Technology Mapping Issues for an FPGA with
Lookup Tables and PLA-like Blocks

Alireza Kaviani Stephen Brown
Xilinx Inc., 2100 Logic Drive, University of Toronto, 10 Kings College Rd.,
San Jose CA95124 Toronto, Canada M5S 3G4
alireza.kaviani@xilinx.com brown@eecg.toronto.edu
Abstract mapped circuit as an approximate measure of the chip area of the

circuit. Also, the maximum number of PLA-like blocks and LUTs
that the signal needs to traverse from the inputs to the outputs of a
combinational circuit is considered as an approximate measure for
the speed of the circuit. This provides an estimate of the expected
benefits of the new architecture compared to LUT-based FPGAs.

In this paper we present new technology mapping algorithms for
use in a programmable logic device (PLD) that contains both
lookup tables (LUTs) and PLA-like blocks. The technology map-
ping algorithms partially collapse circuits to reduce either area or
depth, and pack the circuits into a minimum number of LUTs and
PLA-like blocks. Since no other technology mapping algorithm for The recenAPEXfamily from Altera [2] provides a combination of

this problem has been previously published, we cannot comparéUTs and PLA-like blocks on the same chip. The APEX architec-
our approach to others. Instead, to illustrate the importance of thidure contains embedded system blocks that can be configured to
problem we use our algorithms to investigate the benefits providedunction as PLAs or as memory blocks. The technology mapping
by a PLD architecture with both LUTs and PLA-like blocks com- techniques described in this paper can be used for both HFPA and
pared to a traditional LUT-based FPGA. The experimental resultsAPEX. However, the PLA-like blocks in these two architectures dif-
indicate that our mixed PLD architecture is more area-efficientferin both size and delay; therefore the potential advantages that are
than LUT-based FPGAs by up to 29%, or more depth-efficient by presented in this paper can not be applied to the APEX architecture.

up to 75%t We discuss the background and related work in Section 2. The tech-
nology mapping algorithms are presented in Section 3, and our
1 Introduction experimental results are given in Section 4.

The design and implementation of digital circuits has been stronglyp Backgrou nd and Related Work
influenced over the past several years by rapid developments in the

sophistication of two types of programmable logic devices: Field A_number of technology mapping algorithms for LUT-based
Programmable Gate Arrays (FPGAs) and Complex Programmabld-PGAs have been developddowMap3] is a technology mapper
Logic Devices (CPLDs). Commercially available FPGAs consist that optimizes depth by maximizing the flow in a network. There
of a two-dimensional array of logic blocks, either based on aré also several algorithms whosg initial goal is minimizing the
LookUp Tables (LUTSs), or an arrangement of multiplexers. CPLDs humber of LUTs. For example, [5] introducksvel-mapwhich is

are composed of a collection of larger-grained blocks that is eact? technology mapping heuristic to minimize the number of LUTs.
similar to a Programmable Logic Array (PLA). A programmable This paper also proves that the problem of obtaining minimum
device that includes both LUTs and PLA-like blocks provides count for LUTs, with greater than four inputs, is NP-complete. A
advantages over existing devices [6, 7]; we refer to this new archi-thorough survey of technology mapping algorithms for LUT-based
tecture as a Hybrid Field Programmable Architecture (HFPA). FPGAs can be found in [4].

Having different logic resources on the same chip complicates théVlapping circuits to CPLDs is potentially more straightforward than
technology mapping and raises the issue of providing an approprifechnology mapping for FPGAs. One synthesis issue for CPLDs is
ate mixture of LUTs and PLA-like blocks in the new architecture. €ffective two-level logic minimization, which reduces the number
This paper deals with these issues by presenting new algorithms fopf product terms (Pterms) in the sum-of-products (SOP) form of a
mapping circuits to an HFPA and providing experimental results tofunction. This is appealing for PLA-like blocks in CPLDs, because
suggest an appropriate mixture of logic resources in the new archithey can accommodate a limited number of Pterms, while their
tecture. The goal of the HFPA technology mapper is to map circuitsnumber of inputs can be large (typically < ADDMAPis a mapper

to LUTs and PLA-like blocks such that either area or speed is min-developed by Kouloheris [8] to investigate area-efficiency of a pro-

