
Technology Mapping Issues for an FPGA with
Lookup Tables and PLA-like Blocks

Alireza Kaviani
Xilinx Inc., 2100 Logic Drive,

San Jose CA95124
alireza.kaviani@xilinx.com

Stephen Brown
University of Toronto, 10 Kings College Rd.,

Toronto, Canada M5S 3G4
brown@eecg.toronto.edu

f

a
h

-

b

g

l
b
s

e

h

t
p

i

the

f a
for
ted
s.

c-
d to
ng
and
f-
are
re.
ch-
ur

d

e
e

s.
m
A
d

n
is
r

f a
e
eir

o-
T
e K
er
a

ter
Abstract
In this paper we present new technology mapping algorithms
use in a programmable logic device (PLD) that contains bo
lookup tables (LUTs) and PLA-like blocks. The technology map
ping algorithms partially collapse circuits to reduce either area
depth, and pack the circuits into a minimum number of LUTs an
PLA-like blocks. Since no other technology mapping algorithm fo
this problem has been previously published, we cannot comp
our approach to others. Instead, to illustrate the importance of t
problem we use our algorithms to investigate the benefits provid
by a PLD architecture with both LUTs and PLA-like blocks com
pared to a traditional LUT-based FPGA. The experimental resu
indicate that our mixed PLD architecture is more area-efficie
than LUT-based FPGAs by up to 29%, or more depth-efficient
up to 75%.1

1 Introduction
The design and implementation of digital circuits has been stron
influenced over the past several years by rapid developments in
sophistication of two types of programmable logic devices: Fie
Programmable Gate Arrays (FPGAs) and Complex Programma
Logic Devices (CPLDs). Commercially available FPGAs consi
of a two-dimensional array of logic blocks, either based o
LookUp Tables (LUTs), or an arrangement of multiplexers. CPLD
are composed of a collection of larger-grained blocks that is ea
similar to a Programmable Logic Array (PLA). A programmabl
device that includes both LUTs and PLA-like blocks provide
advantages over existing devices [6, 7]; we refer to this new arc
tecture as a Hybrid Field Programmable Architecture (HFPA).

Having different logic resources on the same chip complicates
technology mapping and raises the issue of providing an appro
ate mixture of LUTs and PLA-like blocks in the new architecture
This paper deals with these issues by presenting new algorithms
mapping circuits to an HFPA and providing experimental results
suggest an appropriate mixture of logic resources in the new arc
tecture. The goal of the HFPA technology mapper is to map circu
to LUTs and PLA-like blocks such that either area or speed is m
imized. We consider the number of PLA-like blocks and LUTs in

1. This work was done at the University of Toronto.
to
ti-
ep
s.
es-

ally,
or
th
-
or
d
r
re
is

ed

lts
nt
y

ly
the
d
le
t
n
s
ch

s
i-

he
ri-
.
for
to
hi-
its
n-
a

mapped circuit as an approximate measure of the chip area of
circuit. Also, the maximum number of PLA-like blocks and LUTs
that the signal needs to traverse from the inputs to the outputs o
combinational circuit is considered as an approximate measure
the speed of the circuit. This provides an estimate of the expec
benefits of the new architecture compared to LUT-based FPGA

The recentAPEXfamily from Altera [2] provides a combination of
LUTs and PLA-like blocks on the same chip. The APEX archite
ture contains embedded system blocks that can be configure
function as PLAs or as memory blocks. The technology mappi
techniques described in this paper can be used for both HFPA
APEX. However, the PLA-like blocks in these two architectures di
fer in both size and delay; therefore the potential advantages that
presented in this paper can not be applied to the APEX architectu
We discuss the background and related work in Section 2. The te
nology mapping algorithms are presented in Section 3, and o
experimental results are given in Section 4.

2 Background and Related Work
A number of technology mapping algorithms for LUT-base
FPGAs have been developed.FlowMap[3] is a technology mapper
that optimizes depth by maximizing the flow in a network. Ther
are also several algorithms whose initial goal is minimizing th
number of LUTs. For example, [5] introducesLevel-map,which is
a technology mapping heuristic to minimize the number of LUT
This paper also proves that the problem of obtaining minimu
count for LUTs, with greater than four inputs, is NP-complete.
thorough survey of technology mapping algorithms for LUT-base
FPGAs can be found in [4].

