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ABSTRACT

This paper presents a benchmark suite for evaluating a
configurable computing system’s infrastructure, both tools and
architecture. A novel aspect of this work is the use of
stressmarks, benchmarks that focus on a specific characteristic or
property of interest. This is in contrast to traditional approaches
that utilize functional benchmarks, benchmarks that emphasize
measuring end-to-end execution time. This suite can be used to
assess a broad range of configurable computing systems,
including single configurable devices, multiple configurable
devices, and mixed architectures, such as fixed-plus-variable
devices and hybrid systems. In addition, aspects that are
particularly relevant to the domain of configurable computing,
such as run-time reconfiguration and variable precision
arithmetic, are considered. The paper provides an overview of
the benchmark suite, presents some implementation results on an
Annapolis Micro Systems WILDFORCE board, reflects on the
benchmark suite developed, and briefly describes future work.
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1. INTRODUCTION
A configurable computing system refers to a system that can be
changed in basic computational structure, either statically or
dynamically, without adding physical hardware devices. In its
current realizations, such a system consists of a set of general-
purpose processors augmented with a set of coprocessors, for
example, uncommitted field-programmable gate arrays (FPGAs).

An overview of current configurable computing technology can
be found in a recent article [26].

Configurable computing architectures can be used to speed up
dedicated activities, such as inner-loop computations. Using such
architectures, operations traditionally performed by software
running on a general-purpose processor can be implemented by
an FPGA. The decision to put certain algorithms in an FPGA
versus software on a general-purpose processor is based on such
factors as system cost, overall performance, cost of dynamically
loading the FPGAs, and the degree of interaction between the
general-purpose processors and the FPGAs. Research efforts in
the area of hardware/software co-design [20] are investigating
approaches for performing this hardware/software partitioning.

In addition to being an approach that allows computational
elements (for example, FPGAs) to be programmed to perform
different tasks, configurable computing provides a niche in the
processing spectrum, which includes general-purpose processors,
application-specific processors (such as digital signal processors,
graphics processors, and butterfly processors), FPGAs, and
dedicated application-specific integrated circuits (ASICs). It
offers additional degrees of design freedom, due to the presence
of numerous space-time trade-off opportunities. Also, as a
technology, it has the potential to reduce overall system life-cycle
and maintenance costs.

Although much attention has been given to the development of
new, innovative architectures for configurable computing [3][30]
and investigating applications of configurable computing
[13][27], little effort has been invested in developing assessment
techniques for configurable computing systems. These techniques
can be used to determine which systems will best satisfy a user’s
overall requirements. Benchmarking is commonly used for
evaluating the hardware and software of general-purpose
computer systems and parallel machines. As configurable
computing technology matures and as new configurable
architectures emerge, the use of appropriate benchmarks will
play an increasingly important role in evaluating configurable
computing systems. The need for objective configurable
computing benchmarks has been expressed by several
researchers [21].



This paper presents a benchmark suite for assessing configurable
computing systems. An important goal is to provide benchmarks
that expose as much information as possible about a configurable
computing system’s infrastructure, both tools and architecture.
The intent of these benchmarks is not solely to compare
competing architectures, but rather to provide insight regarding
specific properties of configurable computing systems. The
benchmark suite being developed leverages the work performed
in the C3I Parallel Benchmark Suite (C3IPBS) program [19],
which addressed the development of a suite of benchmarks for a
variety of critical C3I (command, control, communications, and
intelligence) applications on various parallel machines. Several
benchmarking concepts from the C3IPBS program have been
applied to the domain of configurable computing, such as the
development of a benchmarking methodology, benchmarking
procedures, unbiased specifications, and acceptance tests for
ensuring that an implementation satisfies a benchmark
specification.

In addition to filling a critical need and helping the development
and propagation of configurable computing into embedded high-
performance computing (HPC) systems, the benchmark suite
provides the following benefits:

• Establishes an initial suite of benchmarks across a broad
range of applications and HPC technologies;

• Establishes a uniform benchmarking methodology to allow
meaningful comparison of results across implementations
and solutions;

• Provides a resource for the adaptive computing systems
(ACS) community, through the public dissemination of
benchmarks and related information;

• Provides a tool for developers and vendors to evaluate their
products, prototypes, and systems.

