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ABSTRACT

RAKE receivers are widely used in the wireless communications
industry. Currently, custom VLSI is the most popular
implementation. Programmable and reconfigurable logic
implementations are becoming more attractive because of their
flexibility and due to technology advancements.  We have
implemented a RAKE receiver on an Annapolis Wildforce board
with four Xilinx 4000 family chips for a total of 100,000 gate
equivalents. Our system is able to implement  a RAKE receiver
for underwater data communication systems that works in real
time. We also investigate mapping a RAKE receiver to a Virtex
chip for real-time atmospheric wireless communication.
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1. INTRODUCTION

In wireless communications, transmitted signals arrive at the
receiver through different paths.  This is because the signals get
reflected and refracted off of the physical obstacles in their way
and through the atmosphere.  This problem is known as multi-path
in the wireless industry, and it stands as the most challenging
problem in recovering the transmitted signal.  A RAKE receiver
rakes through a given time-window and searches for different
delayed versions of the same signal.  It then employs a variety of
techniques to use the different images to decode the signal, rather
than using a single image.

We have implemented a RAKE receiver on an Annapolis
Microsystems Wildforce Board with four Xilinx XC4028
processing elements.  Our RAKE receiver both demodulates and
despreads the incoming signal.  It operates in real time for
underwater communication.  We have also investigated
implementing a RAKE receiver for voice reception through the
atmosphere.  A Virtex chip from Xilinx Corporation has both the
capacity and the speed to implement a RAKE receiver for voice
applications.

Below, we discuss related work in mapping signal processing
algorithms to FPGAs.  In the next section, we present the
techniques used to implement the wireless transmitter and the
RAKE receiver.  In Section 3 we present the receiver design and
implementation constraints.  In Section 4 we discuss our design
flow and implementation of the RAKE receiver.  Finally, we
discuss mapping a RAKE receiver to a Xilinx Virtex chip for real-
time voice reception.

1.1 Related Research

There has been increased interest in implementing signal
processing and communications algorithms on FPGAs.
Cummings and Haruyama [1], for example, discuss the emergence
of “FPGAs in the Software Radio”, and compare FPGA
implementations to DSPs and ASICs.  Their comparison is
qualitative.  It does not give particular performance comparisons,
but rather focuses on the advantages of FPGAs in
communications products, namely flexibility and performance
advantages due to concurrency.

Other researchers present quantitative data showing the
advantages of using FPGAs in signal processing systems.
Peterson and Hutchings [2] conducted performance measurements
of individual multipliers mapped to FPGAs, DSP processors and
ASICs.  They found that FPGAs can provide an order of
magnitude better performance than DSP processors and can even
approach ASIC performance levels.  The authors point out that
most DSP systems are limited by their multiplication
performance.  The authors use the FPGAs to perform DSP
algorithms, and compare their performance to that of the C5X
DSP processors from Texas Instruments.  In addition to individual
multipliers, a 20-tap FIR filter and a Fast Fourier Transformer
(FFT) are used as benchmarks.  They conclude that the only
systems that performed worse than the DSP processor are those
using only a single FPGA-based multiplier to perform the entire



filter loop in the FIR implementation.  In order for FPGAs to
obtain a performance improvement over DSP processors,
extensive specialization and concurrency must be employed.  Our
RAKE receiver implemented on a Wildforce board, currently uses
only one multiplier per chip.  Each finger occupies one chip.
Parallelism is realized by using multiple FPGAs for multiple
fingers running concurrently.  We are investigating a RAKE
receiver implemented on a Virtex chip, in which case there are
many more opportunities for parallelism.

Other researchers have implemented complete systems in FPGAs,
and compared them to both ASIC and DSP implementations.
Moeller and Martinez [3] have implemented a radar front-end
processor in a Virtex chip and concluded that a filter implemented
on a Xilinx Virtex chip can meet ASIC performance.  Graham and
Nelson [4] have implemented sonar beamforming on a board of
Xilinx based FPGAs, and compared the performance to the same
algorithm implemented on a Sharc DSP from Analog Devices.
Their findings show that multi-chip FPGA implementations can
outperform multi-chip DSP implementations as a result of
flexibility in FPGA architectures, good communications, the
ability to match the implementation to the algorithm, and
concurrent processing.