Mapping circuits to CPLDs is potentially more straightforward tha
technology mapping for FPGAs. One synthesis issue for CPLDs
effective two-level logic minimization, which reduces the numbe
of product terms (Pterms) in the sum-of-products (SOP) form o
function. This is appealing for PLA-like blocks in CPLDs, becaus
they can accommodate a limited number of Pterms, while th
number of inputs can be large (typically < 40).DDMAP is a mapper
developed by Kouloheris [8] to investigate area-efficiency of a pr
posed PLD based on PLA-like blocks. DDMAP first uses a LU
technology mapper to create a circuit of K-bounded nodes, wher
is the number of inputs to the PLA-like block. Then the mapp
packs the nodes into PLA-like blocks with multiple outputs, using
first fit decreasing algorithm. A recent study [1] presents a bet
approach and introduces a new heuristic for technology mapping
CPLDs. This algorithm performs the mapping in three steps: op
mal tree mapping, partial collapsing, and bin packing. The first st
involves partitioning of the circuit into a forest of fanout-free tree
Then the nodes in each tree are partially collapsed into their succ
sors based on criteria such as the size or fanout of the node. Fin

-
g

on-
e

to
-
ies,
its
ry

the
er
f-
le,

i-
-
o.

in
tic
me
T.
in a

in

case hsize(n) condition

(I)

(II) and

(III) and

(IV) and

(V) and

TABLE 1 . Definition of hsize for the node n.

I
LUT_I
---------------- I LUT_I≤

I Af⋅
PALB_I
-------------------- P Af⋅

PALB_P
--------------------- I P⋅ Af⋅

PALB_I PALB_P⋅
--–+ LUT_I I< PALB_I≤ P PALB_P≤

K I Af⋅ ⋅
PALB_I
---------------------- P Af⋅

PALB_P
--------------------- I P⋅ Af⋅

PALB_I PALB_P⋅
--–+ LUT_I I< PALB_I≤ P K PALB_P⋅≤

1 I Af⋅
PALB_I
--------------------+ PALB_I I< P PALB_P≤

1 I P⋅ Af⋅
PALB_I PALB_P⋅
--+ PALB_I I< PALB_P P<
the mapper packs circuit nodes into PLA-like blocks available in
the target architecture, using a maximum shared input bin packing
algorithm.

Technology mapping algorithms for traditional PLDs with only one
kind of logic resource can not be applied to the HFPA directly. We
present the algorithms for mapping to the HFPA in the next section.
Although these algorithms do not depend on a specific size of PLA-
like blocks or LUTs, we need to specify the size of these logic
resources to be able to provide experimental results in Section 4.
We have shown in [6, 7] that a PLA-like block with 16 inputs and
10 Pterms and 3 outputs is a reasonable choice for the HFPA. We
refer to this PLA-like block as Programmable Array Logic Block
(PALB). The HFPA also contains 4-input LUTs (4-LUTs). The
details of this HFPA can be found in [6].

3 Technology Mapping Algorithms for the
HFPA
This section summarizes the heuristic techniques used for each of
the main steps in our technology mapping tool. There are a number
of terms related to the HFPA architecture that are often used in this
section:

 • LUT_I is the number of inputs to a LUT (4 in our case),
 • PALB_I is the number of inputs to a PALB (16 in our case),
 • PALB_P is the number of Pterms in a PALB (10 in our case),
 • I is the fanin of a node in a circuit,
• P is the number of Pterms in the SOP representation of a node in

a circuit.

3.1 Partial Collapsing
PLDs that contain PLA-like blocks with high fanin require con
trolled collapsing as part of their technology mapping. Collapsin
is useful to reduce both the depth and area of the circuits. We c
sider two kinds of partial collapsing in this section: one to improv
the performance of a circuit and the other to decrease its area.

Before we explain the algorithms for partial collapsing, we need
define thehybrid size(hsize) of a node, which is used as a cost func
tion. Hsize is an estimate of the silicon area that a node occup
where the unit area is the equivalent silicon area of a LUT and
associated routing wires and switches. The hybrid size of prima
inputs (PIs) or primary outputs (POs) is defined to be zero and
hybrid size of internal nodes depends on their fanin (I) and numb
of Pterms (P) according to the definitions given in Table 1. The de
inition of the hybrid size includes five cases, as denoted in the tab
wheren is a node,K is an integer, andAf is the area factor by which
the area of a PALB is larger than the area of a LUT.