The remaining sections of this paper are organized as follows.
Section 2 describes related work. In Section 3, our approach to
the development of benchmarks for configurable computing
systems is described in more detail. In Section 4, the benchmarks
being developed are discussed, along with various aspects of the
methodology. Section 5 provides a few implementation results
and presents status. Some thoughts on the benchmark suite are
provided in Section 6. Finally, in Section 7, conclusions are
discussed.

2. RELATED WORK
Four types of benchmarks [16] are typically used in the
evaluation of a system’s performance: 1) “real” programs - actual
programs to be executed on the system; 2) kernels - small, key
pieces extracted from real programs; 3) “toy” benchmarks -
simple, easy to run programs whose result is known a priori; and
4) synthetic benchmarks - programs which are constructed to be
representative of a larger set of programs. These benchmark
types are listed in decreasing order of accuracy for predicting
performance.

A variety of benchmarks have been developed to evaluate
computer systems. Widely used benchmarks include the Standard
Performance Evaluation Corporation (SPEC) benchmarks [15],
LINPACK [12], and the NAS parallel benchmarks [5]. These
benchmarks are used to measure the performance of a computer’s
integer and floating-point computations, among other things.

Such benchmarks are representative of functional benchmarks,
since they emphasize measuring end-to-end execution times.

Several benchmarks have been developed to evaluate Electronic
Design Automation (EDA) tools [7]. These benchmarks are used
to assess circuit partitioning, high-level synthesis, logic
synthesis, physical design, and circuit simulation tools. Some of
these benchmarks have also been utilized to evaluate various
aspects of configurable elements as well, such as place and route
tools.

Within the domain of configurable computing systems
benchmarking, the following works are particularly relevant. The
Programmable Electronics Performance Corporation (PREP)
benchmarks [23] are used to evaluate both synthesis tools and
programmable logic devices. The RAW Benchmark Suite [4] is a
collection of benchmarks used to evaluate overall performance
and scalability of a configurable computing system. Brown et al.
[9] have used a logic synthesis benchmark suite to investigate
FPGA routing architectures and CAD tools.

The benchmarks presented in this paper differ from these works
in several respects. Our approach introduces the concept of
stressmarks, benchmarks that focus on a specific characteristic or
property of a configurable computing system’s infrastructure.
This approach requires identifying a specific property of interest
to be assessed, developing a stressmark that adequately measures
this property, and deriving associated metrics of interest. The
approach is fundamentally different from existing benchmarking
approaches for configurable computing. It arises from the need to
consider the numerous aspects typically associated with
configurable computing tools and architectures.

Our benchmarking approach addresses a broad class of
configurable architectures and issues. We are looking at
configurable architectures that consist of a single configurable
device, multiple configurable devices, and mixed architectures,
such as fixed-plus-variable devices and hybrid systems that
contain, for example, general-purpose processors, digital signal
processors, and FPGAs. In addition, we address issues such as
run-time reconfiguration and variable precision arithmetic, which
are important aspects of configurable computing systems.

Our effort leverages existing benchmarking approaches for
parallel computers and adds rigor to the benchmarking process.
We are utilizing many of the concepts and ideas developed in the
Rome Labs C3IPBS program and applying them to the
configurable computing domain. Specifically, we are developing
a benchmarking methodology and unbiased benchmark
descriptions, which specify inputs, outputs, acceptance tests,
metrics, and information to be reported.

3. BENCHMARK DEVELOPMENT
APPROACH

Our structure for the development of configurable computing
benchmarks is driven by the three main users of the benchmarks,
and their respective motivations:

• Agencies that invest in configurable computing
technology - to evaluate the progress of configurable
computing technology;



• The developers of configurable computing technology - to
inexpensively evaluate the designs of their components
against a broad set of application requirements;

• Application system developers and procurement agencies -
to evaluate the performance of applications and select the
right technologies for their systems.

