A Novel High Throughput Reconfigurable FPGA Architecture
Amit Singh, Luca Macchiarulo, Arindam Mukherjee, Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106
{asingh,luca,arindam,mms}@guitar.ece.ucsb.edu

Abstract nection between different blocks is constrained to be local (not
necessarily next neighbor) and single modules have similar com-
With increased logic density due to the shift towards Deep Submi- plexity (note that this does not impose the same functionality on
cron technologies (DSM), FPGAs have become a viable option for different blocks). A range of systolic and arithmetic circuits fall
implementing large designs. However, most commercial FPGAs, into this category. Our architecture uses a ‘Wave-Steered’ [13][14]
due to their general purpose architectural nature, cannot handleapproach to implement circuits in Pass Transistor Logic (PTL)
designs which require very high throughput. In this paper, we pro- mapped Decision trees. This new proposed architecture could pos-
pose a novel high throughput FPGA architecture which tries to sibly be embedded in a larger general purpose architecture thereby
combine the high-performance of Application Specific Integrated giving both the host and the embedded architectures greater flexi-
Circuits (ASICs) and the flexibility afforded by the reconfigurabil- bility. Our proposed architecture is attractive in the FPGA domain
ity of FPGAs. This architecture utilizes the concept of ‘Wave- because in situations where the design specifications change from
Steering’ and works best for designs which are highly regular and one implementation of the design to another, custom logic would
have almost equal delays along all paths. It has enormous potentialprove expensive. Our goal is to find a middle ground between the
in Digital Signal and Image Processing applications since a good FPGA and the ASIC world by combining the performance of
portion of these applications are regular in nature. Preliminary ASICs and the flexibility of FPGAs.
results for some commonly used DSP designs are encouraging and
yield throughputs in the neighborhood of 770 MHz in@GMOS We organize the rest of the paper as follows: Section 2 describes

technology. the key architectural ideas on which our proposed architecture is
based. They include Binary Decision trees and the concept of
1 Introduction Wave-Steering’ [13][14]. Section 3 describes the Logic Block

(LB) architecture. All basic building blocks that make up our LB
are discussed in this section. Section 4 describes the routing/inter-
connect fabric used in our proposed architecture. Section 5 pro-
vides experimental results and an analysis of these results. The
next section explores future possibilities and enhancements that
will increase the attractiveness of this FPGA. This is followed by
Conclusions.

The first FPGA was introduced in 1985 and since then, FPGAs
have become increasingly popular for their ability to be a low cost
solution in a variety of design applications. The advent of DSM
technologies has given rise to million gate FPGAs, thereby making
them increasingly versatile. However, FPGAs lag far behind
Application Specific Integrated Circuits (ASICs) when it comes to
the speed of the designs which can be accommodated. Most com- . o .

mercial FPGAs, due to their inherent general purpose architectural2 ~ Binary Decision Trees and ‘Wave-Steering’
nature, cannot handle designs that require very high throughput.

With shrinking device size, interconnect delays are increasingly This section discusses the main motivation behind our architec-
becoming a bottleneck for achieving fast clock speeds on thesetural approach, including the use of Pass Transistor Logic (PTL)
general purpose architectures.This reduces the attractiveness ofnapped Decision trees in our Logic Blocks and a unique modifica-
using FPGAs for high speed Digital Signal and Image processing tion to the classical Wave-Pipelining methodology. We call this
applications as well as applications that require very high through- methodology ‘Wave-Steering’[13][14].

put.

In this paper, we propose an application specific FPGA architec- 2.1 Blnary Decision Trees

ture fabric which targets regular circuits. Our definition of regular . o)) .)