The estimation of size (which is pessimistic for high-fanin but opt
mistic for low-fanin nodes) prevents the partial collapser from elim
inating low-fanin nodes unless there is significant gain in doing s
An estimate of the size of a node ispessimisticwhen it is higher
than the final chip area that will be taken by that node. Case (I)
the table estimates the size of low-fanin nodes. This is an optimis
approximation because after the final mapping there are so
nodes with fanin less than LUT_I that consume one whole LU
The second case in the table corresponds to a node that fits
PALB. In this case the hybrid size of the node is the shaded area

I

a) and b) and
Figure 1. The hybrid size of a node.

LUT_I I< PALB_I≤ P PALB_P≤ LUT_I I< PALB_I≤ P 2 PALB_P⋅≤

PALB_I

node

P
A

LB
_PP

I

PALB_I

node

2
P

A
LB

_PP

o-

t-
s-

rid
rid
as

the
out
into
the
by
ees

e
by
gh-
the
me
ster

r-
w-
ess
-

uit
for

Lawler_clustering_algorithm {
/* LABELING */

foreach noden visited in topological from inputs to outputs (breadth-first) {
if then else ,
if then else }

/* RELABELING */
foreach noden visited in topological order from outputs to inputs {

while increaselabel(n)}
/* CLUSTERING */

foreach noden visited in topological order from outputs to inputs {
if then and create a new clusterC where
else ,
if {
create a new cluster

 }
}

/* COLLAPSING */
foreach clusterC {

collapse all nodes inC into root(c) }
} /* end */

Figure 2. Lawler’s algorithm for a given hybrid size H.

n PI= L 0= L MAX label u()()= u∀ FaninSet n()∈
hsize n() hsize FaninSet n()()+ H≤ label n() L= label n() L 1+=

n PI≠() n PO≠() n {nodes on the critical path}∉()∧ ∧

n PO= L ∞= root C() n=
L MAX label u()()= u∀ FanoutSet n()∈

label n() L<
C n{ } u FaninSet n()∈ and label u() label n()={ , }∪=

root C() n=
Figure 1 (a). The size estimation in case (II) is pessimistic because
it ignores shared inputs in the high-fanin nodes. The hybrid size of
a node that does not fit in a PALB, but whose number of inputs is
less than or equal to PALB_I is estimated in case (III), whereK is
the number of PALBs needed to implement the node. The shaded
area in Figure 1 (b) illustrates the hybrid size of high fanin nodes
for case (III) withK=2. Finally, the last two cases in Table 1 corre-
spond to the high-fanin nodes whose number of inputs is larger than
PALB_I. The added ‘1’ in cases (IV) and (V) in the table accounts
for the LUT that might be needed to OR the PALBs implementing
a large high-fanin node.

3.1.1 Collapsing for Depth Reduction
A simple way to improve the performance of a circuit is to col-
lapse it into two levels of logic. Unfortunately, this technique is not
applicable for a large class of circuits because the area penalty is
too large for total collapsing to be practical. However, it is often
possible to collapse the circuit partially in order to reduce delay at
a more moderate cost in area. In this subsection we describe an
algorithm, originally introduced by Lawler et al. in [9], with minor
modifications. The algorithm minimizes the number of clusters a
signal has to traverse from inputs to outputs, where each cluster is
constrained. The cluster constraint can be the number of nodes in
the cluster, the number of inputs entering the cluster, or in general
any other function of the cluster structure.

An application of Lawler’s clustering algorithm for delay optimiza-
tion is presented in [11]. This implementation of the algorithm uses
the number of nodes in the cluster as the constraint. The network
should be decomposed into simple 2-input gates before applying
the algorithm, to give some meaning to the number of nodes in the

cluster as a capacity constraint. An implementation of this alg
rithm is publicly available as part of SIS [10], but it is not directly
applicable to the HFPA because after logic optimization the ne
work might have nodes of any size. Therefore we modified the clu
ter constraint in the algorithm implemented in SIS to use the hyb
size (hsize) of the cluster, which is defined as the sum of the hyb
sizes of all the nodes in a cluster. The heuristic algorithm, which h
four steps, is outlined in Figure 2.