The overall benchmarking approach for configurable computing
systems consists of developing a benchmarking methodology,
benchmark specifications, and public dissemination of the
benchmarks. Specifically, the approach for developing the
benchmark suite includes performing the following tasks:

• Requirements Summary - review a broad range of
applications and metrics to identify benchmarks that are
relevant to configurable computing;

• Methodology Development - develop a rigorous
methodology which can be applied across all benchmarks,
including procedures, metrics, measurement, and reporting
of information;

• Benchmark Development – develop unbiased benchmark
specifications that focus on what is to be implemented, not
how;

• Benchmark Evaluation - implement each benchmark on a
target configurable computing platform to validate the
specification;

• Public Dissemination - address the public availability of
the benchmarks.

4. BENCHMARK DETAILS
This section discusses the benchmark suite and some elements of
the benchmarking methodology. At this time, six benchmarks
have been developed. The current benchmark suite consists of
five stressmarks and a computer-aided design (CAD) benchmark.
First, an overview of the benchmark suite is provided. Next, a
benchmark specification template used to describe the
benchmarks is discussed. Benchmark metrics and their
measurement are described, followed by a discussion on
submission of results.

4.1 Benchmark Suite Overview
In this effort, the following characteristics of a configurable
computing system have been identified: versatility, capacity,
timing sensitivity, scalability, and interfacing. A stressmark has
been developed for evaluating each one of these properties. It
should be noted that this list is not necessarily “complete,” and
others characteristics may be relevant. Effective implementation
of these benchmarks evaluates both the configurable computing
architecture and CAD tools, such as those used for synthesis as
well as place and route. A description of these stressmarks, along
with a CAD benchmark, is provided below.

• Versatility - An important characteristic of configurable
computing systems is the ability to perform several
functions using a single architecture. This stressmark is a
space versus time trade-off benchmark that evaluates how
efficiently an infrastructure performs a distinct sequence of
computations. The benchmark is based on a wavelet-based
image compression algorithm [2][6][17], which accepts an
input image in PGM format and outputs a compressed
image. This algorithm consists of the following steps:
wavelet transform, quantization, run-length encoding, and
entropy coding.

• Capacity - This stressmark attempts to assess the usable
capacity of a configurable computing infrastructure with a
Huffman encoding algorithm [14][18][22][25]. This is
accomplished by measuring the size of the largest variable
bit-length look-up table that can be placed in the
architecture. The stressmark reads a series of 16-bit
characters from an input file, and outputs a continuous
string of bits that encode all input characters using a
predefined look-up table.

• Timing Sensitivity - This stressmark evaluates how well a
time-critical application can be implemented by a
configurable computing infrastructure. Within the context of
this stressmark, a time-critical application is one that
contains computational steps that must be implemented
efficiently; otherwise, the overall performance will suffer.
The computation to be implemented in this benchmark is a
COordinate Rotation DIgital Computer (CORDIC) two-
dimensional vector rotation algorithm [28][29], which has
several pipeline stages. The input to this stressmark consists
of a list of 16-bit vector coordinate pairs and rotation angles.
The output consists of a collection of rotated vectors
expressed using the same fixed-point format as used for the
input.

• Scalability - The objective of this stressmark is to assess
how well a configurable computing architecture can harness
multiple configurable devices to solve a single problem. The
application chosen for this purpose is the Fast Fourier
Transform (FFT) [8][24]. In particular, this stressmark is
based on a decimation in frequency fixed-point FFT. It
specifies data sets of 3 different sizes and is concerned with
the time required to perform an FFT of a given size as the
number of devices used increases. Specifically, the input
vectors are classified as small (512 complex elements),
medium (4,096 complex elements) and large (16,384
complex elements).

