
ot
m-
on
ll
4]
L)
os-
eby
exi-
in
rom
ld
he
f

bes
is
of

k

ter-
ro-
The
that
y

ec-
L)
a-
is

in-
t is
ly
se
s.
as
i-

on
he
o
ed
no
Abstract

With increased logic density due to the shift towards Deep Submi-
cron technologies (DSM), FPGAs have become a viable option for
implementing large designs. However, most commercial FPGAs,
due to their general purpose architectural nature, cannot handle
designs which require very high throughput. In this paper, we pro-
pose a novel high throughput FPGA architecture which tries to
combine the high-performance of Application Specific Integrated
Circuits (ASICs) and the flexibility afforded by the reconfigurabil-
ity of FPGAs. This architecture utilizes the concept of ‘Wave-
Steering’ and works best for designs which are highly regular and
have almost equal delays along all paths. It has enormous potential
in Digital Signal and Image Processing applications since a good
portion of these applications are regular in nature. Preliminary
results for some commonly used DSP designs are encouraging and
yield throughputs in the neighborhood of 770 MHz in 0.5µ CMOS
technology.

1 Introduction

The first FPGA was introduced in 1985 and since then, FPGAs
have become increasingly popular for their ability to be a low cost
solution in a variety of design applications. The advent of DSM
technologies has given rise to million gate FPGAs, thereby making
them increasingly versatile. However, FPGAs lag far behind
Application Specific Integrated Circuits (ASICs) when it comes to
the speed of the designs which can be accommodated. Most com-
mercial FPGAs, due to their inherent general purpose architectural
nature, cannot handle designs that require very high throughput.
With shrinking device size, interconnect delays are increasingly
becoming a bottleneck for achieving fast clock speeds on these
general purpose architectures.This reduces the attractiveness of
using FPGAs for high speed Digital Signal and Image processing
applications as well as applications that require very high through-
put.

In this paper, we propose an application specific FPGA architec-
ture fabric which targets regular circuits. Our definition of regular
circuits encompasses all circuits that have almost equal delays
along all paths. This definition includes all designs in which con-

nection between different blocks is constrained to be local (n
necessarily next neighbor) and single modules have similar co
plexity (note that this does not impose the same functionality
different blocks). A range of systolic and arithmetic circuits fa
into this category. Our architecture uses a ‘Wave-Steered’ [13][1
approach to implement circuits in Pass Transistor Logic (PT
mapped Decision trees. This new proposed architecture could p
sibly be embedded in a larger general purpose architecture ther
giving both the host and the embedded architectures greater fl
bility. Our proposed architecture is attractive in the FPGA doma
because in situations where the design specifications change f
one implementation of the design to another, custom logic wou
prove expensive. Our goal is to find a middle ground between t
FPGA and the ASIC world by combining the performance o
ASICs and the flexibility of FPGAs.

We organize the rest of the paper as follows: Section 2 descri
the key architectural ideas on which our proposed architecture
based. They include Binary Decision trees and the concept
‘Wave-Steering’ [13][14]. Section 3 describes the Logic Bloc
(LB) architecture. All basic building blocks that make up our LB
are discussed in this section. Section 4 describes the routing/in
connect fabric used in our proposed architecture. Section 5 p
vides experimental results and an analysis of these results.
next section explores future possibilities and enhancements
will increase the attractiveness of this FPGA. This is followed b
Conclusions.

2 Binary Decision Trees and ‘Wave-Steering’

This section discusses the main motivation behind our archit
tural approach, including the use of Pass Transistor Logic (PT
mapped Decision trees in our Logic Blocks and a unique modific
tion to the classical Wave-Pipelining methodology. We call th
methodology ‘Wave-Steering’[13][14].

2.1 Binary Decision Trees

A Binary Decision Diagram (BDD)[5] is a graph in which each
vertex either has exactly two successors (or children), dist
guished as high and low child, or no successor (in this case i
called a leaf). If the BDD has no nodes which are simultaneous
children of different parents, its graph is a tree. It is possible to u
PTL logic to map this tree structure without the risk of sneak path
A complete balanced tree of height n, where every node h
exactly 2 children labelled with the successive variable, and term
nated with 2n leaves, can therefore represent any possible functi
of up to n variables, and the values of the leaves mimic exactly t
truth table of the function. We utilize this mapping methodology t
create an architecture that has as its Logic Blocks, PTL mapp
Binary Decision trees. In the proposed architecture, there’s

