. Jones, “A Delay Driven
FPGA Placement Algorithm”, Proc. European Design
Automation Conf., 1994, pp 277-281.

[8] M. Srinivas and Lalit M. Patnaik, “Genetic Algorithms – A
Survey”, IEEE Computer, Vol.-27, No.-6, June 1994, pp 17-
26.

[9] William Swartz and Carl Sechen, “Timing Driven Placement
for Large Standard Cell Circuits”, Proc. Design Automation
Conf., 1995, pp 211-215.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