• Interfacing - The interfacing stressmark evaluates how well
a “mixed” platform, consisting of several types of hardware
resources, addresses a complex, multi-step application. The
specific kernel application chosen for this stressmark is a
Constant False Alarm Rate (CFAR) algorithm [10], an
adaptive, multiple stage, signal processing procedure. The
algorithm accepts synthetic aperture radar (SAR) frames as
input and outputs information regarding the number of
objects detected, the size of the objects, and the centroids of
the objects. CFAR consists of the following steps: local
statistics computation, anomaly detection, erosion, dilation,
and centroid calculation.

• CAD – This functional benchmark evaluates how well a
configurable computing infrastructure can perform a time-
consuming CAD application. The specific kernel application
chosen for this benchmark is Boolean satisfiability (SAT)
[1][31]. Given a Boolean formula in conjunctive normal
form (CNF), the objective is to determine an assignment of
values to the input variables such that the formula evaluates
to true, or to determine that it is not possible.

4.2 Benchmark Specification
The specification of a benchmark requires considerable care. A
benchmark specification must unambiguously and completely
state the operations to be performed, the data to be used as input,
and the measurements to be performed. No other documentation
should be required to implement the benchmark. To allow for
public distribution, all benchmark technical data should consist



of unclassified information. The selected benchmarks should
represent more than a mere functional definition. They must
describe a sequence of steps that will represent the use of
configurable computing in actual applications.

The benchmarks are specified algorithmically using a
combination of natural language text, mathematical notation,
diagrams, and pseudo code where necessary to avoid ambiguity.
A specification focuses on the problem to be solved, rather than
how it should be solved. This approach is similar to that used on
both the NAS parallel benchmarks [5] and the C3IPBS programs
[19]. The strength of this approach over specifying benchmarks
as code is that the resulting specifications are more portable and
less biased toward any particular architecture. Also,
implementers can tailor the implementations to their platforms.

Each specification is available in a separate document. Each
contains a brief introduction to the benchmark, providing
information about rationale and intent. It also contains an
algorithmic description of the computations to be performed,
including any restrictions. The specification describes input data
formats, output data formats, acceptance tests, metrics and
timing procedures, information to be reported, notes, and
references. The components of the benchmark specification are
described in more detail below.

• Introduction - This section describes the benchmark’s
rationale and intent.  The rationale provides justification for
the choice of the benchmark, and the intent describes the
characteristics of the configurable infrastructure to be
exposed.

• Algorithmic Description - In this section, a functional
description of all operations to be performed is provided,
including algorithmic restrictions, mandatory steps, and
references to relevant literature.

• Input - This section includes a discussion of the input to be
used by the benchmark implementation, its format, and
where the input is to come from.

• Output - This section includes a discussion of the output to
be generated by a benchmark implementation, its format,
and where the output is to be stored.

• Acceptance Test - This section describes the conditions that
have to be met in order to consider the results of the
benchmark valid.  It defines tests that ensure the benchmark
results are within acceptable tolerances.

• Timing - This section describes how timing is to be
performed, what must be reported about timing services,
when timing is to start, and when timing is to end.

• Reporting of Results - This section describes what
information is to be reported. The primary goal is
reproducibility. The information that needs to be reported
includes specifics regarding hardware and software
configuration used, software tools, metrics tabulated, source
code used as a basis for the implementation, and outputs of
the implementation.

• Notes - This section contains any notes that should be
recorded, for example, any tips or caveats regarding the
benchmark implementation.

• References - This section contains citations of any relevant
articles and papers.

Some features have been added to the benchmark specifications
that are worth mentioning. For example, some benchmarks, such
as the versatility stressmark, have low, medium, and high

complexity versions. This approach allows implementers
considerable flexibility regarding how much effort should be
invested in implementing the benchmark. Also, in many
benchmarks, implementers can provide “automated” solutions,
“manual” solutions, or a combination of both. For example, an
implementer may choose to evaluate the quality of a solution by
performing “automatic” synthesis and then manually performing
place and route.