A Novel High Throughput Reconfigurable FPGA Architecture
Amit Singh, Luca Macchiarulo, Arindam Mukherjee, Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering

University of California, Santa Barbara

Santa Barbara, CA 93106

{asingh,luca,arindam,mms}@guitar.ece.ucsb.edu

uit
lar
han
ue
the

er
ing
n-

al
si-
cle

s a
),

hed
ird
ave
e)
e

s-
ng
o-
at
.
e

last
-

lly
rre-
res
lied

es-
pi-
ain
he
e

need for any customization inside the tree. The only customization
for implementing different designs occurs in the way static RAM
memory cells are programmed (i.e. different combinations of ‘1’s
and ‘0’s). This means that to implement any 4 variable function for
any possible permutation of the inputs, we only need to program
these RAM cells uniquely. This is important to get the best possi-
ble performance, as it allows the functional part of the cell to work
without added logic. This tree based method of realizing functions
forms the basis of our cell architecture. We discuss the Logic
Block architecture in Section 3.

2.2 Wave-Pipelining and ‘Wave-Steering’

The PTL mapped Binary tree based Logic Block architecture uses
a modification to the classical Wave-Pipelining concept [8][12]
(called ‘Wave-Steering’ [13][14]) to achieve high throughputs. To
understand ‘Wave-Steering’, it is essential to recognize the differ-
ence between a typical conventional combinational circuit and a
Wave-Pipelined circuit. In a conventional circuit, current data must
propagate to the output latch of the circuit before the next wave of
inputs can be pushed in. It is necessary to wait this long because
for different inputs, different input-output paths are activated and
each path can have different delay. Figures 1.a - 1.f illustrate this
point. Each of the triangles represents a multi-level combinational

circuit. A set of inputs is pushed in (Figure 1.a) and the wave prop-
agates through successive levels of logic until the output is pro-
duced (Figure 1.b - 1.e). Only then (Figure 1.f) can the next set of

inputs be pushed in. In this case, the throughput of the circ
equals its latency. However, if we can synthesize a fairly regu
circuit such that all paths have almost equal delays, then more t
one data wave can exist between two clock cycles. This is tr
because there is no need for the previous data to be latched into
output flip-flops before pushing in the next set of inputs (in oth
words, internal node capacitances act as latches for the incom
waves). This is illustrated in the set of Figures 2.a-2.c. Each tria

gle in the Figures 2.a - 2.c represents a multilevel combination
circuit having all paths of almost equal delays. This makes it pos
ble for a new set of inputs to be pushed in after each clock cy
and the waves continue to propagate upwards. Figure 2.a show
set of inputs being pushed in. In the next clock cycle (Figure 2.b
this wave is propagated upwards and the next set of inputs (das
lines) is pushed in. Figure 2.c captures the snap-shot in the th
cycle, where the wave has propagated further up, the second w
is present below this wave and the third set of inputs (dotted lin
is being pushed in. Hence, different waves can exist in any tim
snap-shot. This is the underlying principle of Wave-Pipelining.

In ‘Wave-Steering’ multiple data waves corresponding to succe
sive input vectors are made to coexist in a target circuit by skewi
the input vectors in time. Although this may resemble a micr
pipelining scheme, it is fundamentally different in the sense th
the input application points “spatially follow” the pipelined stages
In a typical pipelined circuit, all the inputs are applied before th
first stage of latches, and the outputs are available after the
stage. Fine granularity pipelining of PTL mapped Decision Dia
gram structures inherently have input application points physica
distributed along the stages of the pipeline, where each stage co
sponds to a level characterized by a single variable. This requi
the input variables corresponding to the same vector to be app
with relative timing skews.

The timing skew between two variables characterizing two succ
sive stages (levels) in such a Wave Steered structure would ty
cally be one stage delay. This skewing is accomplished by a ch
of flip-flops and a unique clocking scheme. This will guarantee t
operation of the circuit at a given frequency by construction. In th

Figure 1.a Figure 1.b

Figure 1.c
Figure 1.d

f(a,b,c,=)

Figure 1.e Figure 1.f

Figures 1.a-1.f:Conventional Combinational Circuit
 Operation

Figure 2.a Figure 2.b

Figure 2.c

Figures 2.a-2.c: A Wave-Pipelined Combinational Circuit

g

he

ic
6

Wave Steered approach, a regular design is synthesized as a Deci-
sion tree. Each level in the tree corresponds to a particular variable
in the function (see Figure 3).

