
Formal Hardware Veri�cation by Integrating HOL and MDG

V.K. Pisini1, S. Tahar1, P. Curzon2, O. Ait-Mohamed3 and X. Song4

Abstract

In order to overcome the limitations of automated
tools and the cumbersome proof process of interactive
theorem proving, we adopt a hybrid approach for formal
hardware veri�cation which uses the strengths of the-
orem proving (HOL) with powerful mathematical tools
such as induction and abstraction, and the advantages
of automated tools (MDG) which support equivalence
checking and model checking. The MDG system is a
decision diagram based veri�cation tool, primarily de-
signed for hardware veri�cation. HOL is a theorem
prover built on higher-order logic.

1 INTRODUCTION

With the ever increasing complexity of the design of
digital systems and the size of the circuits in VLSI tech-
nology, the role of design veri�cation has gained a lot of
importance. Simulation, which is the state-o-the-art is
often used as the main approach for veri�cation, and de-
spite the major simulation e�orts, serious design errors
often remain undetected which resulted in the evolu-
tion of applications such as formal methods in verifying
the hardware design. There are several approaches to
formal hardware veri�cation: theorem-proving, model
checking, equivalence checking, symbolic simulation to
name a few [1]. Each of them has its own strengths and
weaknesses. In this paper we present a methodology
with an example as to how equivalence checking of the
automated MDG system [2] supports the proof process
of the HOL theorem prover [3]. HOL is an interactive
system that is built on higher-order logic and developed
at the University of Cambridge, U.K. Theorem proving
can handle very large circuits for veri�cation but it is
a cumbersome and time-consuming process and needs
expertise in using it. We believe that the present VLSI
industry, however needs the automation of the veri�ca-
tion process as much as possible without su�ering the
under-capability of the automated tools when it comes
to handling large circuits. The integration of interactive
and automated tools eases the veri�cation complexity to
a great extent.

The remaining sections of this paper are organized
as follows. Section 2 contains related work in the area.
Section 3 describes the HOL and MDG systems. In

1ECE Dept., Concordia University, Montreal, Canada
2School of Computing Science, Middlesex University, London, UK
3Nortel Networks, Ottawa, Canada
4IRO Dept., Universit�e de Montreal, Montreal, Canada

Section 4 we present the methodology of our hybrid ap-
proach and how MDG is embedded inside the logic of an
interactive theorem-prover. In Section 5 we present an
example we considered, the Timing block of the Fairisle
ATM switch fabric, through which we illustrate the ad-
vantages of our approach. Section 6 �nally concludes
the paper.

2 RELATED WORK

There exist a number of hybrid approaches such as
combining theorem proving with model checking [4], [5]
and combining theorem proving and symbolic trajec-
tory evaluation [6]. For instance, Rajan et al [5] de-
scribed an approach where a BDD-based model checker
for the propositional mu-calculus has been used as a de-
cision procedure within the framework of the PVS proof
checker. Joyce and Seger [6] described an approach
by means of an interface between the Voss system
and HOL. They have implemented a tactic VOSS TAC
which calls the Voss system to do a part of the veri-
�cation using symbolic trajectory evaluation to decide
whether an assertion is true which in turn can be trans-
formed into a HOL theorem and this theorem is used
by the HOL system to proceed with further veri�cation
procedure. Schneider et al [4] proposed an approach of
invoking model checking from within HOL where prop-
erties are translated from HOL to temporal logic. More
recently, HOL98 has been integrated with the BuDDy
BDD package [7].
The motivation to take up this work originated while

looking into ways to integrate VHDL and formal veri-
�cation. The work described in this paper is part of a
larger project to link VHDL, HOL and MDG as shown
in Figure 1. Here, the VHDL model is analyzed to
get a data structure (Directed Acyclic Graph|DAG)
of the model which is passed through an HOL Gener-
ator to get the HOL model. Within HOL, we use the
functions, MDG COMB TAC and MDG SEQ TAC, to
generate the required �les for the MDG system to com-
plete the veri�cation for combinational and sequential
veri�cations respectively. In the case of property ver-
i�cation, an LTL property description (L MDG) [8] is
transformed into an equivalent VHDL or MDG-HDL
circuit description that will either be fed into the Ana-
lyzer or directly to the MDG system, respectively.

