Copyright 2000 by the Association for Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyright
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page,
copying is permitted provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or
other material previously published by ACM. If you have written a work
that was previously published by ACM in any journal or conference proceedings
prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work
to appear in the ACM Digital Library, please inform permissions@acm.org,
stating the title of the work, the author(s), and where and when published.

ACM ISBN: 1-58113-251-4

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+1-212-626-0500
(all other countries)
Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number: 477008
Printed in the USA
CONTENTS

Welcome.. vii
Symposium Organization... viii
Reviewers... x

Keynote Address: Impact of Internet on EDA Research and Development.............. xi
 Naveed Sherwani

Special Address: Moore’s Law and MOSFETs at the End of the Roadmap............. xiii
 Mark Lundstrom

Panel discussion: VLSI Design Challenges in the Next Five Years...................... xiv
 Chair: Majid Sarrafzadeh
 Panel Members: Eric Collins, Khuram Mohammad, Naveed Sherwani, Tak Young, Tom Ryan

Invited Paper: Low Power and High Performance Design Challenges in Future Technologies... 1
 Vivek De, Shekhar Borkar

Session 1: Power Conscious Design
 Chairs: Vivek De, Keshab Parhi

 1.1 CMOS System-on-a-Chip Voltage Scaling beyond 50nm................................. 7
 Azeez Bhavnagarwala, Blanca Austin, Ashok Kapoor, James D. Meindl

 1.2 Reducing Bus Transition Activity by Limited Weight Coding with Codeword Slimming.. 13
 Vijay Sundararajan, Keshab K. Parhi

 1.3 Supporting System-Level Power Exploration for DSP Applications............. 17
 Luca Benini, Marco Ferrero, Alberto Macii, Enrico Macii, Massimo Poncino

Session 2: Design Validation
 Chairs: Jacob Abraham, Naveed Sherwani

 2.1 Formal Hardware Verification by Integrating HOL and MDG....................... 23
 V.K. Pisini, S. Tahar, P. Curzon, O. Ait-Mohamed, X. Song
2.2 Towards Design and Validation of Mixed-Technology SOCs................. 29
 S. Mir, B. Charlot, G. Nicolescu, P. Coste, F. Parrain, N. Zergainoh, B.
 Courtois, A. Jerraya, M. Rencz

2.3 Candidate Subcircuits for Functional Module Identification in Logic Circuits… 34
 Jennifer L. White, Anthony S. Wojcik, Moon-Jung Chung, Travis E. Doom

2.4 Speeding Up Symbolic Model Checking by Accelerating Dynamic Variable
 Reordering... 39
 Christoph Meinel, Christian Stangier

2.5 Prove that a Faulty Multiplier is Faulty !?.. 43
 Sandro Wefel, Paul Molitor

Session 3: Routing and Repeaters
Chairs: Steve Kang, Majid Sarrafzadeh

3.1 Manhattan or Non-Manhattan? A Study of Alternative VLSI Routing
 Architectures... 47
 Cheng-Kok Koh, Patrick H. Madden

3.2 High-Performance Bidirectional Repeaters.. 53
 S. Bobba, I. N. Hajj

3.3 Measuring Routing Congestion for Multi-layer Global Routing............... 59
 Tom Chen, Alkan Cengiz

3.4 Transparent Repeaters.. 63
 Radu M. Secareanu, Eby G. Friedman

3.5 A Wave-Pipelined Router Architecture Using Ternary Associative Memory..... 67
 José G. Delgado-Frias, Jabulani Nyathi, Laxmi Bhuyan

3.6 A Novel Technique for Sea of Gates Global Routing............................ 71
 Bharat Krishna, C. Y. Roger Chen, Naresh K. Sehgal

Invited Paper: On-chip Inductance Modeling.. 75
 David Blaauw, Kaushik Gala, Vladimir Zolotov, Rajendran Panda,
 Junfeng Wang

Session 4: Placement Algorithms
Chairs: Cheng-Kok Koh, Ibrahim Hajj
4.1 An Evolutionary Approach to Timing Driven FPGA Placement……………… 81
 R. Venkatraman, Lalit M. Patnaik

4.2 Parallel Algorithms for FPGA Placement... 86
 Malay Haldar, Anshuman Nayak, Alok Choudhary, Prith Banerjee

4.3 Fast and Accurate Estimation of Floorplans in Logic/High-level Synthesis……. 95
 Kiarash Bazargan, Abhishek Ranjan, Majid Sarrafzadeh