imized. We consider the number of PLA-like blocks and LUTs in a Posed PLD based on PLA-like blocks. DDMAP first uses a LUT
technology mapper to create a circuit of K-bounded nodes, where K

is the number of inputs to the PLA-like block. Then the mapper
1. This work was done at the University of Toronto. packs the nodes into PLA-like blocks with multiple outputs, using a
first fit decreasing algorithm. A recent study [1] presents a better
approach and introduces a new heuristic for technology mapping to
CPLDs. This algorithm performs the mapping in three steps: opti-
mal tree mapping, partial collapsing, and bin packing. The first step
involves partitioning of the circuit into a forest of fanout-free trees.
Then the nodes in each tree are partially collapsed into their succes-
sors based on criteria such as the size or fanout of the node. Finally,

case hsize(n) condition

0 HJITj I <LUT |

0 P'AELABf_I + PZLDQjP_ PALI'B_EFEE’XLB_P LUT_I <1 <PALB_| andP<PALB_P
an *;ELES + PZLDBA_fP_ PALI;EFEE?‘LB_P LUT I <1 <PALB_| andP< K [PALB_P
) + P'AELABf_I PALB_I<I andP<PALB P

) 1+ ﬁtﬁh PALB_I<| andPALB_P<P

TABLE 1 . Definition of hsize for the node n.

the mapper packs circuit nodes into PLA-like blocks available in 3.1 Partial Collapsing
the target architecture, using a maximum shared input bin packing

algorithm. PLDs that contain PLA-like blocks with high fanin require con-

)) -) trolled collapsing as part of their technology mapping. Collapsing
Technology mapping algorithms for traditional PLDs with only one s yseful to reduce both the depth and area of the circuits. We con-
kind of logic resource can not be applied to the HFPA directly. We sider two kinds of partial collapsing in this section: one to improve
present the algorithms for mapping to the HFPA in the next section. the performance of a circuit and the other to decrease its area.

Although these algorithms do not depend on a specific size of PLA- Bef lain the alorithms f il collapsi d
like blocks or LUTs, we need to specify the size of these logic efore we explain the algorithms for partial collapsing, we need to

resources to be able to provide experimental results in Section 4. d€fine theybrid size(hsizg of a node, which is used as a cost func-

We have shown in [6, 7] that a PLA-like block with 16 inputs and tion. Hsize is an estimate of the silicon area that a node occupies,

10 Pterms and 3 outputs is a reasonable choice for the HFPA. WeWhere the unit area is the equivalent silicon area of a LUT and its
refer to this PLA-like block as Programmable Array Logic Block associated routing wires and switches. The hybrid size of primary

(PALB). The HFPA also contains 4-input LUTs (4-LUTs). The inpu@s (PIS) or primary outputs (POs) is defir_led to be zero and the
details of this HFPA can be found in [6]. hybrid size of internal nodes depends on their fanin () and number

of Pterms (P) according to the definitions given in Table 1. The def-
3 Technology Mapping Algorithms for the inition of the hybrid size includes five cases, as denoted in the table,

wherenis a nodeK is an integer, andfis the area factor by which
HFPA the area of a PALB is larger than the area of a LUT.

This section summarizes the heuristic techniques used for each ofrpe estimation of size (which is pessimistic for high-fanin but opti-

the main steps in our technology mapping tool. There are a number pstic for |ow-fanin nodes) prevents the partial collapser from elim-
of terms related to the HFPA architecture that are often used in this inating low-fanin nodes unless there is significant gain in doing so.

section: An estimate of the size of a node figssimistiovhen it is higher
« LUT_I is the number of inputs to a LUT (4 in our case), than the final chip area that will be taken by that node. Case (l) in
* PALB_| is the number of inputs to a PALB (16 in our case), the table estimates the size of low-fanin nodes. This is an optimistic
« PALB_P is the number of Pterms in a PALB (10 in our case), approximation because after the final mapping there are some
¢ | is the fanin of a node in a circuit, nodes with fanin less than LUT _I| that consume one whole LUT.
« Pis the number of Pterms in the SOP representation of a node in The second case in the table corresponds to a node that fits in a
a circuit. PALB. In this case the hybrid size of the node is the shaded area in
I
-
I
< A A
P node D‘|
m
2 P node e
[a m
-
| ________________________ | <
o
N
-
PALB._| | /
-————>
PALB_|
a) LUT_I<I <PALB_I andp<PALB_P b)LuT_I <1 <PALB | andP<2[PALB_P

Figure 1. The hybrid size of a node.