circuits encompasses all circuits that have almost equal delays” Binary Decision Diagram (BDD)[S] is a graph in which each

along all paths. This definition includes all designs in which con- Vertex either has exactly two successors (or children), distin-
guished as high and low child, or no successor (in this case it is

called a leaf). If the BDD has no nodes which are simultaneously
children of different parents, its graph is a tree. It is possible to use
PTL logic to map this tree structure without the risk of sneak paths.
A complete balanced tree of height n, where every node has
exactly 2 children labelled with the successive variable, and termi-

nated with & leaves, can therefore represent any possible function
of up to n variables, and the values of the leaves mimic exactly the
truth table of the function. We utilize this mapping methodology to

create an architecture that has as its Logic Blocks, PTL mapped
Binary Decision trees. In the proposed architecture, there’s no

need for any customization inside the tree. The only customization inputs be pushed in. In this case, the throughput of the circuit
for implementing different designs occurs in the way static RAM equals its latency. However, if we can synthesize a fairly regular
memory cells are programmed (i.e. different combinations of ‘1’'s circuit such that all paths have almost equal delays, then more than
and ‘0’s). This means that to implement any 4 variable function for one data wave can exist between two clock cycles. This is true
any possible permutation of the inputs, we only need to program because there is no need for the previous data to be latched into the
these RAM cells uniquely. This is important to get the best possi- output flip-flops before pushing in the next set of inputs (in other
ble performance, as it allows the functional part of the cell to work words, internal node capacitances act as latches for the incoming
without added logic. This tree based method of realizing functions waves). This is illustrated in the set of Figures 2.a-2.c. Each trian-

forms the basis of our cell architecture. We discuss the Logic
Block architecture in Section 3.

2.2 Wave-Pipelining and ‘Wave-Steering’

The PTL mapped Binary tree based Logic Block architecture uses / T T T \
a modification to the classical Wave-Pipelining concept [8][12]
(called ‘Wave-Steering’ [13][14]) to achieve high throughputs. To T T T T ? ? T ?
understand ‘Wave-Steering’, it is essential to recognize the differ-
ence between a typical conventional combinational circuit and a) Figure 2.b
Wave-Pipelined circuit. In a conventional circuit, current data must Figure 2.a '
propagate to the output latch of the circuit before the next wave of
inputs can be pushed in. It is necessary to wait this long because
for different inputs, different input-output paths are activated and
each path can have different delay. Figures 1.a - 1.f illustrate this
point. Each of the triangles represents a multi-level combinational
| |
A 4412
/ Figure 2.c
T T T Figures 2.a-2.c: A Wave-Pipelined Combinational Circuit
T T T T gle in the Figures 2.a - 2.c represents a multilevel combinational
Figure 1.b circuit having all paths of almost equal delays. This makes it possi-

Figure 1.a ble for a new set of inputs to be pushed in after each clock cycle

and the waves continue to propagate upwards. Figure 2.a shows a
TT set of inputs being pushed in. In the next clock cycle (Figure 2.b),
this wave is propagated upwards and the next set of inputs (dashed
lines) is pushed in. Figure 2.c captures the snap-shot in the third
T T cycle, where the wave has propagated further up, the second wave
is present below this wave and the third set of inputs (dotted line)
is being pushed in. Hence, different waves can exist in any time
snap-shot. This is the underlying principle of Wave-Pipelining.

Figure 1.c Figure 1.d : : -
: In ‘Wave-Steering’ multiple data waves corresponding to succes-
f(ap,c,d) sive input vectors are made to coexist in a target circuit by skewing
J\ the input vectors in time. Although this may resemble a micro-
pipelining scheme, it is fundamentally different in the sense that
the input application points “spatially follow” the pipelined stages.

In a typical pipelined circuit, all the inputs are applied before the
first stage of latches, and the outputs are available after the last
i stage. Fine granularity pipelining of PTL mapped Decision Dia-

gram structures inherently have input application points physically
distributed along the stages of the pipeline, where each stage corre-

Figure 1.e Figure 1.f sponds to a level characterized by a single variable. This requires
the input variables corresponding to the same vector to be applied
Figures 1.a-1.f:Conventional Combinational Circuit with relative timing skews.
Operation

N . . - The timing skew between two variables characterizing two succes-
circuit. A set of inputs is pushed in (Figure 1.a) and the wave prop- sjve stages (levels) in such a Wave Steered structure would typi-
agates through successive levels of logic until the output is pro- cally be one stage delay. This skewing is accomplished by a chain

duced (Figure 1.b - 1.e). Only then (Figure 1.f) can the next set of Of flip-flops and a unigue clocking scheme. This will guarantee the
operation of the circuit at a given frequency by construction. In the

