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Abstract

This paper presents the system synthesis techniques
available in S3E2S, a CAD environment for the
specification, simulation, and synthesis of embedded
electronic systems that can be modeled as a combination
of analog parts, digital hardware, and software. S3E2S is
based on a distributed, object-oriented system model,
where objects are initially modeled by their abstract
behavior and may be later refined into digital or analog
hardware and software. System synthesis is targeted to a
multiprocessor platform. Each processor, either a
custom-designed one or an off-the-shelf component, can
have a specialized behavior, like signal processing or
control processing. The environment selects processors
that best match the desired application by analyzing and
comparing processor and application characteristics.
The paper illustrates the architecture selection process
with concrete examples.

1. Introduction

Presently, the behavior of a complete electronic
system can hardly be classified as control dominated or
data dominated. The current trend is to have a mix of
behaviors in the same system-on-a-chip, requiring a
combination of different design styles. Typical examples
of such systems are portable multimedia devices,
industrial distributed controllers, and vehicle supervision
systems. All these systems demand digital signal
processing, analog circuits to interface with the real
world, radio frequency communication links and scalar
processing (for database lists, display and keyboard
control). These systems are a major trend in the system
industry, and their design is currently performed using a
mix of different methodologies.

In the S3E2S (Specification, Simulation, and
Synthesis of Embedded Electronic Systems) design
environment, complex electronic systems can be
modeled as a combination of objects described at
different abstraction levels and different domains –
abstract behavior (expressed by a high-level, object-
oriented specification), digital hardware, analog
hardware, and software. By coupling different simulation
engines [1], the environment supports co-simulation of
any multi-domain description obtained during a process
of stepwise design refinement.

The synthesis step is not targeted at a single, specific
processor architecture. S3E2S allows an easy design
space exploration at the multiprocessor level, whereby

different processor architectures are analyzed and those
best matching the desired application are selected and
combined for design refinement. S3E2S tries to use
available processors as much as possible, in order to
reduce system costs in terms of hardware and to enhance
design time. Since nowadays one can find different
microprocessors offering different trade-offs between
cost, architecture and power consumption, their use in
the design cycle generally turns out to be a flexible and
low cost solution. Moreover, one must consider that
designs seldom are started from scratch. Most companies
try to reuse previously designed boards, multi-chip
modules or IP processors, for which they additionally
have a library of available software modules. Small and
medium companies rarely have the needed capital to
invest in a high volume, single chip solution, so using
programmable processors is a natural choice for starting
the design of a new product.

The combination of multi-domain modeling and co-
simulation with multiprocessor synthesis based on
automatic processor selection is a distinguished feature
of S3E2S when compared to other environments for the
design of embedded systems.

This paper is organized as follows. The next section
presents a comparison of S3E2S with other design
approaches. Section 3 presents a very brief overview of
the modeling and co-simulation capabilities of S3E2S,
followed in Section 4 by the methodology for the
processor selection and the hardware synthesis
techniques used in the environment. Section 5 presents
case studies that illustrate the versatility of the design
environment. Section 6 draws conclusions and discusses
future work.

2. Comparison with related work

The specification and simulation of application-
specific embedded systems is an area of active research.
In the case of complex systems, which cannot be
implemented by a single processor or controller and its
associated software, it is difficult to specify the
designer’s intention. Many specification languages, or
combinations of languages, are being used in industry
[2].

The description of complex systems through a single,
abstract language has been proposed [3,4]. Some
approaches that follow this strategy adopt an object-
oriented specification to describe both hardware and
software [5,6]. In these cases, design partitioning is left
to later design stages. The system is modeled as a set of



objects, and each one of them may be later implemented
as software or hardware, either digital or analog (as in
[7]).

An alternative approach supports modeling of
heterogeneous systems. Ptolemy [8], for instance, is an
environment for simulation and prototyping of
heterogeneous systems, which also uses object-oriented
technology. Ptolemy implements the combination of
different simulation mechanisms, called domains (such
as Synchronous Data Flow, Dynamic Data Flow,
discrete event, and analog). Another environment
allowing the specification and simulation of
heterogeneous systems is described in [9], where a
backbone in the operating system implements
communication among dedicated simulators that are
needed for heterogeneous objects specified in different
languages.