The work most closely related to ours [5] uses a Xilinx FPGA to
build a matched filter for a spread spectrum communications
system.  The authors explain how a matched filter can be used as a
means of establishing synchronization in Direct Sequence Spread
Spectrum (DSSS) communications.  A matched filter is
essentially a sub-design of the RAKE receiver.  It despreads the
received signal without demodulating it.  A filter matched to a
specific pseudo random (PN) sequence has an impulse response
equal to the PN sequence reversed in time.  The input is the
receiver data; the output will peak when the data is matched to the
filter.  This indicates that the data and the code sequence are
synchronized.  A block diagram of the matched filter is shown in
Figure 1.  Decoded signals for both I (inphase) and Q (quadruture)
channels are generated. To decode a signal, the matched filter
simply multiplies the input by the PN coefficients A0 through An-1.
The results are added every T word delay.  A hit signal is asserted
when the magnitude is greater than a user-specified threshold.
This design was implemented on two Xilinx 4005 FPGA chips.
The main resource used in the matched filter circuit is the
add/subtract module.
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Figure 1: Block diagram of the matched filter detector

Note that no multiplier is required in this filter because the PN
sequence elements are either 1 or –1. In our approach, we
demodulate as well as despread the signal, so our implementation
is more complex, requiring multipliers as well as add/sub

modules. The authors are able to run their bit-parallel design with
data speeds as high as 17 MHz

2. SPREAD SPECTRUM MINI-TUTORIAL

Every band-limited channel has a maximum data rate at which it
can be used to transmit data reliably.  Spread spectrum
communication systems use a bandwidth W much greater that the
information bit rate R, to spread the power of the transmitted
signal over the wide bandwidth of the transmission channel. There
are two common techniques to accomplish this, Frequency
Hopping Spread Spectrum (FHSS), and Direct Sequence Spread
Spectrum (DSSS).  In the first technique, the channel is divided
into equal sub-channels.  The transmitter uses a pseudo-random
sequence to hop between those channels while sending data.  The
later technique, which is the one used in this project, cross
correlates a pseudo random sequence called the direct sequence
with the information sequence and sends the wide-band product
over the entire channel.

Both techniques result in making transmitted signals appear
similar to random noise and difficult to demodulate by receivers
unless they can produce that same random sequence.  In short,
spread spectrum systems are used to combat and suppress noise,
and to hide the signal by transmitting it at low power.  The
following block diagram illustrates the basic elements of a spread
spectrum communication system with a binary information
sequence entering the channel encoder, and at the output of the
channel decoder.
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Figure 2: Spread Spectrum digital communication system

2.1 Important Properties of Direct Sequence

The pseudo random sequence used in DSSS possesses unique
properties.  It has a unity auto-correlation and a minimal cross
correlation.  Let ( )np be the random sequence vector.

Then, ( ) ( ){ }npnpE *  is the expected value of the dot product
of ( )np  with itself, or in other words, the average value of that
product.  This product is called the auto-correlation of ( )np .  In a
multi-user environment, each user will have a unique ( )np

sequence.  ( ) ( ){ }npnpE *
21  is the cross correlation between ( )np1

and ( )np2 .  A DSSS transmitter n, cross-correlates the random

sequence ( )npn  with the information sequence ( )nI  and sends it

over the channel. At the receiver side, ( ) ( ) noisenInpn +*  is
detected.  The DSSS despreader, cross-correlates the received
signal with the locally generated ( )npn .  The mathematical
equation that represent this are shown below:
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This prevents receivers from demodulating the signal unless it
was intended for them.

3. MODULATION AND CODING IN DSSS
COMMUNICATIONS

Modulation and coding are two ways to reject added noise in a
wireless communication environment.  Nowadays, we can choose
from different modulation schemes according to our needs.  Direct
Sequence Spread Spectrum (DSSS) is a relatively new technique
that allows the transmitter to spread the transmitted signal over the
entire given spectrum.  Differential coding enables us to use non-
coherent detection at the receiver, thus simplifying its hardware
by eliminating the need for a phase locked loop (PLL).  Both
DSSS and differential coding are described below.

