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ABSTRACT
A considerable portion of a chip is dedicated to a cache
memory in a modern microprocessor chip. However, some
applications may not actively need all the cache storage, es-
pecially the computing bandwidth limited applications. In-
stead, such applications may be able to use some additional
computing resources. If the unused portion of the cache
could serve these computation needs, the on-chip resources
would be utilized more efficiently. This presents an oppor-
tunity to explore the reconfiguration of a part of the cache
memory for computing. In this paper, we present a cache
architecture to convert a cache into a computing unit for
either of the following two structured computations, FIR
and DCT/IDCT. In order to convert a cache memory to a
function unit, we include additional logic to embed multi-
bit output LUTs into the cache structure. Therefore, the
cache can perform computations when it is reconfigured as
a function unit. The experimental results show that the
reconfigurable module improves the execution time of ap-
plications with a large number of data elements by a large
factor (as high as 50 and 60). In addition, the area overhead
of the reconfigurable cache module for FIR and DCT/IDCT
is less than the core area of those functions. Our simula-
tions indicate that a reconfigurable cache does not take a
significant delay penalty compared with a dedicated cache
memory. The concept of reconfigurable cache modules can
be applied at Level-2 caches instead of Level-1 caches to
provide an active-Level-2 cache similar to active memories.

1. INTRODUCTION
The number of transistors on a chip has increased dramati-
cally in the last decade. Within the next 5-10 years, we will
have billion transistors on a chip. In a modern micropro-
cessor, more than half of the transistors are used for cache
memories. This trend is likely to continue. However, many
applications do not use the entire cache at a time. Such
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applications result in low utilization of the cache memory.
Moreover, sometimes this hardware can be utilized for com-
putation in some applications.

Availability of a large number of transistors on a next gen-
eration processor chip has motivated several researchers to
study the use of reconfigurable logic for on-chip coproces-
sors [1; 2; 3]. Such logic can accelerate the execution of ap-
plications by providing results to the host processor or stor-
ing them into a cache. Thus, it improves the performance
of the applications and reduces the bottleneck of off-chip
communications. For example, if the processor employs an
FPGA (Field Programmable Gate Array) or coprocessors to
accelerate applications, the need for data transfer between
the processor and those coprocessors increases the require-
ment for communication bandwidth, and eventually results
in a bottleneck.

In Garp architecture [1], programmable logic resides on
processor chip to accelerate some computations in a con-
ventional processor. These computations are expected to be
used frequently in the architecture. If an application does
not need the logic, these functions remain idle. PipeRench [4]
tries to reconfigure the hardware every cycle to overcome
the limitation of hardware resources. XC6200 [5] from Xil-
inx has a different architecture from the previous FPGA
series to allow concurrent and partial reconfiguration. An
advantage of this architecture is that a number of smaller
configuration memory blocks can be combined to obtain a
larger memory. However, a fine-grained memory cannot be
synthesized efficiently in terms of area and time. In partic-
ular, providing a large number of decoders for small chunks
of memory is expensive.

These observations motivate us to design a reconfigurable
module which works as a function unit as well as a cache
memory. Our goal is to develop such reconfigurable cache-
function unit modules to improve the overall performance
with low area and time overhead. The expectation is that
significant logic sharing between the cache and function unit
would lead to relatively low extra logic for a reconfigurable
cache. Structured computations are more easily targeted
for a reconfigurable cache especially within the low area
and time overhead constraints. Hence, in the first phase
of this research we have implemented two computing primi-
tives needed in structured video/audio processing: FIR and
DCT/IDCT. We partition the cache into several smaller
caches. Each cache is then designed to carry out a set of
specialized dedicated compute-intensive functions.

We first describe the concept of a multi-bit output LUT
used in the proposed architecture in Section 2. Section 3 de-



scribes the architecture of a reconfigurable module with the
function unit and cache operations. The configuration and
schedule of the module are described in Section 4. Section 5
depicts experimental results on the reconfigurable module.
We conclude the paper in Section 6.

2. MULTI-BIT OUTPUT LUTS
In most FPGA architectures, a Look-up table (LUT) usually
has four inputs and one output to keep the overall operation
and routing efficient. However, an SRAM-based single out-
put LUT does not fit well with a cache memory architecture
because of a large amount of overhead for the decoders in
the cache with a large memory block size. Instead of us-
ing a single output LUT, we propose to use a structure with
multi-bit output LUTs. Such LUTs produce multiple output
bits for a single combination of inputs and are better suited
for a cache than the single output LUTs. Since a multi-bit
output LUT has the same inputs for all output bits, it is
less flexible in implementing functions. However, it is not
a major bottleneck in our problem domain. A 2-bit carry
select adder and a 2-bit multiplier or a 4x2 constant coeffi-
cient multiplier (all need the same, up to 6-bit output, size
of LUT) are depicted in Figure 1(a) and (b), respectively.
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Figure 1: Multi-output LUTs : (a) A 2-bit adder ; (b) A 2x2
or a 4x2 constant coefficient multiplier

If a multi-bit output LUT is large enough for a computa-
tion, no interconnection (for example, to propagate a carry
for an adder) may be required since all possible outputs can
be stored into the large memory. In addition, unlike a single
output LUT, a multi-bit LUT requires only one decoder or
a multiplexer with multiple inputs. Thus, the area for de-
coders reduces. However, the overall memory requirement
to realize a function increases. The required memory size in-
creases exponentially with the number of inputs. Therefore,
multi-bit LUTs may not be area-efficient in all situations.
The computing time in this case may also not reduce much
due to the complex memory block and the increased capac-
itance on long bit lines for reading.