Each benchmark specification is accompanied by sample “C” and
VHDL code. The “C” code aids in clarifying the specification
and provides a first order validation of the specification. The
VHDL code aids in ensuring that the specification can be
implemented with reasonable effort. Also, the “C” and VHDL
code can be used to reduce the effort required to implement the
benchmarks by providing a possible starting point. In some
benchmarks, the VHDL code is used to provide a required
starting point from which to derive an implementation.

A few points are worth emphasizing. The benchmark document
is the specification, not the “C” or VHDL code. The VHDL code
provided with the benchmark is not developed with the intent to
provide an optimized solution. The primary purpose is to perform
validation of the specification and assess “level of effort”
considerations. Although implementers may use the VHDL code
provided, they are encouraged to develop their own to take
advantage of any features present in their configurable computing
platform.

4.3 Benchmark Metrics
Each benchmark defines two classes of metrics: primary and
secondary. Primary metrics should be optimized. Secondary
metrics provide supplemental information. Some metrics apply to
all benchmarks, for example, the area utilized by the
implementation. Benchmark specific metrics to be tabulated are
described in the respective documents.

At a finer level of granularity, three types of metrics are
tabulated when reporting results. The first type of metric applies
to the benchmark implementation. This type of metric consists of
both primary and secondary metrics. For example, in the capacity
stressmark, the primary metric is the largest look-up table size,
since the focus is to evaluate “space” considerations. Secondary
metrics associated with the implementation are the speed of
performing the table look-up operation and area utilized on the
FPGA.

The second type of metric is associated with tools, for example,
the time to perform synthesis, as well as place and route. The last
type of metric is concerned with the amount of “effort” required
to implement the benchmark. This metric is difficult to tabulate
and interpret, since it depends on several factors: the experience
of the FPGA implementer, the type and quality of the tools, and
the computing environment, among others. These last two types
of metrics are considered secondary.

4.4 Measurement of Benchmark Metrics
Because projects interested in benchmarking may be at different
stages of development in terms of tools and/or architecture, it is
desirable to support a flexible approach for measuring
benchmark metrics, particularly timing information. In support of
this objective, the required benchmark measurements can be
made in one of three different ways:



• Simulation - Timing information, along with other relevant
metrics, can be obtained using a simulation model of the
configurable platform. If this approach is used, the following
information needs to be provided: 1) the model’s level of
abstraction (for example, register-transfer level, logic level),
2) the basis for particular timing values (for example,
estimates, back-annotated results from place and route).
Specifics regarding tools and corresponding platforms
employed should also be provided, along with the language
used for simulation, although this is addressed in a separate
section of reporting (see Section 4.5 – Software Tools).

• Place and Route - Timing information, along with other
relevant metrics, such as area utilization and (in some cases)
power estimates, can be obtained through the output of
place and route software. Specifics regarding tools and
corresponding platforms employed should also be provided,
although this is addressed in a separate section of reporting
(See Section 4.5 – Software Tools).

• Actual Platform - Timing information, along with other
relevant metrics, can be obtained by implementing the
benchmark on the platform and recording information. Time
stamps can be obtained using timing routines or by
implementing counters within the configurable architecture.
Regardless of which approach is used, the technique for
performing measurement must be explained in detail.

In general, timing for worst-case commercial operating
conditions should be reported, based on the longest timing path.
Any deviations from this operating condition should be noted.
The definition of worst case timing in terms of process, voltage,
and temperature should be provided.

4.5 Submission of Results
Two goals drive the requirements for submission of benchmark
results: 1) readers should have all the data needed to interpret the
results, and 2) the submitted results should be reproducible.
Each benchmark specification contains a description of the
information that needs to be reported (recall Section 4.2 –
Reporting of Results). Specifically, the following items should be
included in every submission:

• Hardware/software Architecture - A detailed description of
the configurable hardware employed, and if applicable, any
information about the software environment, for example,
operating system. When describing hardware, particular
attention should be paid to characteristics that convey
information about the performance of the architecture, for
example, device type, speed grade of a device, general
organization of the hardware (particularly for boards),
bandwidth associated with busses, communication between
configurable elements, memory, and input/output
information.

