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Abstract

In this paper we describe a methodology and accom-
panied tool support for the development of parallel and
distributed embedded real–time system software. The pre-
sented approach comprises the complete design flow from
the modeling of a distributed controller system by means
of a high–level graphical language down to the synthesis
of executable code for a given target hardware, whereby
the implementation is verified to meet hard real–time con-
straints. The methodology is mainly based upon the tools
SEA (System Engineering and Animation) and CHaRy (The
C–LAB Hard Real–Time System).

1. Introduction

In the field of embedded systems development there is
currently no seamless design flow from high–level model-
ing down to the implementation on a specified target hard-
ware, e.g. a network of interconnected microcontrollers.
Tool support exists for the graphical specification and sim-
ulation of systems. There is also tool support for the im-
plementation of an embedded system on a target processor.
However, between these design steps there is a gap in the
tool chain. Thus, several design activities, like partitioning
and code generation, still have to be done manually, which
can be a tedious and error prone process.

In this paper we describe a methodology and accompa-
nied tool support for the development of embedded real–
time system software. Embedded systems are typically used
for the control of physical devices. These controllers be-
have periodically: In a loop, the current sensor data is read
and, according to internal computations, the values of some
actuators are adjusted. The correct behavior has to be as-
sured with respect to both the functional requirements as
well as to hard real–time constraints on the computational
part of the loop. These constraints are imposed by the con-

trolled physical devices. Furthermore, embedded systems
are by nature distributed or parallel, and todays applica-
tions (e.g. cars) frequently involve many micro–processors
to serve different special–purpose demands (e.g. cruise con-
trol, ABS, air–bag, motor management, etc.).

The methodology presented in this paper is mainly based
upon the tools SEA (System Engineering and Animation)
and CHaRy (The C–LAB Hard Real–Time System), that
were developed at C–LAB. The use of both tools within our
methodology and their interaction is shown with the appli-
cation example of an Anti Blocking System of a car.

SEA is an environment for the modeling and interactive
simulation of heterogeneous systems. The tool is based
on the formal model of Predicate/Transition–Nets (Pr/T–
Nets). The idea is to describe the controller on a high
abstraction–level using SEA, and leave the implementation
to CHaRy. During the modeling phase the designer uses
a high–level graphical language, in our example Software
Circuits. Within SEA the model can be interactively sim-
ulated and modified until it is functionally correct. After-
wards the model is transformed into an exchange format
establishing the interface between SEA and CHaRy.

CHaRy is a software system for the synthesis of peri-
odic controller applications, where hard real–time condi-
tions must be guaranteed for software tasks. Since this is
a very complex problem, CHaRy decomposes it into the
sub–problems of mapping the controller models to a num-
ber of tasks (partitioning), the extraction of their worst-case
execution times (timing analysis), and their assignment to
a processor network (allocation), so that all hard real–time
conditions are guaranteed (feasibility analysis). The out-
put of CHaRy is executable code for each processor in the
network together with a system configuration. The latter
specifies the services needed from a given real-time operat-
ing system (e.g. task scheduling, inter task communication,
device drivers or memory management).

The rest of the paper is structured as follows. Section
2 gives an overview of related work. Section 3 shows the
proposed design flow. Section 4 describes the modeling



and simulation using SEA, and Sections 5 and 6 describe
timing analysis and the scheduling/allocation performed by
CHaRy. Finally, a conclusion is given in Section 7.

2. Related Work

Design Environments: Similar to the work presented
here, the Ptolemy project [10] studies modeling, simulation,
and design of concurrent real–time embedded systems. The
focus is on assembly of concurrent components. The un-
derlying principle in the project is the use of well–defined
models of computation that govern the interaction between
components. A major problem area being addressed is the
use of heterogeneous mixtures of models of computation.
Unfortunately, for the majority of the allowed computation
models no synthesis is available and therefore no seamless
design is possible, as in our approach.

The reduction of complexity by means of a rigorous
problem decomposition is well–known in the field of hard-
ware high–level synthesis [14]. However, for hard real–time
software systems this is relatively new, and hence it is often
not very well supported by tools. When using ordinary real–
time design methodologies like HRT–HOOD [4] or ROOM
[20], many design steps are still hand–made. Although
problem decomposition usually leads to sub–optimal solu-
tions, it is in our opinion the only way to handle very large
systems.