Wave Steered approach, a regular design is synthesized as a Deciassembly. This clocked Nand-inverter couple is used for driving
f(a,b,c,d)

sion tree. Each level in the tree corresponds to a particular variable
in the function (see Figure 3).

f(a,b,c . AN
()c=0 ’ ‘

R T

c

A czl\

(0 z(o (o]
Figure 3: f(a,b,c) evaluated from bottom to
top as a Decision Diagram Tree

This tree is evaluated level by level, starting from the leaf nodes.
Logic ‘1’ and ‘0’ form the leaf nodes and the output of the node at
the topmost level evaluates the function. Each tree node is directly
mapped into Pass Transistor Logic (PTL), by replacing tree nodes
with a 2:1 multiplexer followed by an inverter. This inverter
accounts for voltage degradation between the levels. Alternate
Mux levels are calledl and@2 levels (Figure 6). In anyl level,

the controlling input (or its complement) is logic ‘1’ and data is
propagated to the next level during this phagef the clock. Dur-

ing phasey?2 this particular level holds the logic level in the nfet
output and inverter gate capacitances, as both the mux’s selector
lines remain at logic ‘0. This provides the electrical isolations
between successive data waves. Once the function has been par-
tially evaluated for a particular variable in a level, only the com-
bined information needs to be propagated and the value of that
particular variable is no longer needed. In order to clock the circuit
faster, we ‘Wave Steer’ it. To do this, we skew the input vectors in
time so that the current input variable selects a path only after the
previous variable in the vector had selected the correct path. Using
this concept of ‘Wave-Steering’ [13][14], we propose a new Logic
Block Architecture.

3 Logic Block Architecture

In this section, we discuss our Logic Block architecture. At
present, our architecture works on circuits without feedback. Fig-
ure 4 shows a block diagram of a reconfigurable Logic Block (LB)
slice.

A LB slice is a 4-input LUT that can implement any function of
upto 4 variables. Each of our Logic Blocks is composed of two
such slices, with each slice built of a Pass Transistor Logic (PTL)
mapped 2:1 multiplexer Binary Decision tree. Figure 3, for exam-
ple, shows a function f(a,b,c) of 3 inputs, synthesized as a tree,
with each tree node mapped into PTL. In our architecture, each
PTL mapped tree has 4 levels, with each level corresponding to an
input variable. Input variables are clocked by a 2-level phase clock,
with alternate phaseg{ and,) clocking consecutive levels (Fig-
ure 6). The@, clock is the non-overlapping invertegh clock.
Inputs are fed to each tree through a feeder circuit (Figure 5) which
is composed of chains of master-slave flip-flops. This feeder circuit
is necessary to skew the input vectors in time and achieve the
desired ‘Wave Steering’ effect. There are two types of dynamic
flip-flop cells in the feeder circuit, the F1 and F2. The F1-F2 pair

F2-F1 ff pair

@ (4] [

nverter_,F1-F2 ff pair

Fe&jer circuit

\Static RAM cells

Figure 4: Block-Diagram of a Logic Block Slice

5x2 : 5x2 1

input 8x2 6x2 — to next F1-F2 block
'
—l— 5X2l T 5x2 :
(%] U] .

Part of a “Feeder-Circuit” Flip-Flop Chain
showing a basic master-slave F1-F2 cell

From F1-F2/F2-F1 Pai
—

4x2
to mux based tree
From F1-F2/F2-F1Paf
—
P/ P

Driver Assembly (part of Feeder circuit) feeding
the Mux Based Decision Diagram Tree

Figure 5 Feeder Circuit

f(a,b,c,d,....) a ¢

\ AL
: I @2 IpLld_
AN
@ b / - \ [+2
AN
¢ / ™ \ I=L-1

— active portion of data path durimg clock phase
--- active portion of data path durigg clock phase

Figure 6: Wave-Steering

the mux tree with the signal values during only one phase of the
clock and blocking the data transfer during the alternate phase.

will get the data out by the end gk phase while the F2-F1 phase
will get the data out by the end @f phase. Each set of flip-flop

cells feeds a clocked Nand gate and an inverter that act as a buffer,
9 We use static RAM memory cells (see Figure 4) for storing logic