S3E2S combines the advantages of the multi-language
and heterogeneous simulation approach with the
abstract, object-oriented specification. It offers an object-
oriented modeling environment, where all objects can be
modeled regardless of their future implementation as
digital or analog hardware or software. Then, any object
may be specified in any of these domains or refined into
any of them, and every possible intermediate model
during this stepwise refinement process may be co-
simulated.

Most work on hardware and software co-design
focuses on the synthesis of a dedicated hardware or of a
dedicated instruction set processor [3,6,8,10-13]. In the
Polis system, for instance, the target architecture is a set
of commercial processors [14]. However, all processors
have the same characteristics. They are microcontrollers,
targeted to embedded control and not to data intensive
applications. The synthesis style is based on software
synthesis and performance estimation techniques. In
S3E2S, we also aim at using as much software as
possible, in order to reduce system cost and design time.
Differently from Polis, however, our target system can
contain data-dominated and control-dominated behavior,
and the system tries to find the best processor (according
to some design criteria) for each task.

The S3E2S environment focuses on a multiprocessor
paradigm. Instead of having a fixed target architecture
devoted to ASICs or ASIPs, synthesis in S3E2S is based
on a library of processors, each with different
characteristics, ranging from microcontrollers to digital
signal processing machines, with different architectures
available in each domain. Each object of the
specification may be mapped to a single processor, and
each processor may execute the function of one or more
objects, as it will be shown in Section 4.

3. Modeling applications

S3E2S is built on top of SIMOO [15], an integrated
environment for object-oriented modeling and
simulation of discrete systems. SIMOO is composed of a
class library and a model editor. The editor supports the
description of the static and dynamic aspects of the

model. The static structure is described graphically,
while the dynamic structure is described either directly
in C++ using the library resources or by means of a state
diagram annotated with C++ code. The editor
implements extensions to diagrams usually proposed by
object-oriented design methodologies, in order to handle
simulation-related aspects. From the model description,
the editor automatically generates the necessary
executable code.

A model is composed of interface elements, which
support user interaction, and autonomous elements, that
are used to model concrete entities. An autonomous
element is an active object, i.e., an object with its own
execution thread and a message queue. It may interact
with other autonomous and interface elements only
through messages. The model does not support shared
variables, so that it may be also used in distributed
environments. Different objects of the same model may
follow different paradigms. A paradigm is defined as a
combination of the following modeling approaches:
event orientation or process orientation for the
description of the object behavior, messages or ports for
the communication between objects, and active or
passive message handling. These approaches may be
extended or specialized by inheritance.

More details on the modeling possibilities of S3E2S
and on its mechanisms for co-simulating mixed analog,
digital and software descriptions can be found in [1].

4. Object evaluation and processor selection

After modeling the system in the object-oriented
environment, the primary goal to obtain a working
system is to map objects to one or more physical
processors. This strategy assumes that, nowadays, there
are different commercial processors available, with
different cost/performance ratios, ranging from high
performance DSPs to low power microcontrollers. If the
user can find a set of commercial processors that
implements the desired behavior, design costs would go
down, for core-based designs can favorably replace
crude hardware synthesis, at least for small or medium
volumes or for fast prototyping with small costs. For this
reason, S3E2S first tries to find, from a processor library,
a set of possible candidates that can implement the
desired behavior.

This evaluation phase must be performed as soon as
possible in the design cycle, but at the same time without
the burden of extensive code simulations. The goal is to
find a set of processors that, from the abstract object
specification, can implement the desired behavior.
Compiling the original code to specific processors and
then simulating or emulating the processor is a time
consuming task. If a high level evaluation is possible, the
designer can try different modeling styles of the design
in order to find the best set of processors. For example,
one might try to reuse a board or a SOC with different
processors like a microcontroller and a DSP plus some
analog interface already available. Alternatively, one



might ask which specific set of processors could be used
in a new development.

4.1 Object evaluation
In [16], the evaluation of software performance is

based on a two step procedure. Firstly, a high- level
processor-independent representation is obtained, like a
CDFG (control and data flow graph), and then the CDFG
is translated into C code for the target processor. In
S3E2S we also use an intermediate description of the
code to be executed. Some optimizing transformations
are executed, and upon this optimized CDFG structure
an evaluation of the object behavior is obtained.
Differently from [16], however, whose work is targeted
to controllers, each software module in S3E2S is free
from any previous template, and so each object has any
possible behavior. This way, one must characterize the
typical behavior of the object code, among three
alternatives: a) control dominated, as in FSMs for
controllers; b) data intensive computations, as in digital
filters; or c) memory intensive computations, as in list
processing or data-base searching in a building entrance
control, for example.