The first step of the algorithm, calledlabeling, uses dynamic pro-
gramming. Then, in the second step the algorithm relabels all
nodes to increase the label of a node whenever possible with
increasing the size of a cluster. This causes the clusters to break
smaller pieces along paths that are not critical in order to reduce
area penalty. Relabeling reduces the hybrid size of the circuits
about 9% on average with no adverse effect on depth; this agr
with the 8% area recovery that is reported in [11] using the sam
method. Relabeling also helps the balance of LUTs and PALBs
preventing unnecessary collapsing that leads to creation of hi
fanin nodes, as is described in the next section. The third step of
algorithm places nodes with the same label that fanout to the sa
root node into one cluster, and the fourth step collapses each clu
into its root node.

3.1.2 Collapsing for Area Reduction
The advantages of HFPA are not limited to increasing the perfo
mance of the circuits by reducing the depth. In some cases lo
fanin nodes can be collapsed into a high-fanin node that takes l
silicon area if implemented in PLA-like blocks. Figure 3 summa
rizes the heuristic algorithm that we use when collapsing a circ
to reduce its area. The algorithm is integrated into the SIS tool,
HFAarea_collapsing_algorithm {
foreach noden visited in from inputs to outputs (breadth-first) {

if then {

/* is the set of fanout nodes ofn aftern is collapsed into them */
if then eliminaten
}
else continue

}
} /* end */

Figure 3. Partial collapsing for area reduction.

n PI≠() n PO≠()∧
t n()cos hsize n() hsize FanoutSet n()() hsize FanoutSet()after()–+=
FanoutSet()after

t n()cos GivenCost<() pterms FnnoutSet()after() GivenP≤()∧

h-

o
f

e
nd
g

e
me

or
T.
2
be

or
at
nd

to
or
the
lar
ut
nd
ot
re

HF
For
rea

the
LF

0

0

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0

0

0

HF

LF

LFLF

PI

Figure 4. Example of a circuit.

PI PI PI PIPI

PO

PO

PO

PO

LF

LF

HF

PI

LF
convenience. The heuristic program accepts two parameters,
GivenCostandGivenP,and then examines each node in the network
to assign a cost to the node. The cost of a node is the increase in the
hybrid size of the network if the node is eliminated by collapsing
into its fanouts. If the cost of elimination of a node is greater than
GivenCost,or the number of Pterms in any new nodes created by
elimination is greater thanGivenPthe node will not be eliminated.

The implementation of our partial collapser is similar to the algo-
rithm involved using the commandeliminatein SIS. The cost func-
tion used in the eliminate algorithm is theliteral countof a node.
Literal count minimization, which is the main cost function in many
of the algorithms in SIS, is an appropriate cost function for map-
ping the circuits to gate arrays. However, the literal count of nodes
that fit in LUTs or PALBs does not affect the final silicon area of
the mapped circuit. We compared our partial collapser to the elim-
inate algorithm for 10 benchmark circuits; our collapser results in
8% less area and 11% less depth on average. Another important
advantage of the HFPA collapser over the eliminate algorithm is the
amount of control on the collapsing, which is important for balanc-
ing the number of PALBs and LUTs, as explained later in this paper.
Even the minimum possible amount of collapsing using eliminate
(eliminate -1)results in too much collapsing for 4 out of 10 circuits
that are considered.

3.2 Preparing and Packing
This section explains the final step of technology mapping, in
which all the nodes in the network are packed into a minimal num-
ber of PALBs and LUTs. Before packing, we must prepare the cir-
cuit to assure that each node fits in either a LUT or a PALB. Some
nodes created by logic synthesis or partial collapsing will be too
large to fit into a PLA-like block, but they can be effectively parti-
tioned. We partition a large node that does not fit in a PALB by
clustering its Pterms into groups, in such a way that the Pterms in
each group share the largest possible number of inputs [6].

The packing algorithm divides the nodes into two groups: hig
fanin (HF) and low-fanin (LF). The number of inputs to high-fanin
nodes is greater than LUT_I. The packing algorithm consists of tw
main parts:fitting high-fanin nodes into the minimum number o
PALBs andmerginglow-fanin nodes into the minimum number of
LUTs. The first part, which deals with high fanin nodes, sorts th
nodes based on the multiplication of their number of inputs a
Pterms (IXP). After sorting the high-fanin nodes in the descendin
order of (IXP), we fit them into the minimum number of PALBs
using abin packingalgorithm. The choice of (IXP) is an intuitive
decision based on the notion that nodes with higher (IXP) are more
suitable for PALBs. The bin packing algorithm tries to place th
nodes with the highest number of shared inputs into the sa
PALBs.