3 HOL AND MDG

3.1 HOL System

The HOL System is a theorem prover based on higher-
order logic [3] which was originally intended for use in

HOL

VHDL

PROPERTIES

MDG

Equivalence
Checking

L-MDG
Checking

VHDL Model

Analyser

DAG-M

Generator
HOL-ASM

HOL Model

VHDL
Circuit

L-MDG

L-MDG
to

L-MDG
to

MDG-HDL

L-Circuit
MDG-HDL

Invariant
Checking

MDG_SEQ_TAC

MDG_COMB_TAC

Order File

Alg. File

MDG-HDL

Invariant File

Fig. 1. Intended VHDL-HOL-MDG Project Skeleton

hardware veri�cation but now used in a variety of appli-
cation areas since it is a general purpose proof system.
In theorem proving approach to veri�cation, a system
and its properties are described by means of logical for-
mulae and the system is shown by means of a logical
proof to entail the desired properties. The basic inter-
face to the system is a Standard ML (SML) interpreter.
SML is both the implementation language of the sys-
tem and the meta-language in which proofs are written.
Proofs are input to the system as calls to SML functions.
Higher-order logic is very exible and has a well-de�ned
and well-understood semantics. It supports forward and
backward proof by creating theorems and applying in-
ference rules to the already created theorems. In the
backward proof, the user sets the desired theorem as a
goal. Tactics are applied to the goal to create sub-goals
and inference rules are applied to prove the sub-goals
which in turn proves the main goal. By applying a set
of primitive inference rules, a theorem can be created.
Complex inference rules call for the simpler inference
rules to do the work. The results are strong and the
user can have great con�dence since the most primitive
rules are used to prove a theorem.

HOL also allows us to use hierarchical veri�cation
methodology wherein the modules are divided into sub-
modules and even the sub-modules are divided until the
lowest level (gate level) is reached. The behavioral and
structural speci�cations of each module are expressed in
higher-order logic and each module is veri�ed by prov-
ing a theorem stating that the implementation implies
the speci�cation. Each sub-module is ver�ed, and its re-
sult is used to verify the other sub-modules as needed.
To complete a veri�cation, however, a very deep un-
derstanding of the internal structure of the design is
required, as it is a white-box approach. Modeling and
verifying a system is very time-consuming.

3.2 MDG System

The MDG system is a decision diagram based veri-
�cation tool, primarily designed for hardware veri�ca-
tion which allows equivalence checking and model check-
ing. The MDG veri�cation approach is a black-box ap-
proach. During the veri�cation the user does not need
to understand the internal structure of the design being
veri�ed. The strength of MDG is its speed and ease of
use. The MDG hardware veri�cation system has been
used in the veri�cation of signi�cant hardware examples
[2].

Multiway Decision Graphs (MDGs) have been pro-
posed [2] as a solution to the data width problem of
ROBDD based veri�cation tools. The MDG tool com-
bines the advantages of representing a circuit at higher
abstract levels as is possible in a theorem prover, and
of the automation o�ered by ROBDD based tools. An
MDG is a �nite, directed acyclic graph (DAG). MDGs
essentially represent relations rather than functions.
MDGs can also represent sets of states. They are much
more compact than ROBDDs for designs containing a
datapath. Furthermore, sequential circuits can be ver-
i�ed independently of the width of the datapath. The
MDG tools package the basic MDG operators and veri-
�cation procedures [9]. The veri�cation procedures are
combinational and sequential veri�cation. The combi-
national veri�cation provides the equivalence checking
of two combinational circuits. The sequential veri�ca-
tion provides invariant checking and equivalence check-
ing of two state machines. The MDG operators and ver-
i�cation procedures are implemented in Quintus Prolog
[9].

MDG-HDL which is the input language for MDG,
supports structural descriptions, behavioral ASM de-
scriptions or a mixture of both. A structural description
is usually a netlist of components connected by signals,
and a behavioral description is given by a tabular rep-
resentation of the transition/output relation or truth
table. The MDG-HDL comes with a large library of
prede�ned, commonly used, basic components (such as
logic gates, multiplexers, registers, bus drivers, ROMs,
etc.). A circuit description includes the de�nition of
signals, components and the circuit outputs. Signals
are declared along with their sorts. Components are
declared by the instantiation of the input/output ports
of a prede�ned component module. Among prede�ned
modules we have a special module called a table. Ta-
bles can be used to describe a functional block in the
implementation, as well as in the speci�cation. A table
is essentially a series of lists, together with a single �nal
default value. The �rst list contains variables and cross-
terms. The last element of the list must be a variable
(either concrete or abstract). For example, a 2-input
AND gate can be described as a table as:

table([[x1,x2,y], [0,*,0], [1,0,0] | 1])