Instead of using one large LUT, we show implementations
of an 8-bit adder with a number of smaller multi-bit output
LUTs in Figure 1. Figure 2(a) depicts an 8-bit adder consist-
ing of two 9-input LUTs. Each 9-LUT has two 4-bit inputs,
one 1-bit carry in, and a 5-bit output for a 4-bit addition.

Thus, total memory requirement is 2× 29 × 5 = 5120 bits.
The carry is propagated to the next 9-LUT after the pre-
vious 4-bit addition in one LUT is completed (i.e. a ripple
carry). Since each LUT must be read sequentially, this adder
takes longer time to finish an addition. By employing the
concept of carry select adder as depicted in Figure 2(b), a
faster adder using 8-LUTs can be realized as the reading
of the LUTs does not depend on the previous carry. In this
case, the actual result of each 4-bit addition is selected using
a carry propagation scheme. However, all the LUTs are read
in parallel. The total time for the modified adder is the sum
of the read time for one 8-LUT and the propagation time for
two multiplexers. Thus, it is faster. This adder also requires
the same amount of memory (i.e. 4× 28 × 5 = 5120 bits).
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Figure 2: 8bit adder using (a) two 9-LUTs ; (b) two 8-LUTs;
(c) four 4-LUTs

To make an area efficient adder, a 4-LUT with 6-bit out-
puts can be employed (Figure 2(c)). The same carry propa-
gation scheme as in Figure 2(b) is applied to the 4-LUTs to
implement an 8-bit adder, but four 4-LUTs are used. The
total time of the adder using the 4-LUTs might be higher
than that using the 8-LUTs because it has twice the number
of multiplexers to be propagated. However, the read time
for a 4-LUT is faster than that for an 8-LUT since it has
a smaller decoder and shorter data lines for memory read-
ing. We, therefore, recommend the design in Figure 2(c) for
adding subtract operations as well.

3. RECONFIGURABLE CACHE MODULE
ARCHITECTURE

3.1 Overview of the processor with reconfig-
urable caches

In a reconfigurable cache module architecture (RCMA), we
assume that the data cache is physically partitioned into n
cache modules. Some of these cache modules are dedicated
caches. The rest are reconfigurable modules. A processor is
likely to have 256KB to 1MB Level-1 data cache within next
5-10 years. Each cache module in our design is 8KB giving
us 32 - 128 cache modules. A reconfigurable cache module
can behave as a regular cache module or as a special purpose
function unit as dedicated logic.

Figure 3 shows the overview of the processor with recon-
figurable caches (RCs). In an extreme case, these n cache
modules can provide an n-way set associative cache. When-
ever one of these cache modules is converted into a comput-
ing unit, the associativity of the cache drops or vice versa.
Alternatively, the address space can be partitioned dynam-



ically between the active cache modules with the use of ad-
dress bound registers to specify the address range that is
cached in that cache module. The details of this architec-
ture are being developed in [6]. Through RCMA simulation
on real multimedia programs, [6] expects to settle a mix of
the following issues. How large should the mix of RC mod-
ules, m/n, be? How many and what functions ought to be
supported in each RC? What kind of connectivity is needed
between these RCs? RC1, RC2, RC3,. . . , RCm in Figure 3
can be converted to function units, for example, to carry
out functions such as FIR filter, DCT/IDCT (MPEG en-
coding/decoding function), Encryption, and General com-
putation unit like a floating point multiplier, respectively.
When one cache is used as a function unit (one of the above
functions), the other caches continue to operate as memory
cache units as usual. It is also possible to configure some
cache modules to become data input and output units for
a function unit to provide input and receive output at the
speed of the function unit. The configuration of the RCs
is completed by the host processor because the processor
has the information about cache mappings to take care of
dynamic nature of cache functionality whether this recon-
figuration would be interrupt driven or a parallel activity is
an issue to be resolved.
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Figure 3: Overview of a processor with multiple reconfigurable
cache modules

When a processor employs several such modules that can
perform as caches as well as function units, then the data
transfer between the processor and these modules increases
the requirement for communication bandwidth. This even-
tually may result in another kind of bottleneck. We there-
fore adopt an efficient communication unit to satisfy the
bandwidth needs. The modules can communicate with each
other as well as the main memory and the host processor
using the Reconfigurable Multiple Bus networks (RMB) [7].
If the simulations in [6] show that the inter-RC communi-
cation is highly localized, we may be able to get away with
less expense, localized communication networks. Since re-
configurable modules can be converted into specific function
units, interconnections for each function unit in the module
are fixed to be a super set of the communication needs of
the supported functions.

3.2 Organization and operation of a reconfig-
urable cache module

Since we target the applications that are compute-intensive
and have a regular structure, we first partition them at
coarse-level in which the basic computations are repeated
regularly. A function in each level can be implemented us-
ing the multi-bit output LUTs as described in Section 2. We
add pipeline registers to each coarse-level stage, which con-
tains a number of LUTs, to make the entire function unit
efficient. All these registers are enabled by the same global
clock. Therefore, a number of coarse-level computations can
be performed in a pipelined fashion.