This tree is evaluated level by level, starting from the leaf nodes.
Logic ‘1’ and ‘0’ form the leaf nodes and the output of the node at
the topmost level evaluates the function. Each tree node is directly
mapped into Pass Transistor Logic (PTL), by replacing tree nodes
with a 2:1 multiplexer followed by an inverter. This inverter
accounts for voltage degradation between the levels. Alternate
Mux levels are calledφ1 andφ2 levels (Figure 6). In anyφ1 level,
the controlling input (or its complement) is logic ‘1’ and data is
propagated to the next level during this phaseφ1 of the clock. Dur-
ing phaseφ2 this particular level holds the logic level in the nfet
output and inverter gate capacitances, as both the mux’s selector
lines remain at logic ‘0’. This provides the electrical isolations
between successive data waves. Once the function has been par-
tially evaluated for a particular variable in a level, only the com-
bined information needs to be propagated and the value of that
particular variable is no longer needed. In order to clock the circuit
faster, we ‘Wave Steer’ it. To do this, we skew the input vectors in
time so that the current input variable selects a path only after the
previous variable in the vector had selected the correct path. Using
this concept of ‘Wave-Steering’ [13][14], we propose a new Logic
Block Architecture.

3 Logic Block Architecture

In this section, we discuss our Logic Block architecture. At
present, our architecture works on circuits without feedback. Fig-
ure 4 shows a block diagram of a reconfigurable Logic Block (LB)
slice.

A LB slice is a 4-input LUT that can implement any function of
upto 4 variables. Each of our Logic Blocks is composed of two
such slices, with each slice built of a Pass Transistor Logic (PTL)
mapped 2:1 multiplexer Binary Decision tree. Figure 3, for exam-
ple, shows a function f(a,b,c) of 3 inputs, synthesized as a tree,
with each tree node mapped into PTL. In our architecture, each
PTL mapped tree has 4 levels, with each level corresponding to an
input variable. Input variables are clocked by a 2-level phase clock,
with alternate phases (φ1 andφ2) clocking consecutive levels (Fig-
ure 6). Theφ2 clock is the non-overlapping invertedφ1 clock.
Inputs are fed to each tree through a feeder circuit (Figure 5) which
is composed of chains of master-slave flip-flops. This feeder circuit
is necessary to skew the input vectors in time and achieve the
desired ‘Wave Steering’ effect. There are two types of dynamic
flip-flop cells in the feeder circuit, the F1 and F2. The F1-F2 pair
will get the data out by the end ofφ2 phase while the F2-F1 phase
will get the data out by the end ofφ1 phase. Each set of flip-flop
cells feeds a clocked Nand gate and an inverter that act as a buffer

assembly. This clocked Nand-inverter couple is used for drivin

the mux tree with the signal values during only one phase of t
clock and blocking the data transfer during the alternate phase.

We use static RAM memory cells (see Figure 4) for storing log
‘1’s and ‘0’s. Each RAM cell is made up of 6 transistors and all 1

1 0

f(a,b,c)

a

b

c

Figure 3: f(a,b,c) evaluated from bottom to
top as a Decision Diagram Tree

c=1 c=0

1 1 10 0 0

φ1φ2

φ2φ1

φ1φ2φ1φ2

φ2φ1φ2φ1

Node

F2-F1 ff pair

F1-F2 ff pairInverter

Feeder circuit

Static RAM cells

Static Driver

f(a,b,c,d)

a

b

c

d

Figure 4: Block-Diagram of a Logic Block Slice

Static RAM cell
In Out

prog

hold

φ1 φ2

to next F1-F2 blockinput

 Part of a “Feeder-Circuit” Flip-Flop Chain

6x2
5x2

5x2

6x2
5x2

5x2

 showing a basic master-slave F1-F2 cell

From F1-F2/F2-F1 Pair φ1/φ2

φ1/φ2

to mux based tree

10x2

7x2

14x2

7x2

7x2

 Driver Assembly (part of Feeder circuit) feeding
the Mux Based Decision Diagram Tree

Figure 5 Feeder Circuit

From F1-F2/F2-F1 Pair

f(a,b,c,d,....)

a

b

c

d φ2

 φ1

 φ2

φ1

l

l+1

l+2

l+3

φ1

φ2

a c

b d

active portion of data path duringφ1 clock phase
active portion of data path duringφ2 clock phase

Figure 6: Wave-Steering

l=L-1

of

is-
ve
ws.