3.1 Direct Sequence Spread Spectrum (DSSS)

To transmit an information bearing sequence (IBS) of ones and
zeros over a wireless channel, the IBS must be modulated.  As a
result of modulation, many bits are transmitted on the channel that
correspond to one bit of information in the IBS.  In DSSS, a
Pseudo-random Noise (PN) sequence consisting of a number of
chips is used to spread the bandwidth of the information bearing
sequence over a given spectrum.  At the transmitter side, the IBS
is multiplied by the PN sequence.  At the receiver side, the
received signal with added noise is despread by multiplying it
again by the same PN sequence, as shown in Figure 3.  This
allows us to recover the IBS, and at the same time, filter the noise
by spreading it at the receiver side. Note that DSSS allows for
multiple access by using different PN codes for different users [6,
7].

In Figure 4, a spectral analysis of the modulated signal is plotted.
The first figure shows the IBS spectral density before multiplying
by the PN sequence.  The middle figure shows the spread IBS
after multiplying, and the narrow band noise in its center.  The last
figure shows the recovered IBS after multiplying it again by the
PN sequence, and the spread noise that has been multiplied only
once.  This weakens the effect of the noise by distributing its
power across a wide spectrum.

Figure 3: Spreading and despreading
information bearing signal
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Figure 4: Noise reduction using DSSS

3.2 Differential Coding

Differential coding means that the receiver will only need to track
the phase difference between two consecutive symbols (non-
coherent detection), instead of tracking the phase of each received
symbol by comparing it to a reference signal (coherent detection).
In this wireless system, we assume the Doppler effect is
negligible. That is because the Doppler shift between two
consecutive chips is small.  The information will effectively be
stored in the phase difference between two consecutive symbols.
If a  is the information bearing sequence, then

( ) ( ) ( )1−×= ndndna , and the modulated signal is

( ) ( ) ( )njendny θ=

where ( )nd  is the coded digital sequence that goes to the
modulator, and θ  is the carrier phase.
At the receiver side, two consecutive received symbols are
multiplied to recover one transmitted information bit as follows:
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where ( )nr  is the received sequence.

3.3 Transmission Process

The transmitter consists of three modules.  The Source Encoder
receives the information bit-stream.  The output is differentially
coded.  The Channel Encoder uses DSSS techniques to overcome
the effects of noise and interference introduced by the channel.
Every bit is spread by multiplying it with the spreading sequence.
In our case, 25 chips are the result of spreading 1 bit.  The Digital
Modulator serves as the interface to the communication channel.
It has a clock frequency of 4 kHz.  Every chip will be represented
by 16 samples.  This means that every IBS bit requires that 400
samples be transmitted.



4. RAKE RECEIVER SYSTEM DESIGN
OVERVIEW

The complete design consists of a transmitter, a channel model
and a receiver as shown in Figure 5.  We are only implementing
the receiver, but we were required to simulate all three in order to
model the design.  We used MATLAB to simulate the design of
the transmitter and multi-path channel.  We also simulated the
receiver and used this as the specification for our design.  In the
next section we discuss the receiver design and tradeoffs in more
detail, and then present the Annapolis Wildforce Board that was
used to implement the receiver.

4.1 Receiver Design

Figure 5 gives an overview of the whole system, and details of the
implementation of the RAKE receiver.  We simulated the receiver
in MATLAB and used this as the specification for our receiver
design.  This receiver can have as many fingers as desired.  Each
finger will simply receive a delayed version of the transmitted
signal.  A constant delay is placed between the different fingers.
If a path does not exist at a certain finger,  corresponding to a
certain delay, then the despreading process will produce noise
instead of a meaningful signal [8,9].
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Figure 5: Complete system block diagram

This noise is filtered out by the final detector as shown in the
receiver block diagram in Figure 5.   Please note that in the figure,

the notation 32/24 means that the result is 32 bits, and only 24 bits
are used.

4.2 Algorithm Design

Our receiver is designed for use with an underwater, acoustic
communication system.  For this application, the number of bits
that need to be decoded in one second is 400. This important
performance number varies widely depends on the application.  If
this receiver is to be used in mobile phones for example, it will
have to be much faster. A quick look at the algorithm shown in
Figure 6 indicates that the main loop will iterate 400 times in
order to decode one bit.  At a rate of 4000 samples/second, the
hardware has 250 microseconds to execute one iteration.  In a
single loop, 12 multiplications are required.

This number is significantly reduced by noticing that the variables
INPHASE and QUADRATURE depend only on the sampling
frequency and the carrier frequency.  Therefore they can be pre-
calculated and stored in memory.  Also, since the variables Pn1
and Pn2 always have the values 1 or –1, four multiplication
operations (lines 12 and 13) can be replaced by simpler
operations.