Each object is targeted to a processor that best
implements its behavior. The criteria for choosing the
best processor are based on the processor characteristics
to execute the desired code. For example, a DSP
processor with a deep pipeline will pay a high branch
penalty and is thus not adapted to a control-intensive
application. On the other hand, if a low cost
microcontroller can be used in a slow varying process
that requires digital filtering at largely spaced samples,
then this solution should also be given as an option for
the designer.

There are different target architectures available in
S3E2S. Either a full synthesizable processor might be
generated, or a set of heterogeneous processors might be
required. For example, a DSP processor and a small
microcontroller, both commercially available, could be
used together in a certain application. Eventually,
whenever none of the available processors can be
selected, due to execution time limitations or other
factors, a dedicated integrated circuit might be
developed.

After parsing the application, a CDFG is obtained,
and in the sequence a machine-independent 3-address
code is generated. In order to better analyze each
processor, three types of virtual machines were defined,
according to different target architectures, like
microcontroller,  RISC and DSP.

Each one of  the virtual machines has particular
characteristics. The Microcontroller-like virtual machine
is defined as an instruction set in which the target
architecture has only two registers. The RISC virtual
machine has as many registers as necessary to allocate
all data dependent variables. These variables are those
that are called temporary symbols in a three-address
code, because they hold values resulting from one
operation and will be used in another subsequent
operation. This RISC virtual machine type characteristic

allows the optimization of memory accesses by the
compiler. Finally, the DSP virtual machine type has as
many registers as the number of the variables used in the
application, so that variables are accessed in memory
only once. This is to reflect the large available internal
memory and the short access time of this type of
architecture. Also, the multiply and accumulate (mac)
instruction is detected, and when it occurs in the
application code,  only one cycle is computed for data
transform operations.

The next step concerns object analysis, where the
dominant characteristic of the object is identified:
control intensive (many control instructions and flow
breaks), memory intensive (list processing, digital
filtering, much memory usage) or data processing
intensive (few memory accesses, most processing done
with internal registers). Each one of these characteristics
will favor a different processor in the library.

Let
• M be the total number of cycles used in memory

access in the internal 3-address code,
• P the number of cycles to execute all data

transformations (add, sub, and, mult, etc.), and
• C the total number of cycles taken to test and

branch (control instructions).
Let
• APb (application profile) be the relative

importance of each behavior “b” in comparison
with others, expressed as

APP  = P / (P + M + C), (1)
APM = M / (P + M + C), (2)
APC  = C / (P + M + C). (3)

Equations 1 to 3 show the relative importance of
improving a certain architecture to obtain the maximum
gain while executing the function of the particular
object. This way, if an application has an APC of 0.7,
this means that it is control-dominated, and there is no
point in using a DSP processor to implement it [17].

 The serialization of functions can be tried, so that a
group of objects can be mapped to a single processor and
the application may fit in a smaller number of
processors. At the beginning of this allocation process,
all actions that the user required to be executed in
parallel will be necessarily allocated to different
processors. Regarding other actions, the communication
protocol is checked. In case of synchronous
communication, actions of the communicating objects
are naturally sequential and may be allocated to the same
processor.

4.2 Processor analysis and selection
In order to be able to find the best processor for a

given object or group of objects, we also need to
characterize processors. This characterization is
performed once for each object and stored in the library,
together with the processor description itself. The
characteristics listed in Table 1 provide a high-level
abstraction of a processor from a behavioral point of



view. They can also be used to classify application-
specific processors, like those devoted to DSP. These
processors will have some peculiarities in operand
addressing (for example, circular buffering), the number
of busses to access memory, type of control instructions
(easy definition of loops at the assembly level), and
depth of pipeline.