1
vel

e
The
ve

at
ck.

le
1

te
rs
RAM cells in a LB slice can be programmed through a scan path in
a bit-serial manner. All of our RAM cells consist of minimum
width transistors since simulations show that these minimum width
transistors are adequate for our purpose.

Figures 7.a through 7.f illustrate Wave-Steering on a PTL mapped
tree. Figure 7.a shows a PTL mapped tree for a function of 3 vari-
ables f(a,b,c). The dashed arrows show the direction of the inputs
(and their complements). The sequence of inputs applied to this
tree is shown in Table 1.

Figure 7.a is a snap-shot of the circuit behavior during the firstφ1
phase. During this phase, level ‘a’ is clocked and since ‘a’ is at
Logic ‘1’, the transistors controlled by ‘a’ are switched ‘on’ (dark
solid arrows). Note that during this phase, level ‘c’ is also active.

However, no data wave has reached level ‘c’ as yet because
input skewing. Figure 7.b shows what happens during the firstφ2
clock phase. In this snap-shot, ‘b’ is set to logic ‘0’ and the trans
tors in the ‘b’ level, selected by b are switched ‘on’. The data wa
hence, propagates upwards as shown by the dark solid arro
(The dark solid arrows show the ith data wave) Figure 7.c captures

the time-frame during the 2ndφ1 clock phase. Here, a new value is

set for variable ‘a’ and equals logic ‘0’. This corresponds to the i+
stage and is illustrated by dark dashed arrows. In this phase, le
‘c’ is also active but the data wave present here is from the ith stage

(shown in figure by solid line and corresponding to c=1). As w
can see, 2 data waves exist concurrently in the tree structure.
ith data wave has propagated to level ‘c’ while the i+1 data wa

has been introduced in level ‘a’. An important fact to note is th
two consecutive levels are clocked in alternate phases of the clo
Figure 7.d shows the data-wave propagation during the 2ndφ2
phase. In this phase only level ‘b’ is active and according to tab
1, b is set to logic ‘1’. The dashed arrow (corresponding to the i+
stage) shows the wave propagation.

Figure 7.e captures the time-frame during the 3rdφ1 phase. The

i+1 data wave has propagated to level ‘c’ (shown by dark dashed

lines) and the i+2 stage input is being fed in through level ‘a’. No
that in stage i+2, ‘a’ is assigned logic ‘1’, hence all the transisto

Table 1: Sequence of inputs

Stage
Variable

i i+1 i+2

a 1 0 1
b 0 1 0
c 1 0 1

RAM Cells

Figure 7.a: Wave-Steering

a

b

c

φ1

φ2
c

b

a

Inverter: inverts logic level

0 1 1 0 1 1 0 1

1 0 0 1Inversion

RAM Cells

Figure 7.c: Wave-Steering

a

b

c

φ1

φ2
c

b

a

Inverter: inverts logic level

0 0 01 1 1 1 1

10 0 0

01

0

RAM Cells

Figure 7.b: Wave-Steering

a

b

c

φ1

φ2

c

b

a

Inverter: inverts logic level

0 0 01 1 1 1 1

1 0 0 1

Inversion
1

0

RAM Cells

Figure 7.d: Wave-Steering

a

b

c

φ1

φ2
c

b

a

Inverter: inverts logic level

0 0 01 1 1 1 1

0 1 0 0

11

RAM Cells

Figure 7.e: Wave-Steering

a

b

c

φ1

φ2
c

b

a

Inverter: inverts logic level

0 1 1 0 1 1 0 1

1 0 0 1

1
0

1

RAM Cells

Figure 7.f: Wave-Steering

a

b

c

φ1

φ2
c

b

a

Inverter: inverts logic level

0 0 01 1 1 1 1

1 0 0 1

1 0

te
el
h
ni-

,

at
g
r
th
he
the

e-
).
z
lts.

m
by
in

an

s 5
un
is
e,
g

).

re.
5
g
se
is
in level ‘a’ that are being fed by ‘a’ are switched ‘on’. Finally, Fig-
ure 7.f shows the circuit behavior during theφ2 phase. Here the

data wave from the i+2 stage has propagated to level ‘b’. Again,
note that even though our idea is akin to the classical Wave-Pipe-
lining concept, we use the name “Wave-Steering” to emphasize the
difference w.r.t. Wave-Pipelining: in our case, we introduce differ-
ent data waves in the circuit through the skewing of input vectors.