The second part of the packing operation involves merging two
more LF nodes into one node that can be implemented in a LU
Figure 4 shows a circuit example that contains 6 low fanin and
high fanin nodes. The low fanin nodes with the same shade can
merged together. This problem is similar to technology mapping f
traditional LUT-based FPGAs. We implemented an algorithm th
traverses the network from primary inputs to primary outputs a
merges the low-fanin nodes into their fanouts whenever possible
reduce the number of LUTs. If there is more than one choice f
merging, the heuristic algorithm makes a decision based on
number of inputs and fanouts of the nodes. This algorithm is simi
to Level-map [5] with the difference that we use only one fano
factor. Level-map tries several fanout factors for each circuit a
selects the one with the best results. Changing this factor will n
significantly affect the results in the HFPA because LF nodes a
often connected to HF nodes and if an LF node fans out to an
node it should be implemented regardless of its other fanouts.
the same reason the merging step has little effect on the final a
of the circuits.

An optional step at the end of the packing phase considers all of
PALBs with unused outputs and unused Pterms and adds the

y

a
he
h
ed
re-
ft
tec-
of
nce

n is
of
the
An
n-
al-
is
is
re
s
ice.
n
he
e

h-
i-
its

fir

clma

gol64

valu

des

Gain

BF

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Figure 5. Balance curves for large benchmark circuits.

3.5 4.7

balance factor
nodes to them until they are full. Also, at this stage it is possible to
move some LF nodes in LUTs to the PALBs or decompose some of
the HF nodes in PALBs and move them to LUTs. This will help to
obtain a desirable balance of the number of PALBs and LUTs. Note
that the best high fanin candidates to be decomposed and imple-
mented in LUTs are at the end of the sorted list that is created for
HF nodes. We added a routine to the SIS environment that traverses
all the nodes in the network and decomposes the high fanin nodes
with low (IXP) into LUTs1. The command for this new routine
accepts an argument determining if the easily decomposable nodes
on the critical path should remain intact. This command does not
affect the final area significantly but changes the mixture of PALBs
and LUTs. We discuss this issue more in the next section.

4 Experimental Results
Since no other algorithms for mapping circuits to an HFPA have
been published, it is impossible to compare our techniques to oth-
ers for the purpose of measuring the quality of the results. As an
alternative we postulate that a technology mapper for an HFPA
serves a useful purpose if it allows the HFPA to implement circuits
in a more efficient manner than other types of PLDs. Accordingly,
in this section we use our algorithms to demonstrate the advan-
tages of the HFPA compared to traditional LUT-based FPGAs.

We consider the technology mapping results separately for both
area and depth. Since the implementation results in an HFPA are
affected by the available mixture of LUTs and PAL-like resources,
we discuss this issue first.

4.1 Mixture of PALBs and LUTs
The mixture of PALBs and 4-LUTs in an HFPA that provides the
best results depends on the properties of the circuit being imple-

mented. For the results presented here we need to choose abal-
ance factor, which is the ratio of the number of LUTs to the
number of PALBs in an HFPA. Our algorithm can be used for an
balance factor by changing theGivenCostandGivenPparameters
in Section 3.1.2. The silicon area benefit, orgain, of an HFPA is
defined as the ratio of the area when the circuit is mapped to
LUT-based FPGA over the area when the circuit is mapped to t
HFPA. A balance curveshows how the area gain changes wit
respect to the balance factor for a specific circuit. We produc
balance curves for a set of 15 MCNC benchmark circuits; a rep
sentative sample of five curves is given in Figure 5. The le
extreme of each Bell-shape curve corresponds to a target archi
ture with only PALBs (balance factor=0) and the right extreme
each curve represents mapping to a LUT-based FPGA (bala
factor =).

We measured the balance range for each curve in which the gai
within 5% of its maximum and then calculated the intersection
those balance ranges for all the circuits. Figure 5 shows that
resulting range for these balance factor is between 3.5 and 4.7.
alternative approach for finding the best single mixture is to co
sider a meta circuit comprising all 15 circuits and measure the b
ance factor that corresponds to minimum silicon area. Th
alternative method results in a balance factor of four, which
approximately in the middle of the balance range shown in Figu
5. Therefore we can conclude that a mixture of PALBs and LUT
that supports a balance factor close to four is a reasonable cho
The balance factor of four implies allocation of the same silico
area to LUTs and PALBs, because a PALB occupies roughly t
same area as four 4-LUTs [7]. In the remainder of this section w
assume an HFPA with a balance factor of 4.