Session 5: Low Power Circuits
Chairs: Khurram Muhammad, David Blaauw

5.1 A Comparison of Dual-Rail Pass Transistor Logic Families in 1.5V, 0.18µm
 CMOS Technology for Low Power Applications...................................... 101
 G. D. Gristede, Wei Hwang

5.2 Digital CMOS Logic Operation in the Sub-Threshold Region..................... 107
 Hendrawan Soeleman, Kaushik Roy

5.3 Low Power High Speed Analog-to-Digital Converter for Wireless
 Communications.. 113
 A. E. Hussein, M. I. Elmasry

5.4 A Comparative Study of Power Efficient SRAM Designs........................... 117
 Jeyran Hezavei, N. Vijaykrishnan, M. J. Irwin

Session 6: Behavioral and High Level Synthesis
Chairs: Sudip Nag, Prith Banerjee

6.1 Design and Analysis of Efficient Application-Specific On-line Page Replacement
 Techniques... 123
 Virgil Andronache, Edwin H.-M. Sha, Nelson L. Passos

6.2 A New Technique for Estimating Lower Bounds on Latency for high level
 Synthesis... 129
 Helvio P. Peixoto, Margarida F. Jacome

6.3 Maximizing Memory Data Reuse for Lower Power Motion Estimation........ 133
 Bo-Sung Kim, Jun-Dong Cho

6.4 Efficient Algorithms for Acceptable Design Exploration.......................... 139
 Chantana Chantrapornchai, Edwin H.-M. Sha, Xiaobo (Sharon) Hu
Session 7: Power Estimation and Partitioning for Low Power
Chairs: Enrico Macii, Kaushik Roy

7.1 Regression-Based RTL Power Models for Controllers
Luca Benini, Alessandro Bogliolo, Enrico Macii, Massimo Poncino, Mihai Surmei

7.2 A Low Power Correlator
Bibhudatta Sahoo, Martin Kuhlmann, Keshab K. Parhi

7.3 Behavioral-Level Partitioning for Low Power Design in Control-Dominated Applications
Ki-Seok Chung, Taewhan Kim, C. L. Liu

7.4 Power Estimation for a Submicron CMOS Inverter Driving a CRC Interconnect Load
Hung-Jung Chen, Bradley S. Carlson

Session 8: Simulation and Estimation
Chairs: Amir Farrahi, Jim Crenshaw

8.1 Accuracy Management for Mixed-Mode Digital VLSI Simulation
Gary L. Dare, Charles A. Zukowski

8.2 Noise Estimation Due to Signal Activity for Capacitively Coupled CMOS Logic Gates
Kevin T. Tang, Eby G. Friedman

8.3 SPARTA: Simulation of Physics on a Real-Time Architecture
Benjamin Bishop, Thomas P. Kelliher, Mary Jane Irwin

8.4 Efficient Algorithms For Polygon To Trapezoid Decomposition And Trapezoid Corner Stitching
Qiao Li, Sung-Mo (Steve) Kang

8.5S MCM Placement Using a Realistic Thermal Model
Craig Beebe, Jo Dale Carothers, Alfonso Ortega

8.6S A Sensitivity Based Placer for Standard Cells
Bill Halpin, C.Y. Roger Chen, Naresh Sehgal
WELCOME

Welcome to the 2000 Great Lakes Symposium on VLSI (GLSVLSI). The symposium provides a forum for the presentation of advances in high-performance, low-power systems and components, design validation and testing, interconnects, and physical design. Aspects of designing low-power and high-performance products, including power-conscious design, design validation, routing and repeaters, placement algorithms, low-power circuits, behavioral and high level synthesis, power estimation and partitioning for low power, and simulation and estimation will be covered in detail in this year's GLSVLSI. As in previous years, this year's GLSVLSI contains a mix of invited talks and contributed papers.

Many thanks to all the authors who submitted papers. A total of 64 contributed papers were received. We were able to accept only 26 regular papers and 10 short papers. Short and regular papers authors are given 10 and 20 minutes presentation time, respectively.

The keynote speaker, featuring Dr. N. Sherwani from Intel Corporation, will address the impact of Internet on EDA research and development. The invited talks will feature Dr. V. De from Intel Corporation, and Dr. D. Blauuw from Motorola on the first and second day, respectively. Dr. De will address the technology and design challenges for low power and high performance microprocessors, while Dr. Blauuw will address on-chip inductance modeling and effects. A special luncheon talk on Moore's Law and MOSFETs at the End of the Roadmap will be given by Professor Mark Lundstrom of Purdue University.