Figure 4 depicts a possible organization of the module.
The cache can be viewed as a two-dimensional matrix of
LUTs. Each LUT has 16 rows to support 4-LUT function
and as many multi-bits in each row as required to implement
a particular function. In the function unit mode, the output
of each row of LUTs is manipulated to become inputs for
the next row of LUTs in a pipelined fashion. In the cache
mode, the least significant 4 bits of the address lines are
connected to the row decoders dedicated to each LUT. The
rest of the address lines are connected to a decoder for the
entire cache in the figure. In the cache memory mode, the
LUTs take the 4-bit address as their inputs selected by the
enable signal for memory mode. Therefore, no matter what
the value of the upper bits in the address is, the dedicated
row decoder selects a word line in each row of LUTs. This
means one word is selected in each LUT row according to
the least significant 4 bits.
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Figure 4: Cache architecture in the reconfigurable module

Each LUT thus produces as many bits as the width of the
LUT. These are local outputs of the LUTs. These outputs
are available on the local bit lines of each LUT row. For
a normal cache operation, one of the local outputs needs
to become the global output of the cache. This selection is
made based on the decoding of the remaining (n−4) address
bits decoded by the higher-bit decoder. The local outputs
of the selected row of LUTs are connected to the global bit
lines. The cache output is carried on the global bit lines as
shown in Figure 4. Thus, output of any row of LUTs can
be read/written as a memory block through global lines.
We propose that these global lines be implemented using an
additional metal layer. The global bit lines are the same as
the bit lines in a normal cache.

Both decodings can be done in parallel. After a row is
selected by both the decoders, one word is selected through
a column decoder at the end of the global bit line as in a
normal cache operation. In the figure, the tag part of a cache
is not shown and a direct-mapped cache is assumed for the
module. However, the concept of reconfigurable cache can
be easily extended to any set-associativity cache because the
tag logic is independent of the function unit’s operations.

3.3 Access time for cache operations
Since each LUT, with its own row decoder for addressing
in the reconfigurable module, is much smaller than a large
synthesized memory block, the decoding time of a LUT is
faster than the decoding time of the large memory block.
Real dedicated caches may have a similar or more efficient
parallel decoding structure with segmented bit lines. The



access time of reconfigurable cache is slightly slower than
that of the real caches due to stretched bit lines caused by
inserting the interconnections between LUT rows in the RC.
Based on the SPICE model parameters for 0.5µm technol-
ogy in [8] the capacitance of the stretched bit line in the
RC is increased by 11% over the segmented bit line in the
caches. Since the bit line access time constitutes 8% of the
overall cache access time, the access time overhead due to
the stretched line is about 1% of the overall cache access
time. Since we assume a base cache with the parallel decod-
ing and segmented bit lines, the area overhead of RC with
respect to the base cache consists of only the interconnect
area. The area overheads for FIR and DCT/IDCT function
modules are given in Section 5.2.

4. CONFIGURATION AND SCHEDULING
4.1 Configuration of a function unit
To reduce the complexity of the column decoding in a nor-
mal cache memory, data words are stored in an interleaved
fashion in a block. Thus, the distance between two consecu-
tive bits of a word is equal to the number of words in a block.
However, for a LUT application, we need to use multi-bits
in a single LUT. This implies that we cannot store one entry
of a multi-bit output LUT by writing one word in a cache.
For example, if a 4-LUT produces an n bit-wide output for
a function, 16×n words are required to be written to the
LUT in the cache. However, since other LUTs in the same
row can also be programmed simultaneously, no more than
16×n words are required to fill up the contents of all LUTs
in one row. In addition, if the width of a LUT is larger than
the number of words in a cache block, multi-bit writing is
performed into each LUT in a LUT row. This places a re-
striction that the width of a multi-bit output LUT be an
integral multiple of the number of words in a cache block
to allow an efficient reconfiguration of all LUTs in a row.
The number of LUTs in a column - placed vertically - for
a pipeline stage may also be required to be a power of 2.
Since all cache structures are based on a power of 2, it is
more convenient to make all LUT parameters (length and
width) a power of 2 to avoid a complicated controller and
an arbitrary address generator. This may result in under
utilization of memory. However, the idle memory blocks for
LUTs are not likely to be a problem when the module is
used as a function unit due to availability of sufficient mem-
ory size in a cache.

Initial configuration converts a cache into a specific func-
tion unit by writing all the entries of LUTs in the cache.
The configuration data to program a cache into a function
unit may be either available in an on-chip cache or an off-
chip memory. The configuration data may be prefetched by
the controller or the host processor to reduce the loading
time from off-chip memory. Using normal cache operations,
multiple writes of configuration data to the LUTs are easily
achieved through the cache data lines mentioned earlier.

4.2 Scheduling and controlling data flow
A cache module can also be used to implement a function
which has more stages than what can be realized by the
reconfigurable cache in one pass. In this case, we divide the
function into multiple steps. That is, S stages required for
a function can be split into sets, S1, S2, . . . , Sk, such that
each set Si can be realized by a cache module. If all Si’s are
similar, then we can adapt data caching as described in [9]

to store the partial results of the previous stage as input
for the processing by the next configuration. The ‘similar’
here means that the LUT contents may change, but the
interconnection between stages is the same. This happens,
for example, in a convolution application. By changing the
contents of LUTs, we can convert a stage in the cache block
to carry out the operation of a different set of pipeline stages.

In a data caching scheme, we place all input data in a
cache and process them using the current configuration. At
the end of that, the cache module is configured for the next
step. We have to store the intermediate results from the
current set of stages into another cache and then reload them
for the next set of computations. Therefore, we need two
other cache modules to store input and intermediate data,
respectively. These modules are address-mapped to provide
efficient data caching for intermediate results. The role of
the two caches can be swapped during the next step when
a computation requires the intermediate results as inputs
and generates another set of intermediate results. If both
an input and an intermediate result are required to be fed
for all the computation, we have to keep the two caches as
they are. The two caches must be large enough to hold
input and intermediate results, respectively. Moreover, the
reconfigurable cache must be able to accept an input and an
intermediate result as its inputs.