4.2 Comparison
Table 2 compares the results of implementing the MCNC benc
mark circuits in both 4-LUT FPGAs and the HFPA. Our exper
mental procedure involves first reading the benchmark circu

1. Simple AND/OR gates are examples of high fanin nodes with low (IXP)
that can be easily implemented in LUTs.

∞

ve
of
h
re
-

the
ion
w-
g

ion
As
y

T
3%
ix;
y.

hat

for
e
uc-
he

i-

the
ed
he
ults

Bs
if-
e
ir-
p-
ip

circuit

Area:
HFPA

(area, depth)
balance
factor

4-LUT
(area, depth)

% higher
(area, depth)

Depth:
HFPA

(area, depth)
balance
factor

4-LUT
(area, depth)

% higher
(area, depth)

s1423 148, 17 4.1 154, 21 4%, 24% 187, 8 4.1 185, 16 -1%, 100%

frg2 243, 6 4.1 324, 8 33%, 33% 265, 5 4 324, 8 22%, 60%

x3 198, 4 3.9 282, 7 42%, 75% 207, 3 4 265, 6 28%, 100%

dalu 214, 10 3.9 357, 13 67%, 30% 358, 6 3.8 440, 12 23%, 100%

sbc 209, 8 4 266, 8 27%, 0% 229, 3 3.9 286, 7 25%, 133%

cps 421, 10 3.9 520, 8 24%, -20% 490, 6 4.2 520, 8 6%, 33%

s1488 165, 6 3.9 219, 7 33%, 17% 207, 5 4 219, 7 6%, 40%

scf 258, 6 3.8 300, 6 16%, -14% 279, 5 4 300, 6 8%, 20%

apex2 726, 13 4.1 905, 16 25%, 23% 912, 8 4 957, 15 5%, 88%

alu4 562, 10 4.1 666,10 19%, 0% 683, 6 3.9 666,10 -2%, 67%

Avg: 4 29%, 17% 4 12%, 75%

TABLE 2 . Estimate of the gain.
from their original EDIF into Synopsys Design Compiler, which is
used to perform technology independent optimization. Synopsys
FPGA Compileris then used to map the circuits to 4-LUTs provid-
ing the results that are listed in the “4-LUT” column of Table 2
under the heading “Area”. To compare the HFPA with LUT-based
FPGAs the circuits are mapped using a similar optimization script.
Then the circuits are converted to BLIF and partially collapsed for
area using the algorithm explained in Subsection 3.1.2. The final
area and depth results are presented in column “HFPA” of the
table. The total area results are calculated in terms of 4-LUTs. We
have made two assumptions based on our layout results presented
in [6, 7]: 1) the area of a PALB and its routing equals the area of
four 4-LUTs and their routing, and 2) the logic delay of a PALB is
equal to the logic delay of a LUT. The results in the table show that
the LUT-based FPGAs occupy 29% more silicon area than HFPA
on average. Also, average depth of the resulting circuits is 17%
higher when the target architecture contains only LUTs.

At this point we focus on the depth advantages of the new architec-
ture. Reducing the depth of the circuits decreases not only the total
delay due to blocks on the critical path, but also the number of
switches needed to route those blocks, which in turn adds to the
improvement in the speed-performance. We modify the Synopsys
optimization script used for results in the left section of Table 2 and
remap the circuits to reduce the delay. This change of the script
should reduce the depth of the mapped circuits, though it does not
guarantee it. The right section of Table 2 presents the data with the
results of FPGA Compiler in column “4-LUT”.1 To minimize the
depth of the circuits mapped to the HFPA we use the depth partial
collapser explained in 3.1.1 before running our area collapser. After
optimization by Synopsys, we collapse the circuits to a given depth
and then reduce their area. To find the appropriate depth of each cir-
cuit that does not cause unacceptable area penalty we consider the
graphs that present the increase in hybrid size of a circuit caused by
reducing depth [6]. Each circuit is then collapsed to the depth that
corresponds to the approximate knee of its corresponding graph.
Table 2 shows that the depth of the circuits mapped to LUT-based
FPGAs is 75% higher than their depth when mapped to the HFPA
using this methodology. The HFPA still maintains an area gain of

12% on average.