The necessary �les for veri�cation in MDG are: a be-
havioral speci�cation �le, a circuit description �le, an
algebraic �le, a symbol order �le, and an invariant �le
[9]. The behavioral speci�cation �le declares signals and
speci�es the behavior of the circuit using tables as de-
scribed above. The circuit description �le declares sig-
nals and their sort assignments and describes the circuit
network. The algebraic speci�cation �le de�nes sorts,
function types and generic constants. The symbol or-
der �le provides the user-de�ned symbol order for all
the variables and cross operators which would appear
in MDGs. The invariant �le takes the corresponding
outputs from both behavioral speci�cation and circuit
description for equivalence checking using MDGs.

4 LINKING APPROACH

4.1 Hierarchical Veri�cation

In our hybrid approach, we follow a hierarchical hard-
ware veri�cation methodology. Generally, when we use
HOL to verify a design, the design is modeled as a hier-
archy structure with modules divided into sub-modules
as shown in Fig. 2. The sub-modules are repeatedly sub-
divided until eventually the logic gate level is reached.

Submodule A1 Submodule A2

Module A

Submodule A11 Submodule A12 Submodule A21 Submodule A22

Specification Verification

Fig. 2. Hierarchical Veri�cation

By proving a theorem saying that the implementation
(structure) implements the speci�cation (behavior), we
accomplish the veri�cation of each module. That is:

` Implementation A=) Specification A (4.1)

The veri�cation starts in HOL with a goal to be
proved. The correctness theorem for each module states
that its implementation down to the logic gate level
satis�es the speci�cation. The correctness theorem for
each module can be established using the correctness
theorems of its sub-modules. When the module is sub-
divided, then we can write the theorem about the struc-
tural description as

` Implementation A = Imp A1 ^ Imp A2 (4.2)

Now (4.1) can be written as

` Imp A1 ^ Imp A2 =) Specification A (4.3)

The correctness statements of the sub-modules A1
and A2 can be used to prove the correctness theorem

for the module A. Likewise we can prove independently
for each sub-module that

` Imp A1 =) Spec A1 (4.4)

` Imp A2 =) Spec A2 (4.5)

Since these are implications, to prove (4.1), it is
enough to prove that

` Spec A1 ^ Spec A2 =) Specification A (4.6)

Similarly, A1 is veri�ed from its sub-modules A11 and
A12, and A2 is veri�ed from its sub-modules A21 and
A22. Hence, we verify module A by independently ver-
ifying its sub-modules A1 and A2. Using this top-down
approach, the main objective of our work is to identify
and prove the correctness of certain sub-modules in an
automatic fashion using the MDG system. In MDG, for
each sub-module it will be proved by automatic veri�ca-
tion that implementation is equivalent to speci�cation
and the result is imported into HOL. In our hybrid sys-
tem, the sub-module is treated as a black-box.

4.2 Translation of HOL Description to MDG

In HOL, the speci�cation and implementation are ex-
pressed in higher-order logic. The MDG system uses
MDG-HDL to describe the implementation and the
speci�cation, the latter is written in the table form
[10]. The sub-goals from the main goal are generated by
HOL. The user decides if the sub-goal can be proved in
MDG and its description is written in MDG acceptable
form using the description predicates. In case a sub-
goal is not expressed in the MDG acceptable form or
the MDG veri�cation fails, then the regular HOL proof
procedure is followed. Once all the sub-goals are proved,
it implies that the main goal is proved and hence the
circuit is formally veri�ed. As in the block diagram of
the hybrid system shown in Fig. 3, the interface con-
verts the HOL descriptions to equivalent MDG �les and
all required �les for the MDG veri�cation as speci�ed in
the following. It is a lot di�erent from the mere transla-
tion of the output of one tool to the input of the other
tool.