‘1's and ‘0’'s. Each RAM cell is made up of 6 transistors and all 16

RAM cells in a LB slice can be programmed through a scan path in However, no data wave has reached level ‘c’ as yet because of
a bit-serial manner. All of our RAM cells consist of minimum input skewing. Figure 7.b shows what happens during thegirst
\t/\ndth_ trtan5|storsdsmce tS|rrf1ulat|ons show that these minimum width 4 phase. In this snap-shot, ‘b’ is set to logic ‘0’ and the transis-
ransistors are adequate for our purpose. torsin the ‘b’ level, selected by b are switched ‘on’. The data wave

Figures 7.a through 7.f illustrate Wave-Steering on a PTL mapped hence, propggates upwards as_shown by th_e dark solid arrows.
tree. Figure 7.a shows a PTL mapped tree for a function of 3 vari- (The dark solid arrows show thg, data wave) Figure 7.c captures

ables f(a,b,c). The dashed arrows show the direction of the inputsthe time-frame during the 2ngj clock phase. Here, a new value is
(and their complements). The sequence of inputs applied to this set for variable ‘a’ and equals logic ‘0". This corresponds to the i+1
tree is shown in Table 1. stage and is illustrated by dark dashed arrows. In this phase, level
‘c’ is also active but the data wave present here is fromjstage

Table 1: Sequence of inputs

- - (shown in figure by solid line and corresponding to c=1). As we
Stage i i+1 i+2 : .
Variabl can see, 2 data waves exist concurrently in the tree structure. The
ariable > | == ---> i, data wave has propagated to level ‘c’ while the i+1 data wave
E L ;’ < has been introduced in level ‘a’. An important fact to note is that
0 0 two consecutive levels are clocked in alternate phases of the clock.
¢ 1 0 1 Figure 7.d shows the data-wave propagation during the @nd

Figure 7.a i_s a sn_ap-shot of the Circ‘_m behavior durin_g the‘ﬁf_St phase. In this phase only level ‘b’ is active and according to table
phase. During this phase, level ‘a’ is clocked and since ‘a’ is at 1 p s set to logic ‘1'. The dashed arrow (corresponding to the i+1
Logic ‘1’, the transistors controlled by ‘a’ are switched ‘on’ (dark stage) shows the wave propagation.

solid arrows). Note that during this phase, level ‘c’ is also active.

‘\R{m/ Kgﬁmj ermmj

Figure 7.a: Wave-Steering Figure 7.b: Wave-Steering Figure 7.c: Wave-Steering
. X Inverter: inverts logic level @ _I_I_I_I—
Inverter: inverts logic level \‘V @ | | | |
-y, B/ <« —% -c
€< —F— -c — =
o - STk = FFE > o0
T 1 R ST — — A
o T _

H 1]
A ~7
KR{ Cells RKMWJ RAM Cells
Figure 7.d: Wave-Steering Figure 7.e: Wave-Steering Figure 7.f: Wave-Steering
Figure 7.e captures the time-frame during the §fdbhase. The lines) and the i+2 stage input is being fed in through level ‘a’. Note

i+1 data wave has propagated to level ‘c’ (shown by dark dashed that in stage i+2, ‘a’ is assigned logic ‘1, hence all the transistors

in level ‘a’ that are being fed by ‘a’ are switched ‘on’. Finally, Fig-
ure 7.f shows the circuit behavior during tipg phase. Here the
data wave from the i+2 stage has propagated to level ‘b’. Again,
note that even though our idea is akin to the classical Wave-Pipe-

neighboring blocks tap this signal. Blocks can also communicate
diagonally to their next neighbor blocks. For simulation we model
interconnects as RGQGt chains (each interconnect has 4 such
chains). Figure 9 shows a general model for inter-block communi-

lining concept, we use the name “Wave-Steering” to emphasize the Rm Rm Rm
difference w.r.t. Wave-Pipelining: in our case, we introduce differ- T W T %VI e B 1 bar
ent data waves in the circuit through the skewing of input vectors. T Cww C¥ CmW),