• Software Tools - A detailed description of the software
tools employed to program the configurable architecture,
including any vendor-specific libraries, along with any tools
used for simulation and timing analysis, should be provided.
When describing tools, platform information should be
mentioned as well.

• Metrics – This information corresponds to measured values
for various metrics. As indicated earlier, some metrics will
be common across all benchmark implementations. Other
metrics will be specific to a particular benchmark. In the

latter case, the benchmark specification document contains
the metrics to be reported. Any information regarding how
time was measured should also be provided. One or more of
the approaches described in Section 4.4 should be stated
clearly, and any additional information required that is
particular to the approach should be provided.

• Source Code - Any source code that is used as a basis for
the benchmark implementations, and any instructions for
building and running the code should be included. Details of
the algorithms used in the implementation should also be
provided.

• Output Listings - Output information from the benchmark
runs should be provided.

5. RESULTS AND STATUS
We have developed specifications for all of the benchmarks
described in Section 4.1 and have implemented the stressmarks
on a configurable computing platform. Some results are
presented in this section on the interfacing stressmark and the
scalability stressmark. Space restrictions prevent a detailed
discussion on all of the implementations and results.

Several tools were utilized to implement the benchmarks,
including simulation, synthesis, and place and route. The
Synopsys VHDL simulator and Design Compiler were used to
perform simulation and synthesis, respectively. Also, the XACT
and M1 toolsets were used to perform place and route.

The platform employed was a PCI-based Annapolis Micro
Systems WILDFORCE board. The board contained a supervisor
Xilinx XC4025 FPGA and four Xilinx XC4013 FPGAs. Each
XC4013 had access to 2 Megabytes of local memory.

The interfacing stressmark is used to evaluate how well an
infrastructure implements a complex application across a
heterogeneous mix of resources. The resources may consist of
general-purpose processors, special-purpose processors (for
example, digital signal processors), and FPGAs. As implied by
the name, one aspect being stressed is “interfaces.” Interfaces
include input/output and interactions between heterogeneous
components. Another objective of this benchmark is to evaluate
the benefit of employing configurable computing elements, such
as FPGAs. Beyond synthesis and place/route tools, automatic
hardware/software partitioning and mapping capabilities can be
evaluated as well.

The interfacing stressmark is based on a constant false alarm rate
(CFAR) kernel. CFAR is a technique for processing sensor
information adaptively in different regions to keep the rate at
which false alarms occur nearly constant. The basic principle is
to use local statistics, estimated in real-time, to adapt the
processing that occurs in a region. In synthetic aperture radar
(SAR) target classification, CFAR detection is used to adaptively
separate clutter from man-made objects based on the difference
in intensity between the measured signals and the local
background.

The objective of CFAR detection processing is to determine, in
each of several SAR intensity maps, the likely locations of man-
made objects. The outputs of CFAR detection processing feed a
more sophisticated automatic target recognition (ATR) algorithm.
By isolating the areas where objects are likely to be found, small
“chips” of SAR imagery can be analyzed using pattern



recognition algorithms to classify the objects located in each
chip. Thus, CFAR detection is an integral part of a SAR ATR
algorithm used to identify areas worthy of further examination.

Referring to Figure 1, the major “logical” computations in the
application are compute local statistics, detect anomalies, erode,
dilate, and determine centroids. The input data set consists of a
sequence of SAR intensity maps, and the outputs are a collection
of centroid locations for the objects.

Figure 1. Interfacing Stressmark

The interfacing stressmark was implemented on a 120 MHz
Pentium-based PC with the WILDFORCE board. The erode and
dilate functions were manually mapped onto a single Xilinx
XC4013 FPGA within the WILDFORCE board, while the
remaining functions were mapped onto the Pentium. The erode
and dilate functions ran at 10 MHz and consumed approximately
38% of the FPGA. It took a senior level engineer who was
familiar with erosion and dilation about 2 weeks to perform
VHDL coding, simulation, synthesis, and place and route of
these functions.