System MDG

I

E

C

A

F

R

E

T

N

 HOL System Goal True / False

HOL Sub-goal MDG Files

True

Make_theorem

Fig. 3. Block Diagram of the Hybrid System

The sub-goal speci�cation and implementation which
are in two di�erent �les are given as input to the inter-
face which is built in SML. The two HOL �les contain

the inputs, outputs, intermediate outputs and their sig-
nal types. If there are new user de�ned types, they are
de�ned earlier in the theory. From the given two HOL
�les, corresponding MDG circuit description, speci�ca-
tion, algebraic, order and invariant �les are created au-
tomatically. These �les are used for equivalence check-
ing veri�cation by the MDG system. In the case where
the equivalence checking has succeeded, MDG returns
\true", this result is imported into HOL in the form of
a theorem (using the make theorem in HOL) and the
main proof procedure continues in HOL with the next
sub-goal to be proved. Xiong et al [11] showed how the
results of MDG can be imported into HOL. As part of
the build-up of the mathematical interface between the
two tools, the total MDG library was speci�ed in HOL
as predicates and Curzon et al [10] formally veri�ed the
MDG component library in HOL. They also showed how
the MDG tables can be expressed in HOL.
Within HOL, the tactics MDG COMB TAC (for

combinational veri�cation) or MDG SEQ TAC (for se-
quential veri�cation) starts the translation of the �les
and the veri�cation in MDG and analyses the result to
eventually generate a theorem. The tasks of these tac-
tics are shown as a ow-diagram in Fig. 4.

ORDER File

ALGEBRAIC File

IMPL (MDG)

SPEC (MDG)

INVARIANT File

False

Sub-goal

Call MDG in a different window
and do the verification

True

Make Theorem

Sub-goal

Regular HOL Proof

Yes

No

RESULT
 from

MDG

acceptable ?

SPEC (HOL)

IMPL (HOL)

Fig. 4. Task of MDG COMB TAC/MDG SEQ TAC

5 HYBRID VERIFICATION METHODOL-

OGY

For illustration purposes, we show the veri�cation of
a sub-module of the Fairisle ATM switch fabric [12] (see
Fig. 5). Curzon [13] formally veri�ed this ATM switch-
ing element using the theorem-prover HOL. The Fairisle
switch fabric is a real switch fabric designed and in use
at University of Cambridge for multimedia applications.
The Fairisle switch forms the heart of the Fairisle net-

work. Considering the fabric as the main module to
be veri�ed, it can be split into 3 sub-modules, namely
Acknowledgement, Arbitration and Data Switch. Fur-
ther dividing the Arbitration sub-module, we have Tim-
ing, Decoder, Priority Filter and Arbiters as sub-sub-
modules. In our example, we have taken the Timing
block to be a sub-sub-module (one of the sub-goals) and
used our hybrid tool to achieve the desired veri�cation
result.

Pr
io

ri
ty

fi
lte

r

1

1

outDisi
xGranti
yGranti

Din1
Din2
Din3

Din0

Aout0
Aout1
Aout2
Aout3

32 16 16

12
2

Dout0
Dout1
Dout2
Dout3

4
4

4
4

8
8

8
8

1
1

1

Ain0
Ain1
Ain2
Ain3

fs

R
eg

is
te

rs
R

eg
is

te
rs

R
eg

is
te

rs

D
ec

od
er

T
im

in
g

R
eg

is
te

rs

A
rb

ite
rs

ARBITRATION

DATASWITCH

ACKNOWL.

Fig. 5. Fairisle ATM Switch Fabric

5.1 Proof Structure of the ATM Fabric

The veri�cation of the Fairisle switch fabric is ar-
ranged according to the division of the fabric in a hier-
archical fashion as shown in Fig.6. The goal is to prove
that

` Fabric Imp =) Fabric Spec (5.1)

Data SwitchAcknowledge Arbitration

Timing Decoder Priority Filter Arbiters

ATM Fabric

Fig. 6. Hierarchical Veri�cation of 4x4 Switch Fabric

From Fig.6 and the equations in Section 4.1, we have

` Fabric Imp=Ack Imp ^ Arb Imp ^DataSW Imp

(5.2)

as in (4.4) and (4.5), we can prove that

` Ack Imp =) Ack Spec (5.3)
` Arb Imp =) Arb Spec (5.4)
` DataSW Imp =) DataSW Spec (5.5)

Now it is enough to prove that

` Ack Spec ^ Arb Spec ^ DataSW Spec =)
Fabric Spec (5.6)

Likewise, at the next lower level the Arbitration block
is proved in the same fashion. In this Arbitration block,

one of the sub-modules or sub-goal is the Timing block.
Instead of proving the implication in HOL, it can be
proved using equivalence in MDG which we illustrate in
the following section.