< .
To build a larger circuit, the design has to be decomposed into 4 Crap Rtact{ﬁ Riap Ig ',:r:;ilt
input(variable) blocks. At present, we do this decomposition man- | output C@i &aﬁ
ually. However, any mapping algorithm should work fine for us, as — —
long as we incorporate the additional constraints imposed by our z z
architecture. Since each of our CLBs is made up of 2 “4-input P
LUTs”, one approach would be to take any 4-input LUT imple- To Iﬂwput T6 LB Input

mented “regular” design on a commercially available FPGA, and
implement each LUT function in our LUT, since our LUT can
implement any 4-input function by just programming the “1's” and ~ cation interconnect (including taps models).
“0's” differently. To achieve better optimized circuits, a new
decomposition would have to be proposed. This work is currently We performed the following HSPICE simulations (For simplicity,
in progress. we use an array multiplier as our initial test design):

1) interconnects without any taps

To allow each Logic Block to communicate with its neighbors, we 2) interconnects with taps but all tap switches open
propose an interconnect architecture that suits our goals. It is dis-3) interconnects with taps any 5 tap switches closed

cussed in the next section.

4 most 5 Logic Block rows/columns across with the design running
at 770 MHz. Since our array multiplier has strict next-neighbor

Before we go into the details of our routing architecture, it is communications, we determine this by increasing the wire length

important for us to re-emphasize that our proposed FPGA architec- between 2 next-neighbor blocks to span a length of 5 blocks. The

ture is specialized in that it targets designs that are regular. Regularinterconnect was modeled as in Figure 9, without any taps (i.e, the

Figure 9: Interconnect Model, shown here with taps

1) Interconnectsvithout ary taps: Such interconnects can span at

Routing and Interconnect

designs inherently have local communication and involve iterative
communication. With this is mind, we propose dedicated intercon-
nects between different blocks without any crossbar routing
switches. Figure 8 presents a global view of how different blocks

interconnect is an R@ chain). This simulation is for determining
the maximum allowable interconnect length at an operating fre-
quency of 770 MHz (this corresponds to a cycle time of 1.3ns).

are connected to each other. Logic blocks have next-neighbor com-Note that each Logic Block can individually operate at 833 MHz
munications, use dedicated interconnects, and can communicatd1.2ns). Cycle times of less than 1.2 ns do not yield correct results.

with blocks at most 5 rows/columns away (at a speed of 715 MHz
and all 5 tap switches closed). In Figure 8, A Ban communicate

r
F
L

L4

]
v

dedicated diagonal
interconnects

N

L

CUEEE Y H

Figure 8: Preliminary Interconnect scheme

with LBg, LB¢, LBp, LBg and LB, at any point in time. It can
also communicate with LBs G, I, J, K and F. Similarly, logic
blocks LBg, LB, LBp, LBE and LBy can also communicate to
LBs that span upto 5 rows/columns across including their next
diagonal neighbors. A particular logic block can place its output on
the horizontal/vertical wires running along the array and other

2) Interconnectsvith tapsandall switchesopen: This experiment

is similar to the one in 1), except that we have metal 1 taps from
the interconnect to Logic Block inputs. The blocks are spanned by
the interconnect described in 1). All taps have open switches in
this setup. Simulations show that the design (array multiplier) can
run at 770MHz with all tap switches open.

3) Interconnectsvith tapsandall 5 tapswitchesclosed: The exper-
imental setup is the same as in 2). The interconnect still spans 5
logic blocks and with all 5 tap switches closed, the design can run
at 715 MHz (this corresponds to a cycle time of 1.4ns). This
implies that at any point in time, a Logic Block can communicate,
at an operating frequency of 715 MHz, with at most 5 neighboring
(row or column wise) blocks (including diagonal communication).
This interconnect simulation is the most general of the three.

Figure 8 shows the proposed routing model for our architecture.
Each LB can communicate with another Logic Block at most 5
rows/columns away (and with all intermediate LBs) while running
at 715 MHz. Note that there are no routing switches, and we use
only dedicated interconnect. Communication between any 2 LBs is
full-duplex.