Many thanks to the technical program committee for all the hard work in reviewing papers, paper selection, and session organization. Additional reviewers have also contributed to the review process, and we acknowledge their contribution. Thanks also to the invited speakers for graciously donating their time. Finally, we want to thank the ACM SIGDA for their support and cooperation, and Northwestern University, Monterey Design Systems, Motorola, Microsoft, and Intel Corporation for their sponsorship.

We hope you will find the symposium both stimulating and helpful. Please give us your comments and suggestions on any aspects of the conference.

M. Sarrafzadeh and P. Banerjee, General Chairs (Northwestern University)
K. Roy, Program Chair (Purdue University)
SYMPOSIUM ORGANIZATION

General Co-Chair
Majid Sarrafzadeh
Northwestern Univ.
ECE
Evanston, IL 60208-3118
(847) 491-7378
majid@ece.nwu.edu

General Co-Chair
Prith Banerjee
Northwestern Univ.
ECE
Evanston, IL 60208-3118
(847) 491-4455
banerjee@ece.nwu.edu

Steering Committee Chair
Naveed Sherwani
Intel Corporation
2111 N. E. 25th Avenue
Hillsboro, OR 97124-5961
(503) 264-1238
naveed.sherwani@intel.com

Program Chair
Kaushik Roy
Purdue Univ.
ECE
W. Lafayette, IN 47907-1285
(765) 494-2361
kaushik@ecn.purdue.edu

Publication Chair
Cheng-Kok Koh
Purdue Univ.
ECE
W. Lafayette, IN 47907-1285
(765) 496-3683
chengkoh@ecn.purdue.edu

Local Chair
Jim Crenshaw
Motorola Inc.
1303 E. Algonquin Rd
Schaumburg, IL 60196
(847) 538-5432
Jlc030@email.mot.com

Publicity Chair
Amir H. Farrahi
IBM T. J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
(914) 945-3187
ahf@watson.ibm.com

Finance Chair
Jill Lavelle
Northwestern Univ.
ECE
Evanston, IL 60208-3118
(847) 491-7132
jlavelle@ece.nwu.edu
Technical Program Committee

Jacob Abraham (UT-Austin)
Vishwani Agrawal (Lucent)
Don Bouldin (U. Tennessee)
Shawn Blanton (CMU)
Anantha Chandrakasan (MIT)
Jason Cong (UCLA)
Amir Farrahi (IBM)
Joan Figueras (U. Catalunya, Spain)
Eby Friedman (U. Rochester)
Ibrahim Hajj (UIUC)
Steve Kang (UIUC)
Cheng-Kok Koh (Purdue)
Enrico Macii (Torino, Italy)
Pinaki Mazumder (U. Michigan)
Khurram Muhammad (TI)
Sudip Nag (Xilinx)
Keshab Parhi (U. Minnesota)
Salil Raje (Monterey Design)
Kaushik Roy (Purdue)
Dinesh Somasekhar (Intel)
Kimiyoashi Usami (Toshiba, Japan)

Assistants to Program Chair

Hendrawan Soeleman
Purdue Univ.

Liqiong Wei
Purdue Univ.
REVIEWERS

Alexandro Magno dos Santos Adario
Mehdi Ashari
Luca Benini
Benjamin Bishop
Kai-Yuan Chao
Zhanping Chen
Lih-Yih Chiou
Herming Chiueh
Seung Hoon Choi
Bernard Courtois
Cassondra Crotty
Gary L. Dare
Amir H. Farrahi
Joan Figueras
Manish Goel
George Diedrich Gristede
Ibrahim Hajj
Jeyran Hezavei
Yean-Yow Hwang
Yonghee Im
Yehea Ismail
Mark C. Johnson
Kei-Yong Khoo
Taewhan Kim
Cheng-Kok Koh

Bharat Krishna
Dong-Wook Lee
Jeonggun Lee
John Lillis
Alberto Macii
Enrico Macii
Patrick H. Madden
Andrey Mezhiba
Khurram Muhammad
Myeong-Hoon Oh
Abhishek Ranjan
Kaushik Roy
Harald Sack
Alexandre Santoro
Radu Secareanu
Michael Shanblatt
Hendrawan Soeleman
Christian Stangier
Tianwen (Kevin) Tang
Dimitrios Velenis
Liqiong Wei
Anthony S. Wojcik
Dongmin Xu
Rongtian Zhang
Shiyou Zhao
EDA is a mature business with over 30 years of history and stable market place. We have come along way from simple layout editors to complex formal verification engines of today. EDA industry (like all other industries) is now facing its greatest challenge yet! Internet is fundamentally redefining the EDA business. It impacts not only the target R&D areas but also sales, marketing and distribution of EDA software.