To build a larger circuit, the design has to be decomposed into 4
input(variable) blocks. At present, we do this decomposition man-
ually. However, any mapping algorithm should work fine for us, as
long as we incorporate the additional constraints imposed by our
architecture. Since each of our CLBs is made up of 2 “4-input
LUTs”, one approach would be to take any 4-input LUT imple-
mented “regular” design on a commercially available FPGA, and
implement each LUT function in our LUT, since our LUT can
implement any 4-input function by just programming the “1’s” and
“0’s” differently. To achieve better optimized circuits, a new
decomposition would have to be proposed. This work is currently
in progress.

To allow each Logic Block to communicate with its neighbors, we
propose an interconnect architecture that suits our goals. It is dis-
cussed in the next section.

4 Routing and Interconnect

Before we go into the details of our routing architecture, it is
important for us to re-emphasize that our proposed FPGA architec-
ture is specialized in that it targets designs that are regular. Regular
designs inherently have local communication and involve iterative
communication. With this is mind, we propose dedicated intercon-
nects between different blocks without any crossbar routing
switches. Figure 8 presents a global view of how different blocks
are connected to each other. Logic blocks have next-neighbor com-
munications, use dedicated interconnects, and can communicate
with blocks at most 5 rows/columns away (at a speed of 715 MHz
and all 5 tap switches closed). In Figure 8, LBA can communicate

with LBB, LBC, LBD, LBE and LBH at any point in time. It can
also communicate with LBs G, I, J, K and F. Similarly, logic
blocks LBB, LBC, LBD, LBE and LBH can also communicate to
LBs that span upto 5 rows/columns across including their next
diagonal neighbors. A particular logic block can place its output on
the horizontal/vertical wires running along the array and other

neighboring blocks tap this signal. Blocks can also communica
diagonally to their next neighbor blocks. For simulation we mod
interconnects as RCπ chains (each interconnect has 4 suc
chains). Figure 9 shows a general model for inter-block commu

cation interconnect (including taps models).

We performed the following HSPICE simulations (For simplicity
we use an array multiplier as our initial test design):
1) interconnects without any taps
2) interconnects with taps but all tap switches open
3) interconnects with taps any 5 tap switches closed

1) Interconnectswithout any taps: Such interconnects can span
most 5 Logic Block rows/columns across with the design runnin
at 770 MHz. Since our array multiplier has strict next-neighbo
communications, we determine this by increasing the wire leng
between 2 next-neighbor blocks to span a length of 5 blocks. T
interconnect was modeled as in Figure 9, without any taps (i.e,
interconnect is an RCπ chain). This simulation is for determining
the maximum allowable interconnect length at an operating fr
quency of 770 MHz (this corresponds to a cycle time of 1.3ns
Note that each Logic Block can individually operate at 833 MH
(1.2ns). Cycle times of less than 1.2 ns do not yield correct resu

2) Interconnectswith tapsandall switchesopen: This experiment
is similar to the one in 1), except that we have metal 1 taps fro
the interconnect to Logic Block inputs. The blocks are spanned
the interconnect described in 1). All taps have open switches
this setup. Simulations show that the design (array multiplier) c
run at 770MHz with all tap switches open.

3) Interconnectswith tapsandall 5 tapswitchesclosed: The exper-
imental setup is the same as in 2). The interconnect still span
logic blocks and with all 5 tap switches closed, the design can r
at 715 MHz (this corresponds to a cycle time of 1.4ns). Th
implies that at any point in time, a Logic Block can communicat
at an operating frequency of 715 MHz, with at most 5 neighborin
(row or column wise) blocks (including diagonal communication
This interconnect simulation is the most general of the three.

Figure 8 shows the proposed routing model for our architectu
Each LB can communicate with another Logic Block at most
rows/columns away (and with all intermediate LBs) while runnin
at 715 MHz. Note that there are no routing switches, and we u
only dedicated interconnect. Communication between any 2 LBs
full-duplex.