The host processor needs to set up all the initial configu-
rations, which include writing configuration data into LUTs
and configuring the controller to convert a cache into a func-
tion unit. To do this, the host processor passes the informa-
tion about an application to the controller, such as the num-
ber of stages, the number of input elements, data caches, and
the reconfigurable cache. The data caches to hold the input
and the intermediate results are also allocated as resources
by the host processor. The controller establishes the connec-
tions between the reconfigurable cache and the data caches
using a bus architecture like RMB. The addresses for input,
intermediate, and output data are produced by an address
generator in the controller. These addresses are sequential
within the respective cache units in regular computations.
The controller also monitors the computation and initiates
the next step when the current step is completed.

5. EXPERIMENTAL RESULT
We have experimented with two applications, Convolution
and DCT/IDCT. In this section,we describe how we con-
struct the applications onto the reconfigurable cache (RC).
First, we map each application into RC separately, then we
merge two applications into a single RC. We also compare
the overall area of separated RCs and a combined RC in Sec-
tion 5.2. Next, we compare the execution time of these appli-
cation on RCs with the execution time on General-Purpose
Processor (GPP) in Section 5.3. The main advantage of the
RCs is on-chip processing, which implies faster processing
time and no off-chip bottlenecks, and the balance/utilization
of on-chip caches between storage and computation.

5.1 Experimental setup

5.1.1 Convolution (FIR Filter)
A reconfigurable cache to perform a Convolution function
is presented in this section. The number of pipeline stages
for the convolution in a reconfigurable cache depends upon
the size of a cache to be converted. Our simulation is based



on an 8KB size cache with 128 bits per block/16-bit wide
words implementing 4-LUTs with 16-bit output.

One stage of convolution consists of a multiplier and an
adder. In our example, each stage is implemented by an
8-bit constant coefficient multiplier and a 24-bit adder to
accumulate up to 256 taps in Figure 5(a). The input data
is double pipelined in one stage for the appropriate compu-
tation [4]. An 8 × 8 constant coefficient multiplier can be
implemented using two 4 × 8 constant coefficient multipli-
ers and a 12-bit adder with appropriate connections [10]. A
4×8 constant coefficient multiplier is implemented using 12
4-LUTs with single output from each LUT on FPGAs. In
our implementation, we split the 12-bit wide LUT contents
of a 4×8 conventional constant coefficient multiplier into two
16-bit output 4-LUTs (part 1, 2) with 6-bit wide multiple
outputs for a lower routing complexity of the interconnec-
tions as shown in Figure 5 (b). The first six bits of each
content are stored in LUT part1 while the last six bits are
stored in LUT part2 to realize a 4× 8 constant multiplier.
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Figure 5: (a) One stage of Convolution; (b) Array of LUTs for
one stage of convolution

The concept of a carry select adder is employed for an
addition using the LUTs described in Section 2. Therefore,
we need a 6-bit wide result for a 2-bit addition, three bits
when carryin=0 and three bits when carryin=1 from a LUT.
An n-bit adder can be implemented using dn

2
e such LUTs

and the carry propagation scheme. The output is selected
based on the input carry.

One stage of convolution can be implemented with 22
LUTs. The final placement of LUTs is shown in Figure 5
(b). A few LUTs in the figure are not used for the computa-
tion. In Figure 5(b), pipeline registers and interconnections
are not shown. For an 8KB reconfigurable cache, we have
32 rows of LUT which can be used to implement 8 taps of
the convolution algorithm.

5.1.2 DCT/IDCT
In this section, we show another reconfigurable cache module
to perform a DCT/IDCT function which is the most effec-
tive transform technique for image and video processing [18].
To be able to merge the Convolution and DCT/IDCT func-
tions into the same cache, we have implemented DCT/IDCT
within the number of LUTs in the convolution cache module.

Given an input block x(i, j), the N×N 2-dimensional DCT/
IDCT in [18] is defined as
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where x(i, j) (i, j = 0, · · · , N − 1) is a matrix of the pixel
data, X(u, v) (u, v = 0, · · · , N − 1) is a matrix of the
transformed coefficients, and C(0)=1/

√
2, C(u)=C(v)=1 if

u,v6=1.
This N×N 2-D cosine transform can be partitioned into

two N point 1-D transforms. To complete a 2-D DCT, two
1-D DCT/IDCT processes are performed sequentially with
an intermediate storage. By exploiting a fast algorithm (the
symmetry property) presented in [18], an N×N matrix mul-
tiplication for the N×N 2-D cosine transform defined in (1)
and (2) can be partitioned into two N/2×N/2 matrix mul-
tiplications of 1-D DCT/IDCT with additions/subtractions
before the DCT process and after the IDCT process.

In our implementation of the RC, the distributed arith-
metic [16; 18] instead of multiply-and-accumulation (MAC)
is employed for the DCT/IDCT function to avoid frequent
reconfiguration of coefficients required for every input. Us-
ing this scheme, once the coefficients are configured into the
RC, no more run-time reconfiguration is required.