This mapping decision was based on the knowledge that the
computations performed by these functions would map well to an
FPGA. No effort was made to try and optimize the FPGA
implementations. The input data was stored on the Pentium, and
the Pentium interfaced with the WILDFORCE board using the
FIFOs available on the board.

A factor of 4x to 6x speed-up was observed for the combined
erode and dilate functions, across the eight SAR frames of input
data, which included the communication overhead. The end-to-
end execution time (latency) improvement was about 20% for the
largest SAR frame, which contained 76 objects, compared to the

software solution. Although there are several ways of improving
this performance, our intent was to illustrate how the benchmark
could be implemented.

The scalability stressmark is used to evaluate how well an
infrastructure implements an application across a multi-device
platform. The devices can be any type of configurable element.
The purpose of this benchmark is to evaluate how well the
infrastructure addresses scaling with respect to the number of
processing elements and the data size. The metrics of interest
include speed-up and efficiency, where efficiency is defined as
the speed-up divided by the number of configurable elements.
Although this benchmark is not specific to configurable
computing technology, it is of interest since many boards are
used as hardware accelerators. Tools of interest include multi-
device (for example, multi-FPGA) partitioning tools.

At the time that this benchmark was implemented, no multi-
FPGA partitioning tools were available for the WILDFORCE
board. As a result, the FFT partitioning was performed manually.
VHDL was developed for 1, 2, and 4 FPGAs. The resulting
description was simulated, synthesized, and placed and routed,
but not fully tested on the WILDFORCE platform. The
implementations consumed about 98% of each FPGA and
required about 4 weeks worth of effort.

In Figure 2, simulation results are presented for the largest data
set consisting of 16,384 elements. Two lines are shown. The top
line corresponds to linear speed-up, and the line below
represents the simulation results with corresponding speed-up
and efficiency values for 2 and 4 FPGAs.

Figure 2. Scalability Stressmark Simulation Results

Note that the efficiency drops off slightly when considering a 4
FPGA implementation. This is due to a reduction in the
maximum frequency of the implementation compared to a 2
FPGA implementation. The maximum frequency was affected by
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an increased amount of routing resources required for
communications and interactions between the FPGAs.

We are in the process of developing four more benchmarks.
These benchmarks are a micro-kernel benchmark based on a
discrete cosine transform, an information security benchmark
based on the secure hashing algorithm (SHA-1), a variable
precision arithmetic benchmark based on finite impulse response
filters, and a data dependent computation benchmark based on an
electronic counter-measure assessment application.

6. DISCUSSION
This section discusses some of the difficulties associated with
developing benchmarks for configurable computing systems and
some general insights gained as a result of performing our
benchmarking activity.

Before discussing issues specific to configurable computing
systems, the difficulties associated with benchmarking in general
are presented. Although benchmarks are widely used in academic
and industrial circles, their results are treated with skepticism. In
part, this is due to the lack of rigor associated with benchmarking
activities. In many circumstances, specifications are not stated
precisely enough, allowing implementers too much flexibility.
Also, the manner in which results are to be tabulated and
reported is often not stated precisely enough, leaving too much
room for interpretation. Timing is not always straightforward and
requires considerable care. A sufficient granularity of
computation needs to be provided, since it affects the ability to
measure time accurately.

The development of configurable computing benchmarks poses
several challenges. It is often difficult to separate the tools from
the architecture. For example, the notion of “usable capacity” is
affected by both the quality of the tools (synthesis and place and
route) and the architecture. Because numerous types of
configurable computing architectures exist (different logic,
interconnect, routing, memory, I/O), it is difficult to develop a
comprehensive suite of benchmarks that can address all of them
sufficiently well.

It is a challenge to develop “scalable” benchmarks, ones that will
scale with technology improvements, both in terms of capacity
and speed. In fact, in the development of a benchmark
specification, it is important not to be biased by the platform
being used for implementation. For example, the capacity of the
FPGA may influence the type of benchmark being developed.