Lawler_clustering_algorithm {
/* LABELING */
foreach noden visited in topological from inputs to outputs (breadth-first) {
if n = Plthen L = 0 elseL = MAX(label(u)), ODuO FaninSef n
if hsizg)+ hsizgd FaninS€t Y) <H then label(n) = L elselabel(n) = L+1}
/* RELABELING */
foreach noden visited in topological order from outputs to inputs {
while (n# P1) O(n# PO) O(n O{nodes on the critical path}increasdabel(n)}
/* CLUSTERING */
foreach noden visited in topological order from outputs to inputs {
if n = POthen L = « and create a new clus@mwhereroot(C) = n
elseL = MAX (label(u)), OuOFanoutSet h
if label(n) <L {
create a new cluste® = {n} 0 {ul FaninSef fnandlabel(u) = label(n}
root(C) = n}
}
/* COLLAPSING */
foreach clusterC {
collapse all nodes i@ into root(c) }
}/*end */
Figure 2. Lawler’s algorithm for a given hybrid size H.

Figure 1 (a). The size estimation in case (ll) is pessimistic because cluster as a capacity constraint. An implementation of this algo-
it ignores shared inputs in the high-fanin nodes. The hybrid size of rithm is publicly available as part of SIS [10], but it is not directly

a node that does not fit in a PALB, but whose number of inputs is applicable to the HFPA because after logic optimization the net-
less than or equal to PALB_]I is estimated in case (Ill), wheie work might have nodes of any size. Therefore we modified the clus-
the number of PALBs needed to implement the node. The shadedter constraint in the algorithm implemented in SIS to use the hybrid
area in Figure 1 (b) illustrates the hybrid size of high fanin nodes size (hsize) of the cluster, which is defined as the sum of the hybrid
for case (Ill) withK=2. Finally, the last two cases in Table 1 corre- sizes of all the nodes in a cluster. The heuristic algorithm, which has
spond to the high-fanin nodes whose number of inputs is larger than four steps, is outlined in Figure 2.

PALB_I. The added ‘1’ in cases (V) and (V) in the table accounts
for the LUT that might be needed to OR the PALBs implementing
a large high-fanin node.

The first step of the algorithm, calldabeling uses dynamic pro-
gramming. Then, in the second step the algorithm relabels all the
nodes to increase the label of a node whenever possible without
. . increasing the size of a cluster. This causes the clusters to break into
3.1.1 Collapsing for Depth Reduction smaller pieces along paths that are not critical in order to reduce the
A simple way to improve the performance of a circuit is to col- area penalty. Relabeling reduces the hybrid size of the circuits by
lapse it into two levels of logic. Unfortunately, this technique is not about 9% on average with no adverse effect on depth; this agrees
applicable for a large class of circuits because the area penalty iswith the 8% area recovery that is reported in [11] using the same
too large for total collapsing to be practical. However, it is often Method. Relabeling also helps the balance of LUTs and PALBs by
possible to collapse the circuit partially in order to reduce delay at Preventing unnecessary collapsing that leads to creation of high-
a more moderate cost in area. In this subsection we describe anfanin nodes, as is described in the next section. The third Step of the
algorithm, originally introduced by Lawler et al. in [9], with minor @lgorithm places nodes with the same label that fanout to the same
modifications. The algorithm minimizes the number of clusters a rootnode into one cluster, and the fourth step collapses each cluster
signal has to traverse from inputs to outputs, where each cluster isinto its root node.