5.2 Timing Block Veri�cation

The Timing block controls the timing of the arbitra-
tion decision based on the frame start signal and the
time the routing bytes arrive. The implementation of
the timing is shown in Fig. 7 and the FSM representa-
tion is shown in Fig. 8.

x

x = routeEnable

4

act [0..3] anyActive

frameStart

AND

xBar
AND

yterm
dy y

dx

OR

INV

INV
DFFd

DFFd

OR

frameStartBar

Fig. 7. Implementation of the Timing Block

We wrote the high level speci�cation and implenta-
tion and used our hybrid tool to do the veri�cation us-
ing equivalence checking of MDG. The implementation
of the Timing block shown in Fig.7 described in HOL
is:

` 8 frameStart act0 act1 act2 act3

routeEnable.

TIMING IMP((frameStart act0 act1 act2 act3))

((routeEnable)) =

9 anyActive frameStartBar

x xBar y yterm dx dy .

(or4 act0 act1 act2 act3 anyActive) ^

(not frameStart frameStartBar) ^

(not x xBar) ^

(and xBar y yterm) ^

(and4 anyActive y frameStartBar xBar dx) ^

(or frameStart yterm dy) ^

(reg dx x) ^

(reg dy y) ^

(fork x routeEnable)

The resulting MDG-HDL implementation of the Tim-
ing block equivalent to that of HOL, generated by
MDG SEQ TAC is:

component(anyActive impl,or4(input

(act0,act1,act2,act3),output(anyActive))).

component(frameStartBar impl,not(input

(frameStart),output(frameStartBar))).

component(xBar impl,not(input(x),

output(xBar))).

component(yterm impl,and(input(y,xBar),

output(yterm))).

component(dx impl,and4(input(anyActive,

y,frameStartBar,xBar),output(dx))).

component(dy impl,or(input

(frameStart,yterm),output(dy))).

component(x impl,reg(input(dx),output(x))).

component(y impl,reg(input(dy),output(y))).

component(fork for routeEnable impl,

fork(input(x),output(routeEnable))).

The speci�cations of the Timing block in HOL and
MDG are shown below. The HOL speci�cation of the
Timing FSM is described using a state transition func-
tion and an output function. The HOL de�nition of the
state transitions of FSM of Fig. 8, written in terms of
the table speci�cation is given as:

TABLE [anyActive;frameStart;timing state]

(n timing state o NEXT)

[[DONT CARE;TABLE VAL(TRANS T);TABLE VAL

(STATE RUN)];

[DONT CARE;TABLE VAL(TRANS F);TABLE VAL

(STATE RUN)];

[TABLE VAL(TRANS T);TABLE VAL(TRANS F);

TABLE VAL(STATE WAIT)];

[DONT CARE;TABLE VAL(TRANS F);TABLE VAL

(STATE ROUTE)];

[DONT CARE;TABLE VAL(TRANS T);TABLE VAL

(STATE ROUTE)]]

[WAITSIG;RUNSIG;ROUTESIG;RUNSIG;WAITSIG]

WAITSIG

The equivalent MDG table speci�cation of the
Timing FSM state transition is generated using
MDG SEQ TAC as:

[[anyActive, frameStart, timing state,

n timing state],

[*,1,run, wait],

[*,0,run, run],

[1,0,wait, route],

[*,0,route, run],

[*,1,route, wait] | wait]

els
e

frameStart = 0/routeEnable= 0

RUN WAIT

else

else

ROUTE

fra
mStar

t =
 0 &

 an
yActi

ve =
 1/

 ro
uteE

nable =
 1

frameStart = 1/routeEnable=0

Fig. 8. State Transitions of the Timing Block

Once the speci�cation and implementation in HOL
are translated, MDG SEQ TAC generates the required
order �le, algebraic speci�cation �le and invariant �le
and calls MDG for equivalence checking. The succeeded
result from MDG is imported into HOL as a theorem.
And hence the veri�cation of the Timing block is done.

5.3 Veri�cation Results

We have shown that:

T iming Imp� T iming Spec (equivalence) (6.1)

We got the above result from MDG and it is imported
into HOL [11] as:

` T iming Imp=) T iming Spec (6.2)

Using similar MDG proofs for the other sub-modules
of the arbitration block, we get:

` T iming Spec ^ Decoder Spec ^ PFilter Spec ^

Arbiters Spec =) Arbitration Spec (6.3)

Using our hybrid tool, the procedure is faster than
proving in HOL that the implementation implies the
high-level speci�cation. Curzon [13] took several hours
to do the proof of the Timing block whereas the veri�-
cation is done in less than a second in MDG (see Table
I). The veri�cation results obtained by means of equiv-
alence checking can be formally related to higher levels
of abstraction. Also, equivalence is a stronger result
than implication.