The inner product of each 1-D transform (MAC) can be
represented as follows.

y =

N−1∑
i=0

aixi =

N−1∑
i=0

ai(−bi0 +

Wd−1∑
r=1

bir2
−r)

=

Wd−1∑
r=1

[
N−1∑
i=0

aibir

]
2−r +

N−1∑
i=0

ak(−bi0) (3)

where xi = −bi0 +
∑Wd−1
r=1 bir2

−r with two’s complement
form of an input word length Wd and ai (i = 0, 1, 2,..., N-1)
is the weighted cosine factors. According to (3), the multi-
plication with the coefficients can be performed with a ROM
containing 2N pre-calculated partial products (

∑N−1
i=0 aibin)

in a bit-serial fashion.
One processing element (PE) contains a ROM and a shift

accumulator for the partial summations of corresponding
data bit order as shown in 6(a). In this configuration, each
inner product is completed in the number of clock cycles
that is the same as the word length of input elements. With
N PEs, N-point DCT can be completed in parallel. Using
the symmetry property the number of contents of a ROM

can be reduced by 2
N
2 with pre/post-adders and subtracters

mentioned earlier.
Due to the coding efficiency and the implementation com-

plexity, a block size of 8×8 pixels is commonly used in im-
age processing. We, therefore, have implemented an 8×8
2-D DCT/IDCT function unit by two sequential 1-D trans-
form processes. In the implementation, the width of input
elements is eight-bit. We also selected the word length of
the coefficients to be 16 bits for the accuracy of the DCT
computation.

The 2-D transform processed by two 1-D transforms re-
quires two additional memories for input and intermediate



data. One PE implemented in the reconfigurable cache is
depicted in Figure 6(b). In the figure, the ROM is placed in
the middle of a LUT row to reduce the number of routing
tracks. To make the DCT/IDCT implementation compat-
ible with the convolution function unit, we place 4-LUTs
with 16-bit output in an 8KB size of cache. Only 20 LUT
rows (16 for PEs and 4 for pre/post-process) out of 32 LUT
row in the 8KB cache are used for the implementation. How-
ever, the LUTs not used in this function still remain in the
RC module for the compatibility.
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Figure 6: (a) A DCT/IDCT processing element; (b) Array of
LUTs for DCT/IDCT processing element with the input regis-
ters

A 16-bit carry select adder is configured as a shift accu-
mulator with the registers not shown in the figure for the
self-accumulation in each PE. According to Equation (3),
only one subtraction is necessary. This is done by the same
adder which can keep both addition and subtraction con-
figurations in 12-bit data width (6bits for adder and 6bits
for subtracter). The adder-subtracter shares the same in-
put and output with the adder without requiring any extra
logic. However, an extra control signal is needed to enable
the subtraction. The additional adders and subtracters for
the pre/post-process are implemented using the scheme for
adder-subtracter described above since each pair of addi-
tion/subtraction needs the same input elements. In addi-
tion, the 1-bit shift of accumulated data can be easily done
by appropriate connections from the registers to the input
data lines of the adder. The input/output shift registers
are added only to the in/out port of the actual DCT/IDCT
function unit after the pre-process unit and before the post-
process unit. This means only one set of shift registers are
necessary since all the PEs compute using 4bits out of the
same set of input data in each transform of a row or a col-
umn.

In the actual implementation, we add one more set of
shift registers to remove any delay due to loading or storing
in/out data from other memories. All the loading/writing
back from/to the storage can be overlapped with the com-
putation cycle time in PEs by appropriate multiplexing of
the dual shift registers. Adding shift registers makes in/out
data to be ready to be processed and written immediately
after the previous computation without any idle time. The
controller described in Section 4.2 handles and controls the
computation procedure.

The computation process of an 8×8 2-D DCT is as follows.
The function unit on the RC computes the 1-D transform

for an entire row by broadcasting a set of input data after
the pre-addition/subtraction process to eight PEs in eight
time units in a bit serial fashion (i.e. a half set of data to
four PEs and another half set of data to other four PEs).
A set of bit serial output from eight PEs is carried out to
the output shift registers in the same fashion. The eight
global bit lines described in Section 3.2 are used as input
and output data lines. To avoid the delay of the global lines
for the cache operations due to additional switches, we can
place other routing tracks into the space between global bit
lines, such as feedthrough. Since we have already added one
additional metal layer for the global bit lines, adding more
lines on the same layer along with the global bit lines does
not affect negatively in the fabrication stage. This implies
that we have enough vertical routing tracks in this architec-
ture. This computation is repeated as many as 8 times, 8
rows for 8×8 images. In the mean time during each compu-
tation, the next set of input data is fetched in another set of
input registers and the previous output data is written into
an additional memory. All the intermediate results from the
1-D transform must be stored in a memory and then loaded
for the second 1-D transform which performs the same com-
putations to complete a 2-D transform. Therefore, a 2-D
DCT/IDCT is completed with two additional memories as
the convolution function unit does.

5.1.3 Reconfigurable cache combined with
multi-context configurations

Since we implement Convolution and DCT/IDCT in the
same reconfigurable cache frame, it allows us to merge two
functions into one reconfigurable cache. With the concept
of multi-context configurations into multi-bit output LUTs
and individual interconnection, the reconfigurable cache can
be converted to either of the two function units when nec-
essary. A combined reconfigurable cache with two functions
takes less area than the sum of the areas of two individual
function units because only interconnections are required to
implement the functions. The required interconnection for
each function is placed independently together in the com-
bined reconfigurable cache. As described in Section 3.1, we
use fixed interconnection since it takes less area and prop-
agation time than those of programmable interconnection
with a number of switches. The actual area of the reconfig-
urable cache framework and interconnection is shown in the
last part of Section 5.2.