Table 1 – Processor characteristics
Size of binary word
Types of instructions
Memory operand accessing modes
Execution time of each instruction, in clock cycles
Number of busses to access memory
Type of memory
Number of registers
Control instructions
Use of pipeline and depth of eventual pipeline
Use of Harvard architecture or not

Consider a particular application, for which APP,
APM and APC have been calculated. One must now
evaluate the cost of using a given processor for
implementing this application. Considering the previous
characterization of this processor, its Application
Performance Distance (APD) is obtained by the
following distance measure:

( ) 222 )()( APCCiAPMMiAPPPiAPD −+−+−=
(4),
where index i stands for a certain processor, and Pi, Mi

and Ci are the relative costs of the processor instructions
to execute data transformations, memory accesses and
control operations, respectively. Each processor obtains
the Pi, Mi and Ci values from its own virtual machine.
For this analysis, it is assumed that each 3-address code
instruction generates a single instruction in the target
processor.  Equation 4 gives a clue on the performance
of this processor when executing the given application.

The 3 dimensional distance measurement obtained by
using equation 4 shows how different the processor is
from the ideal virtual machine that can execute the code.
The processor with the smallest distance will be
probably best suited to execute the application with less
overhead.

5. Case Studies

5.1 Initial examples
Three very different processors have already been

characterized in the S3E2S library: the 8051
microcontroller [18], the C25 digital signal processor
[19], and the RISCO microprocessor, a 32-bit RISC-like
microcontroller [17]. Table 2 shows some of the
processors’ characteristics. For example, since the C25
has a DSP architecture, memory accesses and
computations take the same amount of cycles. This
favors data intensive applications. On the other hand, a
RISC machine with many registers favors computations

with few memory accesses. At the same time, the cost of
a branch is higher in the C25, thanks to the effect of the
possible pipeline flush. The added cost of the flush is
considered in table 2. In the C25, internal memory is
considered as a register bank, due to its small access
time and to the special indexing registers available in the
architecture.

Table 2 – Partial processor characterization
# of

registers
Jump
cycles

Memory
access
cycles

# of
busses

8051 8 2 2 1
RISCO 32 1+2 2 1
C25 544 4+2 1(internal) 2

In order to illustrate the processor selection strategy,
we take 3 different algorithms, presented in Figure 1.
The computation of the distance a person walks or runs
in the PODOS system1 is shown in Figure 1(a). We also
have a digital filter, expressed in Figure 1(b), and a
simple dot product, shown in Figure 1(c).

The result of the analysis of the three algorithms is
presented in Table 3. Each algorithm was classified
according to its main characteristic, as explained in
Section 4.2. As shown in Table 3, the PODOS
integration algorithm is mainly memory intensive
(APM=0.523), the filter is mainly data intensive
(APP=0.538), and the dot product is also mainly data
intensive (APP=0.484). The resulting Performance
Profiles for each application and processor can be found
in Table 4.

for(int i; i < n; i++) {
    vel1= sqrt((acel_v*acel_v) + (acel_h*acel_h));
    mean = (((vel_prev + vel1)/2) * Tsampling);
    vel_prev= vel1;
    vel = mean;
}
(a) Podos Integration

while (i < I) {
aux= x[i] - y[i];
aux= aux * K;
y[i+1]= y[i] + aux;
i++;

}
(b) Digital filter

prod= i= 0;
while(i < Array_Size) {

prod= prod + a[i] * b[i];  i++;
}
(c) Dot Product

Figure 1 – Example algorithms

                                               
1 The PODOS system is an integrated circuit that
measures the distance a person walks or runs. It is placed
on the shoe and communicates with a display on the
person’s wrist.



Table 3 – Evaluation of Application Profiles for the
PODOS example algorithm for all processors

APC APM APP
8051 0.038 0.615 0.346
Risco 0.047 0.523 0.428
C25 0.090 0.090 0.818

Table 4 – Evaluation of Application Performance
Distance for the example algorithms and processors

APD
8051 RISCO C25

PODOS 0.639 0.313 0.353
Filter 0.860 0.156 0.092
Dot 0.924 0.258 0.207

The system then suggests the best processor, but
allows the use of another one, in case the designer wants
to reuse some module or a previously designed board.
For the given applications, the following results are
achieved:
– PODOS integration (memory-intensive): the

processor with smallest APD for this algorithm is
the Risco, since the mixed behavior favors a
general-purpose architecture;

– Filter (data-intensive): the processor with smallest
APD  for this algorithm is the C25.

– Dot product (data-intensive): The processor with
smallest APD for this algorithm is again the C25.

5.2 Crane control
In order to illustrate more design possibilities using

S3E2S, a more complex example has been modeled. This
system, composed of a crane and its embedded control,
has been proposed in [20] as an attempt of benchmarking
in the area of system-level modeling and synthesis.