MDG Nodes CPU Time (sec.) Memory (MB)

227 0.41 0.161

TABLE I

MDG Equivalence Checking Results for Timing Block

We showed using MDG that the structural descrip-
tion (i.e. implementation) is equivalent to the high-level
speci�cation, described in terms of tables. Writing the
high-level speci�cation using tables in MDG is far easy
compared to writing it down in HOL. In HOL, the proof
is interactive and is time-consuming [13].

6 CONCLUSIONS

To summarize our work, we have built a linkage tool
between HOL and MDG. The tool uses the HOL speci�-
cation and implementation �les and generates all the re-
quired MDG �les automatically. It then calls the MDG
equivalence checking procedure and generates an appro-
priate theorem in HOL in the positive case. We thus
yield a signi�cant reduction of speci�cation and veri�-
cation time avoiding cumbersome proof process of HOL
as shown by our example.

This hybrid approach is more e�ective in hierarchi-
cal veri�cation. If the main module can be divided into
smaller sub-modules, then certainly the use of this hy-
brid approach proves to be e�ective since there are less
chances of state-explosion problem since MDG can ef-
fectively handle smaller circuits.

Acknowledgements

This work was partially supported by Micronet re-
search grant and a GRIAO student scholarship. Thanks
are due to E. Cerny and A. Dekdouk at IRO, University
of Montreal and to I. Kort and M.H. Zobair at ECE
Dept., Concordia University who helped us out with
HOL and MDG proofs.

References

[1] C. Seger, \An Introduction to Formal Hardware Veri�ca-
tion," Tech. Rep. 92-13, Dept. of Computer Science, Uni-
versity of British Columbia, Vancouver, B.C., Canada, June
1992.

[2] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny,
\Multiway Decision Graphs for Automated Hardware Veri-
�cation," Formal Methods in System Design, vol. 10, no. 1,
pp. 7{46, 1997.

[3] M. Gordon and T. Melham, Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic. Cam-
bridge University Press, Cambridge, U.K., 1993.

[4] K. Schneider and T. Kropf, \Verifying Hardware Correctness
by Combining Theorem Proving and Model Checking," Tech.
Rep. SFB358-C2-5/95, University of Karlsruhe, Karlsruhe,
Germany, December 1995.

[5] S. Rajan, N. Shankar, and M. Srivas, \An Integration of
Model-checking with Automated Proof Checking," in Com-
puter Aided Veri�cation (P. Wolper, ed.), Lecture Notes in
Computer Science 939, pp. 84{97, Springer Verlag, 1995.

[6] J. Joyce and C. Seger, \Linking BDD-based Symbolic Eval-
uation to Interactive Theorem Proving," in Proceedings of
the 30th Design Automation Conference, 1993.

[7] M. Gordon, \Combining Deductive Theorem Proving with
Symbolic State Enumeration." 21 Years of Hardware Veri�-
cation, December 1998. Royal Society Workshop to mark 21
years of BCS FACS.

[8] Y. Xu, E. Cerny, X. Song, F. Corella, and O. At-Mohamed,
\Model Checking for a First-Order Temporal Logic using
Multiway Decision Graphs," in Computer Aided Veri�cation
(A. Hu and M. Vardi, eds.), Lecture Notes in Computer Sci-
ence 1427, (Vancouver, B.C., Canada), pp. 219{231, Springer
Verlag, 1998.

[9] Z. Zhou and N. Boulerice, MDG Tools (V1.0) User's Man-
ual. Dept. of Computer Science, University of Montreal,
Montreal, Canada, June 1996.

[10] P. Curzon, S. Tahar, and O. Ait-Mohamed, \Veri�cation of
the MDG Components Library in HOL," in Theorem Prov-
ing in Higher Order Logics: Emerging Trends (J. Grundy
and M. Newey, eds.), (Australian National University, Can-
berra, Australia), pp. 31{45, September 1998.

[11] H. Xiong, P. Curzon, and S. Tahar, \Importing MDG Re-
sults into HOL," in Theorem Proving in Higher Order Log-
ics (Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Theryvon, eds.), Lecture Notes in Computer Science 1690,
pp. 293{310, Springer Verlag, 1999.

[12] I. Leslie and D. McAuley, \Fairisle: An ATM Network for
the Local Area," ACM Communication Review, vol. 19(4),
pp. 327{336, 1991.

[13] P. Curzon, \The Formal Veri�cation of the Fairisle ATM
Switching Element," Techical Report 329, Computer Labo-
ratory, University of Cambridge, U.K., March 1994.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