5.2 Area

Figure 7: A possible layout of reconfigurable cache for one
stage of the convolution

To measure the actual area overhead, we experimented
with a possible layout of the reconfigurable cache with only
Convolution, only DCT/IDCT and with both functions. Fig-
ure 7 represents one stage of convolution unit in the recon-
figurable cache described above. The pipeline registers are
not shown in the figure. According to this layout, the total



Table 1: Area comparison of FIR Filters and RC overhead for FIR
Yoshino et al. [11] Hatamian-Rao [12] Ishikawa et al. [13]

Number of Taps 64 40 15,19
Coefficient Word-length 14 bits (fixed) 12 bits (programmable) 8 bits (fixed)

Technology 0.8µm BiCMOS 0.9µm 1.2µm
Core Area 49 mm2 22 mm2 80 mm2

FIR Filter in the RC (area overhead of the cache)

Number of Taps 256 taps (with 8 physical taps)
Coefficient Word-length 8 bits

Technology 0.8µm 0.9µm 1.2µm
Area Overhead 3.45 mm2 4.37 mm2 7.77 mm2

Table 2: Area comparison of DCT/IDCT chips and RC overhead for DCT/IDCT
Masaki et al. [16] Madisettii-Willson [17] Uramoto et al. [18]

Function 1-D IDCT 8×8 DCT/IDCT 8×8 DCT/IDCT
Technology 0.6 µm 0.8µm 0.8µm
Core Area 9.4 mm2 10 mm2 21.21 mm2

8×8 DCT/IDCT in RC (area overhead of cache)

Technology 0.6µm 0.8µm
Area Overhead 1.51 mm2 2.68 mm2

area of the reconfigurable module including the pipeline reg-
isters with an FIR Filter, which supports up to 256 taps, is
1.12 times the area of the base cache memory array descibed
in Section 3.3. A normal cache operation requires additional
hardware for row/column decoders, tag/status-bit part, and
sense amplifiers not included in the base cache area.

For the DCT/IDCT function unit on an RC, the required
interconnection is again fixed like the convolution cache mod-
ule. In the DCT/IDCT function, no complicated routing is
required and the number of LUT rows in the RC is less than
that for the FIR filter while the number of registers is higher.
Thus, according to our experimental layout for DCT/IDCT,
the total area of the DCT/IDCT module is 1.09 times the
area of the base cache memory array including the accumu-
lating registers and the shift register at the in/out port.

In Table 1 and Table 2, the area overhead of FIR Filter and
DCT/IDCT in the RC is compared with designs for these
functions previously reported in literature, respectively. As
we explained in Section 3.3, the area overhead of the RC
consists of the RC-specific interconnect and the required reg-
isters. Some of these designs include pads area. For a fair
comparison, only the core sizes are listed in both tables by
estimating the area of the core part of the entire chips. The
core area of design in [13] shown here is estimated in [11]. In
Table 2, the core area of 1-D IDCT in design [16] excludes
I/O pads and buffer area. (We scale the reported total area
by the proportion of the reported core area to the reported
total area.) The area of FIR filter and DCT/IDCT in the RC
includes all the required registers such as pipeline registers
for FIR and accumulating/shift registers for DCT/IDCT.

Most of the reported FIR filter designs have fixed coeffi-
cients with as many physical MACs as the number of taps.
Although coefficients are programmable in [12], only 40 taps
can be supported for various types of filter. Besides, the
time taken for run-time reconfiguration in a serial fashion is
high due to the limited number of pins. The time of run-
time reconfiguration of coefficients in the RC is much smaller
because multiple LUT writes are achieved per cache write

operation. Although only 8 taps are implemented physically
in the RC, the FIR cache module can support up to 256 taps
with fast configuration not visible to the application. In ad-
dition, the area per tap in the RC is smaller than others.

Since some of the filters have a different word length, we
compare the area of 16×16 constant coefficient multiplier
and 32-bit accumulator (MAC) implemented in the RC with
the same word length of MAC presented in [14; 15]. Since
constant coefficient multipliers are used in most DSP and
multimedia applications, we implemented a 16×16 constant
coefficient multiplier. In our experimental layout, the MAC
(16×16) area in the RC is less than or equal to two times
the area of one MAC stage of Convolution (8×8) in the RC.
This area is smaller than that of the existing MACs as shown
in Table 3. This implies that an FIR filter with 16-bit word-
length can be easily implemented in the RC with a similar
area overhead for four physical taps. However, it can still
support up to 256 taps.

Table 3: Area comparison of Multiplier-Accumulator’s and RC
overhead for MAC

Izumikawai et al. [14] Lu-Samueli [15]

Size of In/Out 16b×16b/32bits 12b×12b/27bits
Technology 0.25µm 1.0µm

Area 0.55 mm2 (core) 9.30 mm2 (chip)

MAC in the RC (area overhead)

Size of In/Out 16b×16b/32bits
Technology 0.25µm 1.0µm

Area Overhead 0.08 mm2 1.35 mm2

The area of the previous designs for DCT/IDCT in Table 2
is larger than the proposed DCT/IDCT cache module. The
2-D DCT/IDCT functions are implemented with a similar
procedure as in the DCT/IDCT cache module - two 1-D
DCT steps. Although the DCT function is implemented
using hardwired multiplier in [17], the area is larger than
the cache module. The DCT function in [18] has two 1-D
DCT units, so the area of one 1-D DCT unit is roughly half
of the overall area which is still larger than RC overhead.



In the combined multi-function reconfigurable cache, each
function needs a fixed interconnection topology. Therefore,
the total area of interconnection occupied by the two func-
tions in the combined RC is the sum of the individual inter-
connection area for Convolution and DCT/IDCT. According
to our experimental layout of the combined cache, the total
area of the RC with two functions is 1.21 times the area of
the base cache memory array with all the required registers.