Metrics need to be well thought out. This issue is related to
benchmark development. For example, should reconfiguration
time always be included as part of the overall execution time?
Also, if I/O, computation, and reconfiguration are overlapped, it
may make individual elements difficult to measure. In general,
more work is required to try and develop uniform metrics that
can be used broadly across a variety of configurable
architectures.

The concept of “space” within configurable elements poses
several issues. First, there is the issue of how to measure
“capacity” in a uniform manner across various configurable
architectures. At this time, the approach has been to extract
utilization information from place and route tools. Clearly, more

work is required here. The work by De Hon [11] provides some
insights.

In fact, there are a couple of different notions of capacity: logic
and routing. Both of these aspects need to be evaluated when
considering configurable elements. In addition to the existing
capacity stressmark, a stressmark that focuses on routing would
be useful.

Also, evaluating capacity may not be as significant as time
progresses. Although there will always be a need for high
capacity devices, with the ability to perform run-time
reconfiguration, users will essentially have unlimited capacity
available.

Some general insights gained as a result of our benchmarking
experiences include the following. Although performance is
important, other system metrics, such as size, weight, and power,
are equally important for some applications. This implies that
when evaluating implementations, it may be worthwhile to
consider combining metrics. For example, one can derive metrics
such as MOPS/kilogram-watt. Focusing on a single metric may
not reveal the benefit provided by a particular technology. For
example, a factor of 2x increase in performance may not seem
significant, but when combined with a factor of 10x improvement
in power, it may.

Debugging implementations on configurable computing
platforms is difficult and time-consuming. When an
implementation does not perform as intended, it is difficult to
know where to begin looking for the source of the error.
Environments are needed to help support the debugging process,
although some work in this area has started to appear.

FPGA experience makes a significant difference in the amount of
effort required to implement application functions and in the
quality of the implementation. It is for this reason that “level of
effort” metrics are provided as supplemental information and
should not be used as a basis for assessing benchmark
implementation complexity. More tools are required to map
complex applications onto a configurable computing platform.

7. CONCLUSIONS
Benchmarks play an important role in the assessment of
hardware/software systems. Although many different types of
benchmarks are available, very few address the needs of new,
configurable computing technologies. These technologies include
configurable architectures, such as fixed-plus-variable devices
and devices that support partial reconfiguration, and software
used to perform automatic synthesis, hardware/software
partitioning, multi-device partitioning, and run-time
reconfiguration. Benchmarks will become increasingly important
as these technologies evolve.

This paper has described our effort in the development of a
benchmark suite for assessing configurable computing systems. It
is the first effort to specify a set of characteristics relevant to
configurable computing (versatility, capacity, timing sensitivity,
interfacing, and scalability). It employs a novel approach to
benchmarking, which includes the use of stressmarks in
conjunction with functional benchmarks. Issues pertinent to
configurable computing systems, such as run-time
reconfiguration and variable precision arithmetic, are being



considered. Our approach addresses a broad range of
configurable architectures and tools. Also, it is based on an
unbiased and technology independent formal benchmark
specification methodology. It is the intent of the benchmarks to
challenge implementers (hence, the name stressmarks) and
critically evaluate configurable computing technology.

The benchmark suite is a critical element in the development,
evaluation, and insertion of configurable computing technology
in applications of interest. It allows users the ability to examine
various trade-offs, refine their configurable computing platforms,
and select appropriate configurable computing elements. In
addition, it can be used to quantify the benefits of configurable
computing technology.

Release 1.0 of the benchmark suite, which contains all of the
benchmarks described in this paper, is publicly available. It can
be downloaded from the DARPA/AFRL benchmarking program
web site located at: www.rl.af.mil/programs/hpcbench. This
benchmark suite is being used by several universities and
companies to assess new configurable computing technologies,
both hardware and software, being developed under the adaptive
computing systems program, which is sponsored by the Defense
Advanced Research Projects Agency (DARPA). A new release of
the benchmark suite, Release 1.1, containing revisions to Release
1.0 and drafts of the micro-kernel and information security
benchmarks is available on CD.
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