The proposed architecture does not have a general purpose routindgevel trees with the flip-flops (forming the feeder part of the LB)
fabric. Here, it means that an arbitrary Logic Block can not com- distributed around them on the interconnect. The internal Logic
municate with any other Logic Block that spans more than 5 rows/ Blocks have the feeder part of the LBs confined inside the LB as
columns. While this routing scheme may seem too restrictive, we discussed in Section 3. The internal LBs form a cluster of 4x4 and
tested this scheme on 3 very regular designs and found them to behe modified LBs are spread on the periphery of this cluster. The
easily routable. Note that these 3 designs did not use any Logicidea for such a setup is that the internal clustered blocks (light
Blocks as pure routing blocks. In order to make our routing shaded) act as logic intensive blocks while the modified logic
scheme more robust, we wish to look at applications that demon- blocks on the periphery of a 4x4 clustered block act as pseudo-
strate characteristics of a fair amount of regularity but can also switchboxes which also act as synchronizing points for the differ-
have some portions of the circuit that are irregular. Our goal is to ent waves coming in. More research as to the feasibility of this
show that these fairly regular circuits can be routed in our modified modification is currently under way.
architecture. To make our architecture more flexible, we propose to
pipeline part of the interconnect and make some modifications to Internal LBs in the setup of Figure 10 can also be used for routing
the structure of some of our Logic Blocks. Figure 10 shows one purpose. These LBs can be used to bend signals in cases where a
horizontal-vertical or vertical-horizontal communication is

._ 848 . iL required. More research into this enhanced routing scheme is cur-
— - 1 rently underway. Preliminary results show that on average, each
L A= = d d cluster uses only 10 internal LBs for logic purposes while leaving
0 d || ||]| S|l L= 6 LBs empty. These 6 LBs can be used for routing within the clus-
-} —H
O !- !- . . . !“ !- | . . EJ.E ter
= WS]I = 5 Results and Analysis
ol g ¥ o o
:; E ol Sl j[g [; :: Layouts of the LBs were done in u®2-metal CMOS technology.
— i — Each LB occupies 720x 920\. Figure 11 shows a picture of a sin-
— g n/:I — gle LB (made up of 2 slices) laid out in USCMOS technology.
Vodified Bloci Assuming a die size of 1.50m_ x 1.5cm and an allocated LB area of
Origihal Block 1cm x 1cm, our proposed chip can be occupied by approximately
1500 such LBs. To further test the feasibility of this architecture,
Figure 10: A Hybrid Clustered FPGA layout we note that most DSP related applications are inherently regular,

setup we are researching. This setup consists of 2 kinds of differentuse Multiply and Accumulate (MAC) units intensively and hence
Logic Blocks. The external Logic Blocks will only consist of 2 4- would fit naturally in our architecture.
Table 2: Experimental Results

Design XC4000 Virtex | Ours
Afray Multiplier

Throughput (MHZ) 59 MHz 65 MHz 770 MHZ
Area (# BIOCKS) 40 35 64
Bounding Box (%) ~ 4% ~ 3% 4.25%

Z Tap bit-level systolic FIR filter

Throughput 44.3 MHz 45.5 MHz 770 MHz
Area (# BIOCKS) 145 139 384
Bounding BoX (%) ~12% ~12% 21%
AUTO Ccross-correlator
Throughput (39.5 MHz)# 770 MHz
250MHz*
Area (# BIOCKS) 160 210
Bounding BoX (%) ~10% 12%

* This 250 MHz figure is reported directly from [10] and was in @m technology We (manually) mapped 3 designs onto our architecture. These
for a XC3000 device. This is the fastest reported result for this design (or for any include a 4x4 array muItipIier, a cross correlator [10] with 10

design on a commercial FPGA) stages and a 4 tap bit-level systolic FIR filter. The designs were
+ While the array multiplier can be simulated to run at 833 MHz, this result reflects X . o .
the fact that we account for inputs being fed to the multiplier. Interconnects, thus, laid out and the extracted SPICE netlists were simulated. Typical

are not purely next-neighbor. Note that this result also takes into account the pres- Voltage/temperature values were used in these simulations. The
ence of taps from these inputs . interconnect model of Figure 8 was used in these simulations and