As hundreds of fabless companies learn to move in internet time, ASIC EDA tools and methodologies must also embrace the quick turn-around, first silicon goes to market approach. This requires integrated EDA solutions from architecture, RTL, layout, extraction and verification. The other impact is due to change in product focus areas. Wireless internet appliances requires small size, and low power. While size has been a traditional focus for the EDA industry, low power is a new challenge. Low power requires EDA tools for architecture power based tradeoffs, power estimation at different levels of design, and power optimization throughout the design process.

Dr. Naveed Sherwani received Ph.D in computer science from University of Nebraska at Lincoln in 1988. His research concentrated on graph theoretic algorithms for routing in printed circuit boards. He joined the Department of Computer Science at Western Michigan University. Dr. Sherwani's research concentrated on combinatorics, graph algorithms and algorithms for VLSI Physical Design Automation. In particular, Dr. Sherwani concentrated on efficient algorithms for over-the-cell routing to reduce channel routing area. In 1994, Dr. Sherwani joined Intel Corporation and currently leads the Strategic CAD Labs for Physical Design. His initial work in Intel concentrated on physical design tools and methodologies for layout of microprocessor chips with very high frequency goals. His current responsibilities include leading strategic EDA ventures and programs.

He has published over seventy five refereed papers in various journal and conferences on these topics. His paper on three layer over-the-cell routing received ‘distinguished paper’ award at ICCAD-91. He has chaired seven conferences and served on technical committees of several others. He is founder of Great Lakes Symposium on VLSI held regularly for the last eight years in the midwest. He is member of the technical committee for ICCAD'97, ICCAD'98 and ICCAD'99 and program chair for International Conference

SPECIAL ADDRESS

Moore's Law and MOSFETs at the End of the Roadmap

Forty years after its birth, identifying the limits of silicon microelectronics has become a critical issue. This talk will review the performance limits of silicon MOSFETs, the technological challenges that may limit future device scaling, and some new device approaches that are being explored. Issues that VLSI designers will have to deal with when designing chips with nanoscale transistors will also be identified.

Dr. Lundstrom received B.E.E. and M.S.E.E. degrees from the University of Minnesota in 1973 and 1974 and a Ph.D. from Purdue University in 1980. From 1974-1977 he was employed by Hewlett-Packard where he worked on the development of a second-generation NMOS integrated circuit process. He is currently Professor of Electrical and Computer Engineering at Purdue where he has also served as Assistant Dean and Director of the Optoelectronics Research Center. Dr. Lundstrom's research interests center on the physics of semiconductor devices, especially carrier transport and the limits of devices. He is an IEEE Fellow and the recipient of the ASEE Frederick Emmons Terman Award, and of two teaching awards from Purdue University.
PANEL DISCUSSION

VLSI Design Challenges in the Next Five Years

Chair: Majid Sarrafzadeh

Panel Members:

Eric Collins, Motorola
Khuram Mohammad, TI
Naveed Sherwani, Intel
Tak Young, Monterey Design Systems
Tom Ryan, Tellabs