Scheduling and Allocation: The problem of assigning
the software of periodic controller algorithms to parallel
embedded computers in a way that the real–time conditions
are met, is very complex. Many known approaches in this
field try to handle Scheduling and Allocation simultane-
ously or have problems to locate feasible assignments (e.g.
[19]). However, following a distinct handling of Schedul-
ing and Allocation, our efficient heuristic [2] delivers good
results even for larger applications.

Timing Analysis: A tight worst-case execution time
(WCET) estimation must comprise both a high level anal-
ysis (HLA) on the source code level as well as a low level
analysis (LLA) on the assembler code level. The HLA deals
with finding the longest executable path in the control flow
of a program, whereas the LLA predicts the execution time
of sequences of assembler instructions considering the ef-
fects of caching and pipelining. In contrast to most current
approaches to WCET analysis, our work comprises both
LLA as well as HLA.

Current approaches for the HLA differ mainly in the
methods used for program path analysis. In e.g. [6] graph
algorithms are used to analyze the control flow graph. In
contrast, [18] uses ILP to specify the problem of finding the
longest executable path in the control flow. Due to com-
plexity problems, it is not feasible neither for graph algo-
rithms nor for ILP approaches to explore all possible paths

in the control flow graph. However, our graph-based ap-
proach uses a heuristic [1] with a good trade-off between
accuracy and computation-time consumption.

Most publications on LLA concentrate on only one of
the aspects caching or pipelining separately, e.g. [15] on
caching or [16] on pipelining. Our approach integrates both
aspects by using the results of the caching analysis for the
pipelining analysis ([21]).

3. Design Flow

In this section we give an overview of how a parallel em-
bedded real-time system is modeled following our design
methodology (see Figure 1). The design starts with a speci-
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Figure 1. Design flow

fication of the system under development. The specification
is based on extended Pr/T–Nets [12] as a formal model. We
use a high-level petri net model, since petri nets are well
suited for the design of concurrent systems and allow a nat-
ural modeling of reactive systems due to their asynchronous
characteristics. Furthermore, many useful analysis meth-
ods for petri nets already exist. Due to our extensions to
the basic model of Pr/T–Nets it is also possible to use other
specification languages. They can be transformed into our
unique formal model in several ways [13]. For the work
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presented in this paper we use a library for the specification
of so called Software Circuits [8]. The library (see Section
4) addresses the problem of modeling periodic processes.
Thus it is easier and thereby less error-prone to use this li-
brary for specifying the systems we have in mind with our
methodology.

A model specified by the user contains the functional be-
havior of the periodic processes as well as their periods and
deadlines. As Pr/T–Nets form an executable specification
method, system evaluation is supported from the very be-
ginning. That means, just after a specification of the system
under construction has been defined, this model can be ex-
ecuted within the SEA Environment using its interpretative
simulation component or a C++ prototype, that can be gen-
erated from the model. Primarily, the simulation allows to
check whether the computations of the different model parts
are functionally correct. Furthermore, it is possible to ob-
serve the temporal behavior assuming that it is possible to
guarantee the specified periods and deadlines for an imple-
mentation. Since neither the execution order of the different
tasks nor their execution times are known, the simulation of
the temporal behavior is rather imprecise at this stage of our
design flow.

In order to generate an implementation from the speci-
fication the model is given to CHaRy. The model is trans-
formed into an exchange format defined for this purpose.
The thereby generated input for CHaRy comprises a set of
tasks described in a C–like imperative language and the pe-
riods and deadlines for these tasks. Before exporting the
model, SEA performs a partitioning of the user specified
tasks into smaller units. This prepartitioning [22] defines
the smallest units for the final partitioning performed by
CHaRy. In contrast to the final partitioning the preparti-
tioning is computed with respect to characteristics of the
underlying Pr/T–Net model.

CHaRy first approximatively estimates the execution
times of all units produced by the prepartitioning. With re-
spect to these values as well as to the expected communica-
tion times between different processes the final partitioning
for the implementation of the system is determined. This
is done by clustering the atomic units given as input. For
the partitioning as well as for the following steps CHaRy
needs a specification of the target architecture (e.g. a set
of microcontrollers connected via a CAN-bus). Having de-
fined the partitioning, an accurate worst-case execution time
analysis is performed. This step is described more detailed
in Section 5. Afterwards, CHaRy determines an alloca-
tion of the tasks to processors and computes a schedule for
tasks assigned to the same processor as described in Sec-
tion 6. This step yields information for the configuration
of the target architecture, which - together with the object
code for all tasks - forms an implementation of the mod-
eled system. The implementation is created in the final step

of synthesis. This step includes the generation of commu-
nication components for distributed target architectures (cf.
[25, 17]). For this purpose we rely on the library operat-
ing system DReaMS. It provides customized communica-
tion support for distributed embedded applications [7]. Be-
sides the implementation, CHaRy also yields several infor-
mations about the implemented system, e.g. the worst-case
execution time of all tasks, their schedule and thereby also
their release and response times. The response times are
compared with the specified deadlines in order to check the
real–time conditions. All informations may be integrated
into the model specified by the user. This enables the en-
gineer to simulate the behavior of the final implementation
within the SEA Environment in order to check whether the
implementation fulfills all requirements.