Throughput obtained by implementing the design without customization. the 3 tested designs were found to be easily routable using this

scheme. Note that these designs are all of a very regular nature andnterconnect surrounding the Logic Block array area. The benefits
involve next-neighbor communication between blocks. Simulation of this move are manifold. First, it allows us greater flexibility as
results for the multiplier, filter and the cross-correlator yield we can use these distributed flip-flops to accommodate more
throughputs of 770 MHz (if we include the line-to-line-capaci- diverse designs. The flip-flops can serve well in designs with large
tance in these simulations, the obtained throughput reduces to 625anouts. Current research focusses on testing the feasibility of such
MHz). The average power dissipation is 7.5mW/block at 770 a setup as well as testing this setup on different benchmark cir-
MHz. Note that local and next neighbor interconnects along with cuits. We are researching a variety of architectural issues as well:
their programming switches are included in these simulation a) A clock tree design methodology

results. For the correlator design, no manual customization/retim- b) RAM cell programming methodology (we currently program
ing took place in our implementation unlike in [10]. These designs these cells through a scan path in a bit-serial manner)

were also implemented in Xilinx's XC4000 series FPGA and their ¢) FPGA input-output mechanism (including the number of I/O
newest FPGA, Virtex for comparison purposes. Table 2 presents pins required).

the results for these designs on both the architectures. Designs ind) Decomposition issues and automation of place and route.

the XC4000 and Virtex, are in Verilog and are implemented using e) Extension to sequential designs.

Synopsys’ FPGA Express and Xilinx’s M1 place and route tool.

The_ correlator design could not be implemented in the VIRTEX 7 Conclusions

device due to software related problems.

Table 2 shows that at a slight cost in area, our proposed archi'[ec-\rﬁ\./ehhavef proposed faAnScT\(/:eI FPth'?; a;lchl_tstlz_tureﬁthzt ((:jokr)nbmes the
ture does much better in speed for the designs under test. We \gh periormance o s and he fiexibilily aflorded by recon-

acknowledge that we did not perform any retiming when imple- flgyrﬁglehlogldc. ?;J;Oa'(;nltecture achle?/es hlgrlgtshgogghput |nht.h(;
menting these designs in Xilinx devices. However, parts of these neighborhood o Z on commonly use esigns whic

designs were taken directly from the Xilinx CORE generator and |nrc|ude T Ia:ra:ycmlrJrltlﬂlerr,]daf bt't'rleﬁl rskyiStOI:]CrFfliﬁir?mtar:ian? ﬁi
modified to meet our comparison needs. Also, note that Xilinx's cross correfator. Lurrent and futuré work is on re g this archi-

XCA4000 series (as used in our implementation) is in 0.8MOS tecture to make it more flexible and developing algorithms for effi-

while VIRTEX is in 0.251 CMOS. We have designed our LB array cient decomposition of designs, placement and routing.
in 0.51 CMOS. Our experimental results are not meant to be a jus-
tification of the architecture in terms of empirical data. While we
acknowledge that Table 2 is not a true comparison of results, our
mission is to demonstrate the enormous potential of our proposed
architecture. Even though we have not fabricated our FPGA chip
and provide only HSPICE simulation results, it is quite interesting 8 References
to see that this architecture can achieve, for designs that are regular
(most arithmetic circuits), throughputs in the range of 770 MHz [1]. V. Bertacco et al, “Decision Diagrams and Pass Transistor
(625 MHz if we include the line-to-line capacitances). We note Logic Synthesis”, Proc. of the ACM/IEEE Intl Workshop on
here, that for customized designs, like [10], implemented on Xilinx Logic Synthesis, pp. 1-5, May 1997.
FPGAs, substantially improved throughput can be achieved. In [2] V. Betz, J. Rose, A. Marquardt, "Architecture and CAD for
[10]’ the author achieves a Samp”ng rate of 250 MHz (|n @@17 Deep-Submicron FPGAS”, Kluwer Academic Publishers, 1999.
Xilinx device) for the correlator by choosing this particular clock [3] E. I. Boemo, S. Lopez-Buedo, J. M. Meneses, “Some Experi-
frequency (250 MHz) and customizing/retiming the design to ments About Wave-Pipelining FPGAs”, IEEE Trans. On Very
operate at this frequency. However, in general, most designs, untilLarge Scale Integration Systems, Vol.6, No.2, pp. 232-237, June
they are customized and retimed like in [10], are still hard pressed 1998.
to achieve throughputs exceeding 100 MHz. Thus, our architecture [4] G. Borriello, C. Ebeling, S.A. Hauck, S. Burns, “The Triptych
is a substantial improvement in terms of throughput, since a major FPGA Architecture”, [IEEE Transactions on VLSI Systems, Vol.3,
drawback for most commercially available FPGAs is that they can- N0.4, Dec. 1995, pp.491-501.
not implement designs that require high throughput. Our through- [5] R.E. Bryant, “Graph-based Algorithms for Boolean functions
put performance approaches that of ASICs and affords the end usefmanipulation”, IEEE Trans. Computers, Vol. C-35, pp. 677-691,
with the added reconfigurability. Aug. 1986.
[6] P. Buch et al, “On Synthesizing Pass Transistor Networks”,