constrained. The cluster constraint can be the number of nodes in

the cluster, the number of inputs entering the cluster, or in general 3.1.2 Collapsing for Area Reduction

any other function of the cluster structure. The advantages of HFPA are not limited to increasing the perfor-
An application of Lawler’s clustering algorithm for delay optimiza- mance of the circuits by reducing the depth. In some cases low-
tion is presented in [11]. This implementation of the algorithm uses fanin nodes can be collapsed into a high-fanin node that takes less
the number of nodes in the cluster as the constraint. The network silicon area if implemented in PLA-like blocks. Figure 3 summa-
should be decomposed into simple 2-input gates before applying rizes the heuristic algorithm that we use when collapsing a circuit
the algorithm, to give some meaning to the number of nodes in the to reduce its area. The algorithm is integrated into the SIS tool, for

HFAarea_collapsing_algorithm {
foreach noden visited in from inputs to outputs (breadth-first) {
if (n#ZPI)O(n#PO) then {
cost(n) = hsizd)+ hsizg FanoutS¢t))—hsize(FanoutSg#fter)
/* (FanoutSe)after js the set of fanout nodes pfaftern is collapsed into them */
if (cost(n) <GivenCos}O(ptermg(FnnoutSg#fte) < GivenP) then eliminaten
}
else continue
}
}*end*
Figure 3. Partial collapsing for area reduction.

LF

LF

PO

LF

AN

AN

PO

PO

Figure 4. Example of a circuit.

convenience. The heuristic program accepts two parameters,The packing algorithm divides the nodes into two groups: high-

GivenCoshandGivenPand then examines each node in the network

fanin (HF) and low-fanin (LF). The number of inputs to high-fanin

to assign a cost to the node. The cost of a node is the increase in thenodes is greater than LUT _I. The packing algorithm consists of two

hybrid size of the network if the node is eliminated by collapsing
into its fanouts. If the cost of elimination of a node is greater than
GivenCostor the number of Pterms in any new nodes created by
elimination is greater thaBivenPthe node will not be eliminated.

The implementation of our partial collapser is similar to the algo-
rithm involved using the commareliminatein SIS. The cost func-
tion used in the eliminate algorithm is thigeral countof a node.
Literal count minimization, which is the main cost function in many
of the algorithms in SIS, is an appropriate cost function for map-
ping the circuits to gate arrays. However, the literal count of nodes
that fit in LUTs or PALBs does not affect the final silicon area of
the mapped circuit. We compared our partial collapser to the elim-
inate algorithm for 10 benchmark circuits; our collapser results in

main partsfitting high-fanin nodes into the minimum number of
PALBs andmerginglow-fanin nodes into the minimum number of
LUTs. The first part, which deals with high fanin nodes, sorts the
nodes based on the multiplication of their number of inputs and
Pterms (KP). After sorting the high-fanin nodes in the descending
order of (XP), we fit them into the minimum number of PALBs
using abin packingalgorithm. The choice of ¥P) is an intuitive
decision based on the notion that nodes with higheP)lare more
suitable for PALBs. The bin packing algorithm tries to place the
nodes with the highest number of shared inputs into the same
PALBs.

The second part of the packing operation involves merging two or
more LF nodes into one node that can be implemented in a LUT.

8% less area and 11% less depth on average. Another importantFigure 4 shows a circuit example that contains 6 low fanin and 2
advantage of the HFPA collapser over the eliminate algorithm is the high fanin nodes. The low fanin nodes with the same shade can be

amount of control on the collapsing, which is important for balanc-
ing the number of PALBs and LUTS, as explained later in this paper.
Even the minimum possible amount of collapsing using eliminate
(eliminate -1)results in too much collapsing for 4 out of 10 circuits
that are considered.

3.2 Preparing and Packing

This section explains the final step of technology mapping, in
which all the nodes in the network are packed into a minimal num-
ber of PALBs and LUTSs. Before packing, we must prepare the cir-
cuit to assure that each node fits in either a LUT or a PALB. Some
nodes created by logic synthesis or partial collapsing will be too
large to fit into a PLA-like block, but they can be effectively parti-
tioned. We partition a large node that does not fit in a PALB by

merged together. This problem is similar to technology mapping for
traditional LUT-based FPGAs. We implemented an algorithm that
traverses the network from primary inputs to primary outputs and
merges the low-fanin nodes into their fanouts whenever possible to
reduce the number of LUTSs. If there is more than one choice for
merging, the heuristic algorithm makes a decision based on the
number of inputs and fanouts of the nodes. This algorithm is similar
to Level-map [5] with the difference that we use only one fanout
factor. Level-map tries several fanout factors for each circuit and
selects the one with the best results. Changing this factor will not
significantly affect the results in the HFPA because LF nodes are
often connected to HF nodes and if an LF node fans out to an HF
node it should be implemented regardless of its other fanouts. For
the same reason the merging step has little effect on the final area

clustering its Pterms into groups, in such a way that the Pterms in ©f the circuits.

each group share the largest possible number of inputs [6].