A B C D E

HF G

I

J

K

Figure 8: Preliminary Interconnect scheme

dedicated diagonal
interconnects

LB output

Rm

Cm

To LB Input To LB Input

Cm
Cm Cm

Rm Rm

To Final
LB input

Ctap Rtap Rtap
Ctap

Ctap

Ctap

Figure 9: Interconnect Model, shown here with taps

)
ic
as
nd
he
ht
ic
do-
r-
is

ng
re a

s
ur-
ch
g
s-

of
ely
e,
lar,
e

se
0
re

cal
The
nd

this
The proposed architecture does not have a general purpose routing
fabric. Here, it means that an arbitrary Logic Block can not com-
municate with any other Logic Block that spans more than 5 rows/
columns. While this routing scheme may seem too restrictive, we
tested this scheme on 3 very regular designs and found them to be
easily routable. Note that these 3 designs did not use any Logic
Blocks as pure routing blocks. In order to make our routing
scheme more robust, we wish to look at applications that demon-
strate characteristics of a fair amount of regularity but can also
have some portions of the circuit that are irregular. Our goal is to
show that these fairly regular circuits can be routed in our modified
architecture. To make our architecture more flexible, we propose to
pipeline part of the interconnect and make some modifications to
the structure of some of our Logic Blocks. Figure 10 shows one

setup we are researching. This setup consists of 2 kinds of different
Logic Blocks. The external Logic Blocks will only consist of 2 4-

level trees with the flip-flops (forming the feeder part of the LB
distributed around them on the interconnect. The internal Log
Blocks have the feeder part of the LBs confined inside the LB
discussed in Section 3. The internal LBs form a cluster of 4x4 a
the modified LBs are spread on the periphery of this cluster. T
idea for such a setup is that the internal clustered blocks (lig
shaded) act as logic intensive blocks while the modified log
blocks on the periphery of a 4x4 clustered block act as pseu
switchboxes which also act as synchronizing points for the diffe
ent waves coming in. More research as to the feasibility of th
modification is currently under way.

Internal LBs in the setup of Figure 10 can also be used for routi
purpose. These LBs can be used to bend signals in cases whe
horizontal-vertical or vertical-horizontal communication i
required. More research into this enhanced routing scheme is c
rently underway. Preliminary results show that on average, ea
cluster uses only 10 internal LBs for logic purposes while leavin
6 LBs empty. These 6 LBs can be used for routing within the clu
ter.

5 Results and Analysis

Layouts of the LBs were done in 0.5µ 2-metal CMOS technology.
Each LB occupies 720λ x 920λ. Figure 11 shows a picture of a sin-
gle LB (made up of 2 slices) laid out in 0.5µ CMOS technology.
Assuming a die size of 1.5cm x 1.5cm and an allocated LB area
1cm x 1cm, our proposed chip can be occupied by approximat
1500 such LBs. To further test the feasibility of this architectur
we note that most DSP related applications are inherently regu
use Multiply and Accumulate (MAC) units intensively and henc
would fit naturally in our architecture.

* This 250 MHz figure is reported directly from [10] and was in 0.7µm technology
for a XC3000 device. This is the fastest reported result for this design (or for any
design on a commercial FPGA)
+ While the array multiplier can be simulated to run at 833 MHz, this result reflects
the fact that we account for inputs being fed to the multiplier. Interconnects, thus,
are not purely next-neighbor. Note that this result also takes into account the pres-
ence of taps from these inputs .
Throughput obtained by implementing the design without customization.

We (manually) mapped 3 designs onto our architecture. The
include a 4x4 array multiplier, a cross correlator [10] with 1
stages and a 4 tap bit-level systolic FIR filter. The designs we
laid out and the extracted SPICE netlists were simulated. Typi
voltage/temperature values were used in these simulations.
interconnect model of Figure 8 was used in these simulations a
the 3 tested designs were found to be easily routable using

Figure 10: A Hybrid Clustered FPGA layout

Modified Block
Original Block

Table 2: Experimental Results

Design XC4000 Virtex Ours

Array Multiplier

Throughput (MHz) 59 MHz 65 MHz 770 MHz+

Area (# Blocks) 40 35 64
Bounding Box (%) ~ 4% ~ 3% 4.25%

4 tap bit-level systolic FIR filter

Throughput 44.3 MHz 45.5 MHz 770 MHz
Area (# Blocks) 145 139 384

Bounding Box (%) ~ 12% ~ 12% 21%
Auto cross-correlator

Throughput (39.5 MHz)#
250MHz*

_____ 770 MHz

Area (# Blocks) 160 _____ 210
Bounding Box (%) ~10% _____ 12%

fits
s
ore
ge
uch
cir-
ll:

O

the
-

he
ch

i-
fi-

-

or

r

ri-
y
ne

,

s
1,

”,
-

-

-
s-

S

scheme. Note that these designs are all of a very regular nature and
involve next-neighbor communication between blocks. Simulation
results for the multiplier, filter and the cross-correlator yield
throughputs of 770 MHz (if we include the line-to-line-capaci-
tance in these simulations, the obtained throughput reduces to 625
MHz). The average power dissipation is 7.5mW/block at 770
MHz. Note that local and next neighbor interconnects along with
their programming switches are included in these simulation
results. For the correlator design, no manual customization/retim-
ing took place in our implementation unlike in [10]. These designs
were also implemented in Xilinx’s XC4000 series FPGA and their
newest FPGA, Virtex for comparison purposes. Table 2 presents
the results for these designs on both the architectures. Designs in
the XC4000 and Virtex, are in Verilog and are implemented using
Synopsys’ FPGA Express and Xilinx’s M1 place and route tool.
The correlator design could not be implemented in the VIRTEX
device due to software related problems.

Table 2 shows that at a slight cost in area, our proposed architec-
ture does much better in speed for the designs under test. We
acknowledge that we did not perform any retiming when imple-
menting these designs in Xilinx devices. However, parts of these
designs were taken directly from the Xilinx CORE generator and
modified to meet our comparison needs. Also, note that Xilinx’s
XC4000 series (as used in our implementation) is in 0.35µ CMOS
while VIRTEX is in 0.25µ CMOS. We have designed our LB array
in 0.5µ CMOS. Our experimental results are not meant to be a jus-
tification of the architecture in terms of empirical data. While we
acknowledge that Table 2 is not a true comparison of results, our
mission is to demonstrate the enormous potential of our proposed
architecture. Even though we have not fabricated our FPGA chip
and provide only HSPICE simulation results, it is quite interesting
to see that this architecture can achieve, for designs that are regular
(most arithmetic circuits), throughputs in the range of 770 MHz
(625 MHz if we include the line-to-line capacitances). We note
here, that for customized designs, like [10], implemented on Xilinx
FPGAs, substantially improved throughput can be achieved. In
[10], the author achieves a sampling rate of 250 MHz (in a 0.7µm
Xilinx device) for the correlator by choosing this particular clock
frequency (250 MHz) and customizing/retiming the design to
operate at this frequency. However, in general, most designs, until
they are customized and retimed like in [10], are still hard pressed
to achieve throughputs exceeding 100 MHz. Thus, our architecture
is a substantial improvement in terms of throughput, since a major
drawback for most commercially available FPGAs is that they can-
not implement designs that require high throughput. Our through-
put performance approaches that of ASICs and affords the end user
with the added reconfigurability.

6 Discussion and Suggested Improvements

In section 4, we discussed the possibility of pipelining parts of the
interconnect to limit long interconnects. But for this kind of pipe-
lining to work, we need to make some modifications to the basic
architecture. One such modification was discussed in Section 4 and
shown in Figure 10. Instead of confining flip-flops used for skew-
ing input vectors inside the confines of a LB, we propose to elimi-
nate this confinement by spreading around the flip-flops on the

interconnect surrounding the Logic Block array area. The bene
of this move are manifold. First, it allows us greater flexibility a
we can use these distributed flip-flops to accommodate m
diverse designs. The flip-flops can serve well in designs with lar
fanouts. Current research focusses on testing the feasibility of s
a setup as well as testing this setup on different benchmark
cuits. We are researching a variety of architectural issues as we
a) A clock tree design methodology
b) RAM cell programming methodology (we currently program
these cells through a scan path in a bit-serial manner)
c) FPGA input-output mechanism (including the number of I/
pins required).
d) Decomposition issues and automation of place and route.
e) Extension to sequential designs.

7 Conclusions

We have proposed a novel FPGA architecture that combines
high performance of ASICs and the flexibility afforded by recon
figurable logic. Our architecture achieves high throughput in t
neighborhood of 770 MHz on commonly used DSP designs whi
include an array multiplier, a bit-level systolic FIR filter and a
cross correlator. Current and future work is on refining this arch
tecture to make it more flexible and developing algorithms for ef
cient decomposition of designs, placement and routing.