This brings down the total number of multiplications to two,
which can be calculated serially or in parallel.   The two
multiplications outside the loop (lines 15 and 16) could potentially
share the hardware with the inner-loop multiplications. The

1 SPECIFICATIONS:
2 SAMPLE_PER_CHIP = 16;
3 CHIP_PER_BIT = 25;
4 SAMPLE_FREQ = 40000;
5 CARRIER_FREQ = 12000;
6 SAMPLE_PER_BIT = SAMPLE_PER_CHIP *
CHIP_PER_BIT;

7 FOR n FROM 1 TO SAMPLE_PER_BIT LOOP
8 READ Pn1 EVERY (SAMPLE_PER_CHIP) TIMES;
9 READ Pn2 EVERY (SAMPLE_PER_CHIP) TIMES;
10  INPHASE = COS (n/(SAMPLE_FREQ) * 2 * PI *
CARRIER_FREQ);
11 QUADRATURE = SIN (n/(SAMPLE_FREQ) * 2 * PI *
CARRIER_FREQ);
12 BRANCH_1 = BRANCH_1 + r(n) * [Pn1 * INPHASE + Pn2
* QUADRATURE];
13 BRANCH_2 = BRANCH_2 + r(n) * [Pn1 *     
QUADRATURE - Pn2*INPHASE];
14 END FOR LOOP;

15 BRANCH_1 = BRANCH_1 * PREVIOUS_BRANCH_1;
16 BRANCH_2 = BRANCH_2 * PREVIOUS_BRANCH_2;
17 FINGER=BRANCH_1 + BRANCH_2;
18 IF FINGER > THRESHOLD THEN PASS;
19 ELSE FINGER = 0;

Figure 6: Algorithm

algorithm, as mentioned before, was tested using MATLAB.
MATLAB is a very efficient computational language.  Coupled
with its signal processing toolbox, it becomes a powerful means to
verify signal-processing algorithms before attempting synthesis.



MATLAB code looks very different than the behavioral code
listed previously.  One reason is the MATLAB dot operator (.x)
that facilitates one line vector operations such as multiplication
and addition instead of using a loop.  The multiplication loop in
Figure 6 has the MATLAB representation shown in Figure 7.

MATLAB code is generally shorter than behavioral VHDL since
in VHDL, the loops must all be made explicit.  MATLAB is a
succinct way to express the algorithms used in our receiver.

The main disadvantage of MATLAB from a hardware modeling
point of view, is that MATLAB uses very wide precision
arithmetic operations.  In hardware, by comparison, these
operations are performed in fixed point with the minimum number
of bits required in order to keep the area used small.  Note that our
MATLAB code is purely algorithmic, and cannot be directly
translated to hardware.

7 PN1 = [ 1 1 1 …….1]  // each number repeated
(SAMPLE_PER_CHIP) times//
8 PN2 = [ -1 -1 -1…….1] // each number repeated
(SAMPLE_PER_CHIP) times//
9 n = [1 2 .. Sample_per_bit]
10 Inphase =  cos(n/(SAMPLE_FREQ) .x 2 x PI x
CARRIER_FREQ
11 Quadrature =  SIN(N/(SAMPLE_FREQ) .x 2 x PI x
CARRIER_FREQ

Figure 7: MATLAB sample code

4.3 Annapolis Wildforce Board

A Xilinx based FPGA board from Annapolis Microsystems,
shown in Figure 8, is used to realize this receiver.  This board
consists of four XC4028EX-3HQ240 programmable elements
(PEs), and one XC4028EX-3HQ304 controller.  Each finger is
mapped on one PE.  The final result, the bit decoded by the
receiver, is communicated by the controller to the host PC.  The
detector and the threshold device can be mapped on any of the
four PEs.
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Figure 8: Annapolis FPGA board

5. DESIGN FLOW

As stated previously, we began our receiver design with
simulation in MATLAB in order to verify functionality. A fixed-
point library, written in the C programming language, was used to
simulate the actual hardware implementation.  At this point the
overall design of the receiver and the bit-width of the operations
were determined.  Next, we used Synplicity design tools to map

our design to the Annapolis Wildforce board.  Xilinx placement
and routing tools are used to route the design for final
downloading to the FPGA board.  A block diagram of the system
design and synthesis process is shown in Figure 9.