6 Discussion and Suggested Improvements glrn:é;fltggﬁcleEE Int’l Workshop on Logic Synthesis, pp. 1

. . . o [7] P. Buch, A. Narayan, A.R. Newton, A. Sangiovanni-Vincen-
In section 4, we discussed the possibility of pipelining parts of the tg|jj, “| ogic Synthesis for Large Pass Transistor Circuits”, ICCAD
|_nt_erconnect to limit long interconnects. But _fc_)r tk_ns kind of Pipe- 97 November 1997.
lining to work, we need to make some modifications to the basic 1g] \w.p. Burleson, M. Ciesielski, F. Klass, W. Liu, “Wave-Pipelin-
archltegturg. One such modification was d|§cussed in Section 4 an ng:A Tutorial and Research Survey”, IEEE Trans. on VLS| Sys-
shown in Figure 10. Instead of confining flip-flops used for skew- tems, vol.6, No.3, Sep.'98.

ing input vectors inside the confines of a LB, we propose to elimi- 9] | Cotten, “Maximum Rate Pipelined Systems”, Proc. AFIPS
nate this confinement by spreading around the flip-flops on the gpring Joint Comp. Conf., 1969.

AcknowledgementThis work was supported in part by MARCO/
DARPA GSRC, NSF through grants CCR 9811528, MIP 95-
29077, and MICRO through Xilinx.

[10] B.V. Herzen, “Signal Processing at 250 MHz Using High-Per-
formance FPGASs", IEEE Trans. on VLSI Systems, \ol. 6. No.2,
June ‘98.

[11] S.Y. Kung, “VLSI Array Processors”, Prentice Hall, 1988.
[12] W.K.C.Lam, R.K.Brayton and A.L.Sangiovanni-Vincentelli,
“Valid Clock Frequencies and Their Computation in Wave pipe-
lined Circuits”, IEEE Transactions on CAD of IC and Systems,
Vol. 15, No.7, July 1996.

[13] A. Mukherjee, R. Sudhakar, M.Marek-Sadowska, S.I. Long,
“Wave Steering in YADDs: A Novel Non-iterative Synthesis and
Layout Technique”, Proc. Design Automation Conference ‘99, pp
466-471.

[14] A. Mukherjee, M. Marek-Sadowska, S.l. Long,“Wave Pipe-
lining YADDs- A Feasibility Study”, Proc. IEEE Custom Inte-
grated Circuits Conference, ‘99, pp 559-562.

%xa? &

e 6
sexss;

wé o a%wéw%;

[15] M. Shamanna, K. Cameron, S.R. Whitaker, “Multiple-input,
Multiple-output Pass Transistor Logic”, Int'l Journal Electronics,
Vol. 79, No. 1, July 1995.

[16] R.Sudhakar, “YADDA: Layout Synthesis using Pass Transis-
tor Logic”, MS Thesis, UCSB, 1998.

[17] K. Taki, “A Survey for Pass-Transistor Logic Technologies”,
ASP-DAC, February 1998.

[18] W. Tsu et al, “HSRA: High Speed, Hierarchical Synchronous
Reconfigurable Array”, ACM International Symposium on
FPGAs, 1999, pp. 125-134.

[19] K.Yano et al, “A 3.8ns CMOS 16x16b Multiplier using Com-
plementary Pass-Transistor Logic”, IEEE J.Solid-State Circuits,
Vol.25, no.2, pp.388-395, April, 1990.

[20] The Programmable Logic Data Book, Xilinx Inc. 1999.

[21] URL: http://www.xilinx.com/products/logicore/lcoredes.htm

Figure 11: Logic Block in 0.51 CMOS

	Main Page
	FPGA'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