The physical plant is composed of a crane with a
load, moving along a track, as depicted in Figure 2. The
modeling of the physical system is done by a set of
differential equations, which describe the behavior of the
crane with a load and external forces being applied. The
control of the system involves a set of sequential
procedures and the control algorithm itself, which will
assure a smooth behavior while the car is moving.

Figure 2 - Crane moving along its track with load [20]

The control algorithm is implemented as a discrete
computation of the state-variable method. In the control
algorithm, the goal is to move the crane with a linear

displacement, without bumps and oscillations. A set of
matrix multiplications must be performed at a fixed
time step of 10 ms. If  q n =[q1n, q2 n, q3 n, q4 n, q5 n]

 T is
the discrete state vector of the crane, then
q n+1=A*q n + B*[Motor_Voltage  Car_Position]T (7)
is the next discrete state of the control algorithm.
Coefficient matrixes A and B have dimensions 5x5 and
2x5, respectively.

The control algorithm outputs the value of the force
to be applied to the crane, and this is passed to other
objects, that are responsible for driving the dc motor
that controls the speed, the breaks, and the emergency
break (that completely stops the crane until a power-on-
reset is performed). A more detailed description of this
modeling can be found elsewhere [1]. In the following,
we consider only part of the system behavior,
concerning the crane control and movement, which is
the only synthesizable part of the modeling.

In a first modeling, the system has been partitioned
into 4 objects, one responsible for the finite state
machine of the whole controller, and three other objects
for performing different multiplications regarding matrix
operations to compute position and the forces to be
applied. Table 5 shows the Application Performance
Distance of the three processors of the library for this
application.

Table 5 – Application Performance Distance for the
processor with regard to the crane control, first modeling

Processor best APDObjects
8051 RISCO C25

Control 0.633 0.271 0.180
Mul_aq 0.754 0.176 0.230
Mul_y 0.917 0.177 0.195

Mul_bx 0.753 0.208 0.235

Although the Control object is not mainly data
intensive, the C25 was chosen because the combination
of its instruction set with the used virtual machine
showed the smallest distance. This means that the
compiler that will effective generate code for this
application will use its characteristics in a better way,
and the outcome will be more predictable. The three
remaining objects, that perform the matrix
multiplications, are more operation intensive than
memory intensive (matrixes are small) and the Risco
processor is a better match.

In a second modeling, the function of all former four
objects is implemented by a single object. Table 6 shows
the Application Performance Distance in this case. The
application is mixed, and so the system chooses the
Risco processor as the best solution.

Table 6 – Application Performance Distance for the
crane control, second modeling

APD/Proc 8051 Risco C25
Crane 0.658 0.187 0.240

As it can be seen, S3E2S can not only guide the
design process, but it can also help the designer in the
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specification phase for purchasing an IP or in the
development of a new architecture. After processor
selection, the C code for the dedicated processor is
generated, and a dedicated commercial compiler is used
to obtain the final object code.

6. Conclusions and future work

The automatic design of embedded electronic
systems is an open area of research. An integrated CAD
environment must consider important aspects such as
system specification, validation, and synthesis. Various
different approaches have been proposed in the literature
to cope with these issues.

For the synthesis of embedded systems, most CAD
environments have a fixed target architecture, consisting
of a single processor and maybe some peripheral ASICs.
These synthesis approaches concentrate on the task of
partitioning system functions among hardware and
software. S3E2S, in turn, performs a synthesis that is
based on a library of processors, ranging from
microcontrollers to ASIPs and DSPs. Each processor is
characterized by a set of parameters, and the
environment tries to match each object of the application
(considering the application profile) to the most
adequate processor. The final architecture is therefore a
multiprocessor platform. The paper presented examples
illustrating the utilization of the design infrastructure
described above, where the selection of the processors is
performed in an automatic way.

In all shown examples the microcontroller (8051) has
never been chosen. This is because the use of a
microcontroller is not related with performance, but with
less area or lower power dissipation. This way, we are
currently investigating a more refined processor
selection procedure, where other design related issues
like area and power can be also evaluated. Moreover,
some fuzzy design criteria like availability in the market
or of trained designers with a particular architecture will
also be included in the processor selection metrics.

We are also currently investigating the
communication costs between processors and a strategy
for automating the selection of the best communication
infrastructure. Future work also includes the expansion
of the processor library and the development of
algorithms to automatically group objects into a single
processor.
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