4. Modeling and Simulation

The basis for our modeling approach is the SEA lan-
guage [12]. It allows to hierarchically specify the structure
and the behavior of a heterogeneous system in an appli-
cation oriented way. Freely defined graphical elements as
well as predefined elements e.g. lend from existing graph-
ical languages can be used. As a unified formal seman-
tical basis extended Predicate Transition Nets (Pr/T–Nets)
are used. They build the bottom level of hierarchy in each
specification. Via this unified formal semantics the inte-
gration of specification elements from different application
domains, as it is needed for the engineering of heteroge-
neous systems, can be reached. Furthermore, the underly-
ing Pr/T–Net allows a simulation/animation of the graphical
system specification at arbitrary levels of hierarchy. Even
the freely defined graphical elements like pictograms can
be animated.

In this paper we use a library of predefined elements for
the specification of Software Circuits [8]. The library sup-
ports a simple specification process comprising three main
steps. First, the engineer specifies the different computa-
tional parts of the system by block diagrams. For the speci-
fication he can either use predefined elements, e.g. for arith-
metic operations, or easily define own elements for more
complex operations. An example for such elements, that
consist of a Pr/T–Net and a graphical interface, is depicted
in Figure 2. Besides the operations the diagrams may con-
tain inputs and outputs, which form the interface of the
specified element, as well as actuators and sensors. Hier-
archical definitions are also supported.

The specified diagrams form the basis for the second step
of the specification process, the definition of tasks. A task is
defined by instantiating a diagram and defining a period as
well as a deadline for the task. For each specified task, our
modeling tool SEA automatically creates an extended Pr/T–
Net, that has the functional behavior defined by the diagram
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Figure 2. Software Circuit library element

as well as the temporal behavior specified by period and
deadline. Furthermore SEA generates a graphical interface
for the diagram according to its inputs, outputs, sensors and
actuators.

In the final modeling step the engineer connects the pre-
viously defined elements to the top level model. Figure 3
shows the top level view of our application example. It con-
tains one task for observing the pressure put on the brake
and four tasks realizing the anti blocking system at each
wheel. The graphical interfaces of the tasks visualize their
status (computing/waiting), the last input values sent to the
respective component and the sensor and actuator values.
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Figure 3. SEA specification of application ex-
ample

Modeling an embedded real-time system as described
above, the engineer has not to deal with petri nets at all.
Nevertheless, he defines a hierarchical Pr/T–Net, that can be
executed by means of the simulation facilities of our mod-
eling environment. Simulation runs are supported on all hi-
erarchy levels. Thus the user can investigate the computa-
tional behavior of single components as well as the behavior

of the whole system over the time. Sensor values and - on
lower hierarchy levels - input values for single components
can be set interactively during simulation. As described in
Section 1, the simulation reflects the real behavior of the
final implementation, since all relevant informations about
the implementation are collected by CHaRy during the anal-
ysis and synthesis steps and integrated into the model.

5. Timing Analysis

The WCET analysis is initiated after clustering the units
produced by the prepartitioning. In contrast to the timing
assumptions used during the clustering process (where av-
erage values are needed), the WCET analysis tries to give
anexactprediction of the WCET of the tasks. The WCET
analysis is mainly divided in two modules: the Low-Level
Analysis (LLA) which works on the level of machine in-
structions, and the High-Level Analysis (HLA) which anal-
yses the control flow of a task on the source code level.

The LLA covers all speed-up mechanisms used for mod-
ern superscalar processors [9]: pipelining, instruction-level
parallelism and caching. The pipelined and parallel exe-
cution of assembler instructions is analyzed for each basic
block (i.e. each node of the control flow graph) of a task.
Also, the LLA predicts whether memory accesses will hit
the cache at run-time.

The HLA uses the results from the LLA to compute the
final estimate on the WCET. This is done by a heuristic for
searching the longest really executable path in the control
flow, i.e. by taking into account functional dependencies
between various program parts [1]. The LLA computes a
representation of the state of pipeline and cache at the be-
ginning and at the end of each basic block, i.e. before and
after execution of its machine instructions. The HLA then
computes the length of a path in the control flow graph by
concatenating the state representations of the basic blocks
on this path. The concepts used in our WCET analysis are
described in more detail in [21].