An optional step at the end of the packing phase considers all of the
PALBs with unused outputs and unused Pterms and adds the LF

Gain

135

1.30

125 N

120 =]l

115 Eaer = —]

rrrrrr

105 : ;

100 /
0.95
0.90

0.85 //

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

AN

0.80

balance factor

Figure 5. Balance curves for large benchmark circuits.

nodes to them until they are full. Also, at this stage it is possible to mented. For the results presented here we need to chobak a
move some LF nodes in LUTSs to the PALBs or decompose some of ance factoy which is the ratio of the number of LUTs to the
the HF nodes in PALBs and move them to LUTs. This will help to number of PALBs in an HFPA. Our algorithm can be used for any
obtain a desirable balance of the number of PALBs and LUTSs. Note balance factor by changing tii&venCostand GivenPparameters
that the best high fanin candidates to be decomposed and imple-in Section 3.1.2. The silicon area benefit,gain, of an HFPA is
mented in LUTs are at the end of the sorted list that is created for defined as the ratio of the area when the circuit is mapped to a
HF nodes. We added a routine to the SIS environment that traversed UT-based FPGA over the area when the circuit is mapped to the
all the nodes in the network and decomposes the high fanin nodesHFPA. A balance curveshows how the area gain changes with
with low (IXP) into LUTS'. The command for this new routine espect to the balance factor for a specific circuit. We produced
accepts an argument determining if the easily decomposable noded@lance curves for a set of 15 MCNC benchmark circuits; a repre-
on the critical path should remain intact. This command does not Sentative sample of five curves is given in Figure 5. The left
affect the final area significantly but changes the mixture of PALBs extreme of each Bell-shape curve corresponds to a target architec-

and LUTs. We discuss this issue more in the next section. ture with only PALBs (balance factor=0) and the right extreme of
_ each curve represents mapping to a LUT-based FPGA (balance
4 Experimental Results factor =w).

Since no other algorithms for mapping circuits to an HFPA have We measured the balance range for each curve in which the gain is
been published, it is impossible to compare our techniques to oth- within 5% of its maximum and then calculated the intersection of
ers for the purpose of measuring the quality of the results. As an those balance ranges for all the circuits. Figure 5 shows that the
alternative we postulate that a technology mapper for an HFPA resulting range for these balance factor is between 3.5 and 4.7. An
serves a useful purpose if it allows the HFPA to implement circuits alternative approach for finding the best single mixture is to con-
in a more efficient manner than other types of PLDs. Accordingly, sider a meta circuit comprising all 15 circuits and measure the bal-
in this section we use our algorithms to demonstrate the advan- ance factor that corresponds to minimum silicon area. This
tages of the HFPA compared to traditional LUT-based FPGAs. alternative method results in a balance factor of four, which is

We consider the technology mapping results separately for both approximately in the middle of the balance range shown in Figure
area and depth. Since the implementation results in an HFPA are®- Therefore we can conclude that a mixture of PALBs and LUTs

affected by the available mixture of LUTs and PAL-like resources, that supports a balance factor close to four is a reasonable choice.

we discuss this issue first. The balance factor of four implies allocation of the same silicon
area to LUTs and PALBs, because a PALB occupies roughly the

4.1 Mixture of PALBs and LUTs same area as four 4-LUTs [7]. In the remainder of this section we

assume an HFPA with a balance factor of 4.
The mixture of PALBs and 4-LUTs in an HFPA that provides the

best results depends on the properties of the circuit being imple- 4.2 Comparison