Acknowledgement:This work was supported in part by MARCO/
DARPA GSRC, NSF through grants CCR 9811528, MIP 95
29077, and MICRO through Xilinx.

8 References

[1]. V. Bertacco et al, “Decision Diagrams and Pass Transist
Logic Synthesis”, Proc. of the ACM/IEEE Int’l Workshop on
Logic Synthesis, pp. 1-5, May 1997.
[2] V. Betz, J. Rose, A. Marquardt, “Architecture and CAD fo
Deep-Submicron FPGAs”, Kluwer Academic Publishers, 1999.
[3] E. I. Boemo, S. Lopez-Buedo, J. M. Meneses, “Some Expe
ments About Wave-Pipelining FPGA’s”, IEEE Trans. On Ver
Large Scale Integration Systems, Vol.6, No.2, pp. 232-237, Ju
1998.
[4] G. Borriello, C. Ebeling, S.A. Hauck, S. Burns, “The Triptych
FPGA Architecture”, IEEE Transactions on VLSI Systems, Vol.3
No.4, Dec. 1995, pp.491-501.
[5] R.E. Bryant, “Graph-based Algorithms for Boolean function
manipulation”, IEEE Trans. Computers, Vol. C-35, pp. 677-69
Aug. 1986.
[6] P. Buch et al, “On Synthesizing Pass Transistor Networks
Proc. of the ACM/IEEE Int’l Workshop on Logic Synthesis, pp. 1
8, May 1997.
[7] P. Buch, A. Narayan, A.R. Newton, A. Sangiovanni-Vincen
telli, “Logic Synthesis for Large Pass Transistor Circuits”, ICCAD
‘97, November 1997.
[8] W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, “Wave-Pipelin
ing:A Tutorial and Research Survey”, IEEE Trans. on VLSI Sy
tems, Vol.6, No.3, Sep.’98.
[9] L.Cotten, “Maximum Rate Pipelined Systems”, Proc. AFIP
Spring Joint Comp. Conf., 1969.

t,
,

s-

,

s

ts,
[10] B.V. Herzen, “Signal Processing at 250 MHz Using High-Per-
formance FPGAs”, IEEE Trans. on VLSI Systems, Vol. 6. No.2,
June ‘98.
[11] S.Y. Kung, “VLSI Array Processors”, Prentice Hall, 1988.
[12] W.K.C.Lam, R.K.Brayton and A.L.Sangiovanni-Vincentelli,
“Valid Clock Frequencies and Their Computation in Wave pipe-
lined Circuits”, IEEE Transactions on CAD of IC and Systems,
Vol. 15, No.7, July 1996.
[13] A. Mukherjee, R. Sudhakar, M.Marek-Sadowska, S.I. Long,
“Wave Steering in YADDs: A Novel Non-iterative Synthesis and
Layout Technique”, Proc. Design Automation Conference ‘99, pp
466-471.
[14] A. Mukherjee, M. Marek-Sadowska, S.I. Long,“Wave Pipe-
lining YADDs- A Feasibility Study”, Proc. IEEE Custom Inte-
grated Circuits Conference, ‘99, pp 559-562.

[15] M. Shamanna, K. Cameron, S.R. Whitaker, “Multiple-inpu
Multiple-output Pass Transistor Logic”, Int’l Journal Electronics
Vol. 79, No. 1, July 1995.
[16] R.Sudhakar, “YADDA: Layout Synthesis using Pass Transi
tor Logic”, MS Thesis, UCSB, 1998.
[17] K. Taki, “A Survey for Pass-Transistor Logic Technologies”
ASP-DAC, February 1998.
[18] W. Tsu et al, “HSRA: High Speed, Hierarchical Synchronou
Reconfigurable Array”, ACM International Symposium on
FPGAs, 1999, pp. 125-134.
[19] K.Yano et al, “A 3.8ns CMOS 16x16b Multiplier using Com-
plementary Pass-Transistor Logic”, IEEE J.Solid-State Circui
Vol.25, no.2, pp.388-395, April, 1990.
[20] The Programmable Logic Data Book, Xilinx Inc. 1999.
[21] URL: http://www.xilinx.com/products/logicore/lcoredes.htm

Figure 11: Logic Block in 0.5µ CMOS

	Main Page
	FPGA'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