In this panel, industrial experts speculate fundamental challenges of VLSI Design in the next five years. Major problems facing the industry will be formulated and possible solutions will be outlined. Panelists will provide their input on possible show-stoppers.
<table>
<thead>
<tr>
<th>Author</th>
<th>Author Index</th>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ait-Mohamed, O.</td>
<td>Gristede, G. D.</td>
<td>Parhi, K. K. [1], [2]</td>
</tr>
<tr>
<td>Andronache, V.</td>
<td>Hajj, I. N.</td>
<td>Parrain, F.</td>
</tr>
<tr>
<td>Austin, B.</td>
<td>Haldar, M.</td>
<td>Passos, N. L.</td>
</tr>
<tr>
<td>Banerjee, P.</td>
<td>Halpin, B.</td>
<td>Patnaik, L. M.</td>
</tr>
<tr>
<td>Bazargan, K.</td>
<td>Hezavei, J.</td>
<td>Peixoto, H. P.</td>
</tr>
<tr>
<td>Beebe, C.</td>
<td>Hu, X. (S.)</td>
<td>Pisini, V.K.</td>
</tr>
<tr>
<td>Bhavnagarwala, A.</td>
<td>Hwang, W.</td>
<td>Ranjan, A.</td>
</tr>
<tr>
<td>Bhuyan, L.</td>
<td>Irwin, M. J. [1], [2]</td>
<td>Rencz, M.</td>
</tr>
<tr>
<td>Bishop, B.</td>
<td>Jacome, M. F.</td>
<td>Roy, K.</td>
</tr>
<tr>
<td>Blaauw, D.</td>
<td>Jerraya, A.</td>
<td>Sahoo, B.</td>
</tr>
<tr>
<td>Bobba, S.</td>
<td>Kan, S.-M.(S.) [1], [2]</td>
<td>Sarrafzadeh, M.</td>
</tr>
<tr>
<td>Bogliolo, A.</td>
<td>Kapoor, A.</td>
<td>Schareanu, R. M.</td>
</tr>
<tr>
<td>Borkar, S.</td>
<td>Keliher, T. P.</td>
<td>Sehgal, N.</td>
</tr>
<tr>
<td>Carlson, B. S.</td>
<td>Kim, B.-S.</td>
<td>Sha, E. H.-M. [1], [2]</td>
</tr>
<tr>
<td>Carothers, J. D.</td>
<td>Kim, T.</td>
<td>Sehgal, N. K.</td>
</tr>
<tr>
<td>Cengiz, A.</td>
<td>Koh, C.-K.</td>
<td>Soeleman, H.</td>
</tr>
<tr>
<td>Chantrapornchai, C.</td>
<td>Krishna, B.</td>
<td>Song, X.</td>
</tr>
<tr>
<td>Charlot, B.</td>
<td>Kuhlmann, M.</td>
<td>Stangier, C.</td>
</tr>
<tr>
<td>Chen, H.-J.</td>
<td>Liu, C. L.</td>
<td>Surmei, M.</td>
</tr>
<tr>
<td>Chen, T.</td>
<td>Lundstrom, M.</td>
<td>Tahar, S.</td>
</tr>
<tr>
<td>Cho, J.-D.</td>
<td>Macii, A.</td>
<td>Tang, K. T.</td>
</tr>
<tr>
<td>Choudhary, A.</td>
<td>Macii, E. [1], [2]</td>
<td>Venkatraman, R.</td>
</tr>
<tr>
<td>Chung, K.-S.</td>
<td>Madden, P. H.</td>
<td>Vijaykrishnan, N.</td>
</tr>
<tr>
<td>Chung, M.-J.</td>
<td>Meindl, J. D.</td>
<td>Wang, J.</td>
</tr>
<tr>
<td>Coste, P.</td>
<td>Meinel, C.</td>
<td>Wefel, S.</td>
</tr>
<tr>
<td>Courtois, B.</td>
<td>Mir, S.</td>
<td>White, J. L.</td>
</tr>
<tr>
<td>Curzon, P.</td>
<td>Molitor, P.</td>
<td>Wojcik, A. S.</td>
</tr>
<tr>
<td>Dare, G. L.</td>
<td>Nayak, A.</td>
<td>Zergainoh, N.</td>
</tr>
<tr>
<td>De, V.</td>
<td>Nicolescu, G.</td>
<td>Zolotov, V.</td>
</tr>
<tr>
<td>Delgado-Frias, J. G.</td>
<td>Nyathi, J.</td>
<td>Zukowski, C. A.</td>
</tr>
<tr>
<td>Doom, T. E.</td>
<td>Ortega, A.</td>
<td></td>
</tr>
<tr>
<td>Elmasry, M. I.</td>
<td>Panda, R.</td>
<td></td>
</tr>
<tr>
<td>Ferrero, M.</td>
<td>Friedman, E. G. [1], [2]</td>
<td></td>
</tr>
<tr>
<td>Gala, K.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session Index

Session 1: Power Conscious Design
Session 2: Design Validation
Session 3: Routing and Repeaters
Session 4: Placement Algorithms
Session 5: Low Power Circuits
Session 6: Behavioral and High Level Synthesis
Session 7: Power Estimation and Partitioning for Low Power
Session 8: Simulation and Estimation