Table 2 compares the results of implementing the MCNC bench-
1. Simple AND/OR gates are examples of high fanin nodes with I&®Y! mark circuits in both 4-LUT FPGAs and the HFPA. Our experi-
that can be easily implemented in LUTSs. mental procedure involves first reading the benchmark circuits

Area: Depth:

HFPA balance 4-LUT % higher HFPA balance 4-LUT % higher
circuit (area, depth) factor (area, depth) (area, depth) (area, depth) factor (area, depth) (area, depth)
s1423 148, 17 4.1 154, 21 4%, 24% 187, 8 411 185, 16| -1%, 100%

frg2 243, 6 4.1 324, 8 33%, 33% 265, 5 4 324, 8 22%, 60%
x3 198, 4 3.9 282, 7 42%, 75% 207,3 4 265, 6 28%, 100%6
dalu 214,10 3.9 357,13 67%, 30% 358, 6 38 440, 12 23%, 1001%
shc 209, 8 4 266, 8 27%, 0% 229, 3 3.9 286, 7 25%, 1336
cps 421, 10 3.9 520, 8 24%, -20% 490, 6 4P 520, 8 6%, 33%

51488 165, 6 3.9 219,7 33%, 17% 207, 5 4 219,7 6%, 40%
scf 258, 6 3.8 300, 6 16%, -14% 279,5 4 300, 6 8%, 209
apex2 726, 13 4.1 905, 16 25%, 23% 912,8 4 957, 15 5%, 88Pfo
alu4 562, 10 41 666,10 19%, 0% 683, 6 3P 666,10 -2%, 670
Avg: 4 29%, 17% 4 12%, 75%

TABLE 2 . Estimate of the gain.

from their original EDIF into Synopsys Design Compiler, whichis 12% on average.
used to perform technology independent optimization. Synopsys
FPGA Compileiis then used to map the circuits to 4-LUTs provid-
ing the results that are listed in the “4-LUT” column of Table 2
under the heading “Area”. To compare the HFPA with LUT-based
FPGAs the circuits are mapped using a similar optimization script.
Then the circuits are converted to BLIF and partially collapsed for
area using the algorithm explained in Subsection 3.1.2. The final
area and depth results are presented in column “HFPA” of the
table. The total area results are calculated in terms of 4-LUTs. We
have made two assumptions based on our layout results presente
in [6, 7]: 1) the area of a PALB and its routing equals the area of
four 4-LUTs and their routing, and 2) the logic delay of a PALB is
equal to the logic delay of a LUT. The results in the table show that
the LUT-based FPGAs occupy 29% more silicon area than HFPA

on average. Also, average depth of the resulting circuits is 17% ot yhe nodes on the critical paths have fanin equal to five or six;

higher when the target architecture contains only LUTS. these nodes contribute to roughly 20% of the critical path delay.
At this point we focus on the depth advantages of the new architec- Some commercial LUT-based architectures suc¥irsx[12] con-

ture. Reducing the depth of the circuits decreases not only the totaltain additional circuitry for implementing nodes with five or six
delay due to blocks on the critical path, but also the number of inputs. These architectures can provide results that are somewhat
switches needed to route those blocks, which in turn adds to the better than our reference LUT-based architecture.

improvement in the speed-performance. We modify the Synopsys .

optimization script used for results in the left section of Table 2and 5 Concluding Remarks

remap the circuits to reduce the delay. This change of the script This paper has presented a new technology mapping algorithm for
should reduce the depth of the mapped circuits, though it does not 5 chitectures that contain both LUTsS and PLA-like blocks. We

guarantee it. The right section of Table 2 presents the data with the a5t partial collapsing as a separate optimization step, by introduc-
results of FPGA Compiler in column “4-LUT To minimize the ing two algorithms for reducing either the area or the depth of the
depth of the circuits mapped to the HFPA we use the depth partial circuit. We then pack all the high-fanin nodes into the minimum
collapser explained in 3.1.1 before running our area collapser. After number of PALBs and merge the low-fanin nodes into the mini-
optimization by Synopsys, we collapse the circuits to a given depth mum number of LUTSs.