Obviously, the LLA is strongly hardware dependent, i.e.
the cache and pipeline architecture have to be taken into ac-
count. However, while a cache configuration can easily be
parameterized, pipeline structures of various processors dif-
fer considerably. Thus, the timing analysis has to be adapted
to each new target processor. Within CHaRy, the pipeline
architecture is modeled as a set of C++ base classes which
can be configured for a given processor architecture with
reasonable programming effort. The current implementa-
tion of CHaRy supports the PowerPC 604 architecture.

The result of the timing analysis process is a tight esti-
mate on the worst-case execution time of each task. This es-
timate is then used by the scheduling and allocation module
in order to compute the final implementation of the model
so that all real-time constraints are met.
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Concerning the application example a WCET of 180
clock cycles for the task Pedal and a WCET of 1128 clock
cycles for the tasks running at the wheels was computed by
CHaRy. Actually we have not compared these value to the
real execution times. But as earlier experiments with the
PowerPC 604 have shown, CHaRy typically overestimates
the WCET about 4 % up to 13 %[21].

6. Scheduling and Allocation

During scheduling and allocation the analyzed tasks are
assigned to hardware devices resulting in a system configu-
ration, telling which task is to be run where and when.

The problem to overcome is to map the tasks to a number
of interconnected microprocessors such that

� all timing constraints are satisfied
� some objective function, expressing the resources

used, is optimized

Because this problem is known to be NP hard [24], use of
heuristics is preferred. In particular, the process is divided
into the sub-problems allocation for the overall mapping,
and the actual local resource scheduling.

The allocation is an iterative process based on Simulated
Annealing [11], a well-used general optimization technique.
Within each iteration, a new mapping is produced which is
then checked for feasibility w.r.t. real-time constraints, and
a value for the objective function is determined. If the as-
signment is both feasible and cheaper, it is accepted as a
new optimum, otherwise, it is rejected. As shown in [2]
efficiency is drastically improved when pre-processing the
iterative simulated annealing approach. However, other al-
location techniques may be applied as CHaRy is open for
any other method, as well.

For the scheduling of each local resource (processor or
network link) several properties can be distinguished. The
scheduling can either be performed on-line (i.e. at run time)
or off-line (i.e. computing a static cyclic schedule). In any
case the scheduling is based on fixed priorities assigned by
policies, like RMS, DMS, or LLF. The scheduling algo-
rithm can be pre-emptive or non pre-emptive. Task invo-
cation can be time triggered (each task is started at a spec-
ified instant in time), or event driven (each task is started
when its input data is complete). During the check on fea-
sibility [3, 23] the properties of all used resources are cor-
respondingly taken into regard, as each of them has a dif-
ferent impact on the global behavior. Furthermore, a com-
bination of caching and pipelining analysis and preemptive
scheduling is possible, by adding task-switch overhead for
refilling caches and pipelines into the analysis [5]. Commu-
nication calls are synthesized during code generation, re-
sulting in synchronous mechanisms for tasks of the same
period length, and in asynchronous mechanisms for tasks

with different periods lengths (using semaphore locking in
both cases) [8]. Consequently, corresponding worst-case
blocking delays are incorporated into the analysis. Note,
that scheduling (and the check on feasibility) is given for
both micro controllers and network links.

The following table shows the results of the WCET anal-
ysis and scheduling/allocation computed by CHaRy for the
application example.

Task WCET Processor Period/
Deadline

Pedal 180 cycles driver 40 ms
WheelFL 1128 cycles front left 25 ms
WheelFR 1128 cycles front right 25 ms
WheelBL 1128 cycles back left 25 ms
WheelBR 1128 cycles back right 25 ms

The final scheduling and allocation of the example is
rather trivial. An elaborate test-case evaluation of CHaRy’s
allocation component is provided in [2].

7. Conclusion

We have presented a methodology and accompanied tool
support for the seamless development of parallel embed-
ded real-time systems. The seamless design flow is accom-
plished by the interaction of the tools SEA and CHaRy, it-
eratively refining and simulating a Pr/T–Net model of the
system under development. The final implementation of
the model on a distributed controller network is synthesized
automatically. Our methodology was presented using the
rather small application example of an Anti Blocking Sys-
tem. Currently we are evaluating our approach performing
more complex case studies.
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