Since the receiver could not possibly fit on a single chip, a
distributed implementation strategy had to be employed.  A
decision was taken to configure one finger on each FPGA chip.
That meant that one finger had to occupy no more than 1024
CLBs.  The downside was that we could fit only one multiplier on
one chip, the upside side was that this approach made our design
more modular.   Recall that two multiplications are executed in
each iteration.  We used one multiplier to serialize these
operations.  We were able to use this multiplier for the outer loop
multiplications as well.

Our final design uses 22 cycles and occupies close to 1000 CLBs.
The clock speed was chosen to be 1 MHz.  The throughput is
equal to 4000 samples per second or 4 kHz.  Delays between
fingers were implemented using a 5-bit counter, where the finger
will ignore the incoming data bits until the counter reaches a
preset number equal to the number of samples per bit.
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Figure  9 :  Design f low block diagram

To test the design, a number of bits were modulated and spread
using the transmitter routine in MATLAB. The bits were then
passed through the channel simulator which acted as a 3-path



channel.  Finally the output of the channel was passed as the input
to the receiver on the FPGA board.  The output of the receiver
was compared with the transmitted bits and verified to be the
same.

6. DISCUSSION

We have presented the design for an underwater RAKE receiver
that his been implemented on an Annapolis Wildforce Board and
runs in real time.  The receiver both despreads and demodulates
the incoming signal.  In this section we discuss improvements we
would like to see in the design process, and current work in
implementing a RAKE receiver for voice communication over the
air on a Virtex chip.

The translation process of the MATLAB code to VHDL
significantly slows down our design flow.  This is because of  the
inherent differences between the two languages. MATLAB on
one hand is a language specifically designed for modeling signal
processing with special constructs for vector operations, while
VHDL is a concurrent hardware modeling language which
requires all loops, interfaces, and signal types to be made explicit.
As a result, the translation process between the two languages is
not trivial.  What is needed is a design tool that would translate
the MATLAB code either VHDL, or directly to an FPGA
implementation.  Other researchers are currently working on this
problem [10, 11].  These approaches currently require the
MATLAB description to be specified closer to hardware than the
algorithmic approach we currently use.

We have used a member of the Xilinx 4000 family to implement
this receiver.  Since then, Xilinx has come up with far more dense
chips.  For example, the Xilinx XCV50 Virtex chip can hold up to
25 RAKE fingers as opposed to one using the XC4028EX.  To
perform real time voice wireless communications using direct
sequence spread spectrum techniques, a more involved analog
interface will have to be adopted. A typical air-interface carrier
frequency is 1900 MHz.  The signal is extracted from the carrier
frequency in the analog domain mixing it with the output of a
variable crystal oscillator (VCO) running at the carrier frequency.
The output will then be fed to an FPGA which will despread it
then demodulate the inphase and quadrature parts.  Multipath still
exists in such an environment, and an FPGA-based RAKE
receiver is necessary to increase the reliability of this wireless
system. The system architecture of such a receiver would be the
same as the one described in this paper.

A typical example of an air-interface wireless standard is the IS-
95 standard protocol for CDMA mobile radio communications in
North America.  Channel bandwidth is 1.25 MHz.  A maximum
data rate of 9.6 kb/s per user is spread over the channel
bandwidth, a total spreading factor of 128.  This is equivalent to
1.2288 Mchips/sec or 128 chips/bit.  The transmitter simply
spreads the data then modulates it before transmitting it.  The
receiver will have to first demodulate the signal then despread it.
Since the channel is 1.25 MHz wide, the receiver will have to
process 1.25 million samples each second.  Each sample involves
two multiplications, inphase and quadrature.  A simple calculation
reveals that the receiver will have to perform 2.5 million
multiplications each second.  An FPGA running at 10 MHz could
do the job provided more than one multiplier is used.  For
example if two multipliers were used, each will have 8 cycles to

perform a multiplication.  This design should be easily
implementable on a Virtex chip, while still fitting several fingers
per chip.  The IS-95 standard recommends three or more fingers
for the receiver.

7. CONCLUSION

In this paper, we have discussed the design and implementation of
a RAKE receiver.  The design process requires numerous
decisions before committing to a particular RTL implementation.
Prior to synthesis, the receiver algorithm was designed both for
accuracy and for efficient hardware implementation.  Synplicity
synthesis tools were used to implement the design on an
Annapolis Wildforce Board.
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