Since the decoders for LUTs account for most of the area in
the reconfigurable caches, adding more interconnection does
not add area much in the combined RC. The actual area of
the combined cache module is shown in Table 4. The base
cache described in Section 3.3 consists of a dedicated 4-to-
16 decoder, four address lines, and a number of switches to
connect the local bit lines to the global bit lines. The area
of combined reconfigurable cache is smaller than the sum of
smallest areas in the existing FIR and DCT/IDCT function
units. This implies that we can add multiple functions in
the existing reconfigurable cache with a small area overhead.
The interconnection area for individual function is also listed
in Table 4.

Table 4: Area overhead of the combined reconfigurable cache

Function FIR, DCT/IDCT
Technology 0.6µm 0.8µm

Interconnection & registers 1.94 mm2 3.45 mm2

FIR
Interconnection & registers 1.51 mm2 2.68 mm2

DCT/IDCT

Area Overhead 3.45 mm2 6.13 mm2

Technology 1.0µm 1.2µm

Interconnection & registers 5.39 mm2 7.77 mm2

FIR
Interconnection & registers 4.19 mm2 6.04 mm2

DCT/IDCT

Area Overhead 9.58 mm2 13.81 mm2

The fixed interconnection for the functions can be effi-
ciently routed and does not take much area. The placement
& routing of the reconfigurable cache has been done manu-
ally with CAD tools. We can expect the area overhead to
reduce further if an automated algorithm realizing an opti-
mal solution for the placement & routing is used.

5.3 Execution time

5.3.1 Convolution
We achieved the following performance improvement results
for our simulation experiment for the convolution. We com-
pare the execution time of the FIR Filter using a reconfig-
urable cache(RC) to a conventional general purpose proces-
sor(GPP) using a conventional convolution algorithm. Since
the reconfigurable cache may have to be flushed, we show
the results for the two cases here. In the first case, no data in
the cache needs to be written back to main memory before it
is reconfigured as the function unit, for example, caches with
write-through policy. In the second case, the processor has
to flush all the data in the cache before configuring it (i.e.
written back to the main main memory). The extra time
is denoted by the ‘flush time’ and is required for write-back
caches.

The total execution time of the convolution in the recon-
figurable cache consists of configuration and computation
times. The configuration time includes the times for adder

and constant coefficient multiplier configuration. In addi-
tion, in the second case, the cache flush time is also to be
added in the configuration time. The actual parameter val-
ues to compute the times are given in Table 5. We choose
the values to be as conservative as possible with respect to
a SPARC processor cycle time at 269.8 MHz on which the
simulation is running. In the table, the computation time of
one stage/PE in the RCs is chosen by the following factors.
Each stage in the convolution function unit requires 3 LUT
reads with additional time for propagation through a num-
ber of multiplexers while each PE in DCT/IDCT unit does
2 LUT reads with additional time for multiplexers. We use
read time for LUTs of 8ns and cache access time of 12ns.
The execution time for one stage and PE also includes the
propagation time for multiplexers. The expressions for the
times are presented below.

• Config. Time for adder
= [ (Rmem/cpu)( a

m
)(LLUT ) +

(Rcache/cpu)( a
m

)(Lcache − LLUT × S) ]× Tcpu

• Config. Time for constant multiplier
= (Rmem/cpu)( a

m
)(LLUT )(TAP )× Tcpu

• Cache Flush Time
= (Rmem/cpu)(Wn)(Lcache)× Tcpu

• Computation Time
= [ (TAP

S
)× (X + 2S − 1) ]× T1 stage
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Figure 8: Ratio of execution time of RC and GPP for Convo-
lution: (a) without memory flush; (b)with memory flush before
converting into the function unit

In the computation time, we add 2S instead of S for the
initial pipeline steps because we exploit the double pipelined
input data in each stage of the convolution as shown in Fig-
ure 5(a). In addition, we separate the configuration time for
adders and multipliers. The reason for this is that only one



Table 5: Parameters for the RCs

Parameter Description Actual value

Tcpu 1 cpu cycle time 4ns
T1 stage The time to complete the computation in one stage/PE 24ns/16ns
Rmem/cpu Ratio of no. of cycles of 1 main memory access and 1 cpu cycle 20 (80ns)
Rcache/cpu Ratio of no. of cycles of 1 cache memory access and 1 cpu cycle 3 (12ns)
Lcache Number of rows (cache blocks) in the cache 512
LLUT Number of rows (cache blocks) in a LUT 16
Wn Number of words per cache block 8
a Number of bits required to configure a content of LUT 6

for a 2-bit adder and a 4x8 constant coefficient multiplier
r Number of bits required to configure a content of LUT 16

for a ROM
m Number of bits to be written by one word when configuring 2
S Number of taps/PEs implemented in the RC 8

Parameters for Convolution

TAP Number of taps 8 - 256
X Number of data elements 64 - 8192

Parameters for DCT/IDCT

Wd The width of input elements 8 bits
N The size of a basic block image 8

IMG The size of an entire image 8×8 - 1920×1152

set of data for a LUT is necessary when reconfiguring the
LUTs for adders because the contents of all the LUTs are
the same while a different configuration data is necessary
for multipliers. This can be done by a main processor as a
simple instruction. The time for storing and loading input
and intermediate data can be overlapped with the computa-
tion time. Therefore, data access time for the computation
is not added.

The comparison of execution times between RC and GPP
are shown in Figure 8. We assume that all the input data
fit into a data cache for the computation in both RC and
GPP. We traced the number of cache misses in GPP for
all the cases in Figure 8. From the trace, we found that,
regardless of the number of taps and data elements in the
computation, the number of cache misses does not vary with
the execution time. Therefore, we neglected the effect of the
cache miss penalty in the comparison. We simulated with
floating point variables instead of integers in the simulation
code of the convolution for faster processing in GPP.