and then reduce their area. To find the appropriate depth of each cir-
cuit that does not cause unacceptable area penalty we consider th
graphs that present the increase in hybrid size of a circuit caused by
reducing depth [6]. Each circuit is then collapsed to the depth that
corresponds to the approximate knee of its corresponding graph.
Table 2 shows that the depth of the circuits mapped to LUT-based
FPGAs is 75% higher than their depth when mapped to the HFPA
using this methodology. The HFPA still maintains an area gain of

Finally, we investigate the distribution of the nodes on the above
circuits’ critical paths for each mapping option. On average, 66% of
the nodes on all critical paths of each circuit are low-fanin, which
are implemented in 4-LUTs. The remaining 34% of the nodes are
high-fanin and are implemented in the PALBs. Although, the num-
ber of nodes on the critical paths increases significantly when the
mapping goal is changed from area to depth, the above distribution
is approximately held the same. Despite this high number of low-
fanin nodes, 70% of the critical path delay (excluding the routing
elay) is due to high-fanin nodes, on average. This observation
emphasizes the importance of the speed of the PLA-like block. As
a rule of thumb, the delay of the PLA-like block in an arbitrary
hybrid architecture should be less than three or four times the LUT
delay to obtain any speed gain. According to the same results, 13%

To illustrate its usefulness, we used the HFPA mapper to show the

dvantages of the hybrid architecture compared to LUT-based
FPGAs. According to our results, the area and depth gain of the
HFPA are 29% and 17% on average. We also presented the results
for another mapping trade-off with which HFPA provides for 12%
and 75% area and depth gain, respectively. The mixture of PALBs
and LUTSs that provides the highest gain for an HFPA varies for dif-
ferent circuits. However, the HFPA provides some gain within the
balance range of 3.5 to 4.7 for the majority of the benchmark cir-
1. In cases that the Synopsys script change did not reduce the depth, we cuits. We showed that it is reasonable if the hybrid architecture sup-
conservatively used the original 4-LUT count listed on the left side of the ports a balance factor of four, which implies roughly the same chip
table. area for both PALBs and LUTS.

6 References

[1] J. Anderson and S. Brown, “Technology Mapping for
large Complex PLDs,” Proceeding of Design Automation
Conference, June 1998,

[2] F. Heile, A. Leaver, “Hybrid Product Term and LUT-
based Architectures Using Embedded Memory Blocks,”
Proceedings of the 1999 Symposium on FPGASs, pp. 13-
16.

[3] J. Cong and Y. Ding, “FlowMap: An Optimal Technol-
ogy Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs,” IEEE trans. on
CAD of integrated circuits and systems, January 1994,

[4] J. Cong and Y. Ding, “Combinational Logic Synthesis
for LUT Based Field Programmable Gate Arrays,” ACM
trans. on Design Automation of Electronic Systems, Vol.
1, No. 2, April 1996, pp. 145-204.

[5] A.H. Farrahi and M. Sarrafzadeh, “Complexity of the
Lookup-Table Minimization Problem for FPGA Technol-
ogy Mapping,” IEEE trans. on computer-aided design of
integrated circuits and systems, Nov. 1994.

[6] A. Kaviani, “Novel Architectures and Synthesis Meth-
ods for High Capacity Field Programmable Devices,”
Ph.D. dissertation 1999

[7] A. Kaviani, S. Brown, “The Hybrid Field Programmable
Architecture” IEEE design and test, April-June 1999.

[8] J. L. Kouloheris and A. El Gamal, “PLA-based FPGA
Area vs. Cell Granularity,” Proceedings of the 1992 Cus-
tom Integrated Circuits Conference, pp. 4.31-4.3.4.

[9] E. L. Lawler, K. L. Levitt, and J. Turner, “Module Clus-
tering to Minimize Delay in Digital Networks,” IEEE
trans. on Computers, Jan. 1969, pp. 47-57.

[10] E. M. Sentovich et al., “SIS: A System for Sequential
Circuit Synthesis,” Electronics Research Laboratory,
Memorandum No. UCB/ERL M92/41.

[11] H. Touati, H. Savoj, R. Brayton, “Delay optimization
of Combinational Logic Circuits by Clustering and Partial
Collapsing,” IEEE Conference on Computer-Aided
Design, 1991, pp. 188-191.

[12] Xilinx data book.

	Main Page
	FPGA'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