Finally, we investigate the distribution of the nodes on the abo
circuits’ critical paths for each mapping option. On average, 66%
the nodes on all critical paths of each circuit are low-fanin, whic
are implemented in 4-LUTs. The remaining 34% of the nodes a
high-fanin and are implemented in the PALBs. Although, the num
ber of nodes on the critical paths increases significantly when
mapping goal is changed from area to depth, the above distribut
is approximately held the same. Despite this high number of lo
fanin nodes, 70% of the critical path delay (excluding the routin
delay) is due to high-fanin nodes, on average. This observat
emphasizes the importance of the speed of the PLA-like block.
a rule of thumb, the delay of the PLA-like block in an arbitrar
hybrid architecture should be less than three or four times the LU
delay to obtain any speed gain. According to the same results, 1
of the nodes on the critical paths have fanin equal to five or s
these nodes contribute to roughly 20% of the critical path dela
Some commercial LUT-based architectures such asVirtex [12] con-
tain additional circuitry for implementing nodes with five or six
inputs. These architectures can provide results that are somew
better than our reference LUT-based architecture.

5 Concluding Remarks
This paper has presented a new technology mapping algorithm
architectures that contain both LUTs and PLA-like blocks. W
treat partial collapsing as a separate optimization step, by introd
ing two algorithms for reducing either the area or the depth of t
circuit. We then pack all the high-fanin nodes into the minimum
number of PALBs and merge the low-fanin nodes into the min
mum number of LUTs.

To illustrate its usefulness, we used the HFPA mapper to show
advantages of the hybrid architecture compared to LUT-bas
FPGAs. According to our results, the area and depth gain of t
HFPA are 29% and 17% on average. We also presented the res
for another mapping trade-off with which HFPA provides for 12%
and 75% area and depth gain, respectively. The mixture of PAL
and LUTs that provides the highest gain for an HFPA varies for d
ferent circuits. However, the HFPA provides some gain within th
balance range of 3.5 to 4.7 for the majority of the benchmark c
cuits. We showed that it is reasonable if the hybrid architecture su
ports a balance factor of four, which implies roughly the same ch
area for both PALBs and LUTs.

1. In cases that the Synopsys script change did not reduce the depth, we
conservatively used the original 4-LUT count listed on the left side of the
table.

-
,”

s-

l
y,

l
d

6 References
[1] J. Anderson and S. Brown, “Technology Mapping for

large Complex PLDs,” Proceeding of Design Automation
Conference, June 1998,

[2] F. Heile, A. Leaver, “Hybrid Product Term and LUT-
based Architectures Using Embedded Memory Blocks,”
Proceedings of the 1999 Symposium on FPGAs, pp. 13-
16.

[3] J. Cong and Y. Ding, “FlowMap: An Optimal Technol-
ogy Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs,” IEEE trans. on
CAD of integrated circuits and systems, January 1994.

[4] J. Cong and Y. Ding, “Combinational Logic Synthesis
for LUT Based Field Programmable Gate Arrays,” ACM
trans. on Design Automation of Electronic Systems, Vol.
1, No. 2, April 1996, pp. 145-204.

[5] A.H. Farrahi and M. Sarrafzadeh, “Complexity of the
Lookup-Table Minimization Problem for FPGA Technol-
ogy Mapping,” IEEE trans. on computer-aided design of
integrated circuits and systems, Nov. 1994.

[6] A. Kaviani, “Novel Architectures and Synthesis Meth
ods for High Capacity Field Programmable Devices
Ph.D. dissertation 1999

[7] A. Kaviani, S. Brown, “The Hybrid Field Programmable
Architecture” IEEE design and test, April-June 1999.

[8] J. L. Kouloheris and A. El Gamal, “PLA-based FPGA
Area vs. Cell Granularity,” Proceedings of the 1992 Cu
tom Integrated Circuits Conference, pp. 4.31-4.3.4.

[9] E. L. Lawler, K. L. Levitt, and J. Turner, “Module Clus-
tering to Minimize Delay in Digital Networks,” IEEE
trans. on Computers, Jan. 1969, pp. 47-57.

[10] E. M. Sentovich et al., “SIS: A System for Sequentia
Circuit Synthesis,” Electronics Research Laborator
Memorandum No. UCB/ERL M92/41.

[11] H. Touati, H. Savoj, R. Brayton, “Delay optimization
of Combinational Logic Circuits by Clustering and Partia
Collapsing,” IEEE Conference on Computer-Aide
Design, 1991, pp. 188-191.

[12] Xilinx data book.

	Main Page
	FPGA'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