Our results show that the reconfigurable cache for com-
puting has a higher performance improvement over the ex-
ecution time of the GPP as the number of data elements
increases. The performance improvement is gained almost
independent of the number of taps without memory flush in
Figure 8(a), but the ratio of the computation time with less
number of taps decreases with memory flush in Figure 8(b)
because the flush time affects the ratio of the total execution
time more with the decrease in the number of taps.

5.3.2 DCT/IDCT
As described in Section 5.1.2, the 2-D DCT/IDCT can be
completed by two 1-D transforms. This procedure is similar
to the data caching scheme which is adapted for the FIR
filter module (i.e. two additional memories for processing
with intermediate data). We compare the execution time of
the 2-d transforms in RC to GPP executing the fast DCT
algorithm described in Section 5.1.2. As considered in the
previous example, the two cases of cache ‘flush time’, no
cache flush and cache flush, are shown in this section.

The total execution time of the DCT(IDCT) in the recon-
figurable cache consists of configuration and computation
times. The configuration time includes the writing times for
the contents of ROMs and an adder. In addition, in the case
of cache flush, the cache flush time is also to be added in the
configuration time. The actual parameter values to compute
the times for this function used are the same as for the con-
volution in Table 5. The expressions for the execution times
are presented below.

• Config. Time for accumulators and
pre(or post)-adders/subtracters
= [ (Rmem/cpu)( 2a

m
)(LLUT )

+ (Rcache/cpu)( 2a
m

)((S + 2)× LLut) ]× Tcpu

• Config. Time for ROM
= [(Rmem/cpu)( r

m
)(S × LLUT )]× Tcpu

• Cache Flush Time
= (Rmem/cpu)(Wn)(Lcache)× Tcpu

• Computation Time

= [2× (1-D transform)]× (
Image size

Basic block size
)

= [2× (N +Wd ×N)]× IMG
N×N

The cache ‘flush time’ is the same as earlier. Configuration
data needs to be written to all the PEs once only because all
the data elements in an image are processed with the same
coefficients using the distributed arithmetic. The configu-
ration procedure of the convolution in the previous section
is applied to DCT/IDCT. As described earlier, the time of
loading and writing all the in/out data from/to memories
can be overlapped with the computation. Thus, only the ini-
tial loading and the final writing time, which is overlapped
in the transition of data set, is added to the computation
time of each 8×8 1-D transform for data access time. In this
configuration, the adder is used as both a 16-bit adder and
a 16-bit subtracter with 2 sets of configuration data. Since
only one of the pre/post-adders (subtracters) is necessary
for DCT and IDCT, respectively, the configuration time of



pre-(or post)adders/subtracter with the same configuration
scheme is added in the execution time.

The result of the execution time comparison of GPP and
RC is shown in Figure 9. The assumption regarding the
cache misses of data mentioned in Section 5.3.1has been
applied to this simulation. Therefore, the main memory
access time is not considered for in/out data of the compu-
tation. For a larger size of image than the basic block, 8×8,
we partitioned the entire image into a number of basic block
images. We assume that the cosine weighted factors are pre-
stored as coefficients in an array when the GPP processes
the DCT/IDCT, which means the actual cosine coefficient
computation is not necessary to be performed in GPP. It
is much faster than the computation with the actual cosine
factors. Again, floating point variables are employed in our
simulation of DCT/IDCT for faster processing in GPP.
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Figure 9: Ratio of execution time of RC and GPP for
DCT/IDCT with and without ‘flush time’

According to the result, the reconfigurable cache for DCT/
IDCT has a higher performance improvement over the ex-
ecution time of the GPP as the size of an image processed
increases. The performance improvement is roughly inde-
pendent of the memory flush in the larger size of images.
Since the computation is ROM based, only the initial con-
figuration is necessary. Thus, the larger sizes in the results,
768 × 512 (TV-image) and 1920 × 1152 (HDTV), do not
rely on the flush time. For MP@HL (Main Profile at High
Level) decoding, the maximum time to process a macroblock
is 4.08µs [16]. The result shows that it is possible to process
a block in 2.30µs.

5.3.3 Multi-context reconfigurable cache
There is no difference between individual and combined caches
in terms of the execution time. However, the combined cache
may have a slightly higher propagation delay due to longer
wires caused by the inclusion of interconnection, in our in-
stance, 1.6% increase in cache access time. Therefore, we
can assume that both individual and combined RCs have
almost the same execution performance.

6. CONCLUSION
We have presented a reconfigurable module which can per-
form both as a function unit and a cache. This allows a pro-
cessor to trade compute bandwidth for I/O bandwidth. We
have analyzed it for convolution and DCT/IDCT. The re-
configurable caches for the computation of convolution and
DCT/IDCT improve the performance by a large amount (a
factor of up to 50 and 60 for Convolution and DCT/IDCT,
respectively). The area overhead for this reconfiguration is
about 10-20% of the base cache memory array area with

1-2% increase in the cache access time. Since applications
which have a regular structure may be implemented in a
reconfigurable module, we are currently developing similar
mappings for other functions. Pseudo-programmable in-
terconnection with limited programmability, but with less
area overhead, to support more general functions is also be-
ing considered. Although we propose integrating the re-
configurable cache modules within Level-1 caches, these RC
modules can also be used at Level-2 cache. Architecturally,
Level-2 integration would be easier providing us with “active-
memory” type of capability.
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