
Delay-Insensitive Interface Specification and Synthesis

Mark B. Josephs and Dennis Furey
Centre for Concurrent Systems and VLSI

School of Computing, Information Systems, and Mathematics
South Bank University, London

Abstract

Delay-insensitive interfacing was first demonstrated on
the macromodules project in the 1960’s, but globally syn-
chronous (clocked) schemes have so far dominated the VLSI
era. In deep sub-micron technologies, problems of clock
skew, including excessive size and power consumption of
clock buffers, and heterogeneity of systems on a chip are
rekindling an interest in global asynchrony. DI-Algebra is
presented here as a language for the specification of mod-
ules with delay-insensitive interfaces. Such modules can
be implemented either in synchronous or in asynchronous
logic. A design flow is also illustrated in which specifica-
tions are automatically translated into Petri nets, validated,
and synthesised into asynchronous logic.

1 Introduction

Asynchronous systems differ from the conventional ap-
proach to digital system design in that they make no use of
a central clock. When multiple units interact in a typical
synchronous system, such as by exchanging data, their co-
operation is enforced by their mutual conformity to the op-
erating speed dictated by the central clocking mechanism.
On the other hand, in the case of an asynchronous sys-
tem, the operating speed of the constituent units is not cen-
trally regulated, but is constrained only as needed to com-
ply with the conventions (or “protocols”) agreed upon in
their neighbor-to-neighbor interactions. For the right appli-
cation, a cleverly designed asynchronous system is poten-
tially faster, more efficient, and lower in engineering costs
than its synchronous counterpart, but this style of design
poses its own special challenges that have been a subject of
ongoing research and theoretical investigation.1

Asynchronous circuits are often packaged into modules
which communicate according to a delay-insensitive sig-
nalling scheme [3], such as four-phase handshaking [18, 14,

1The support of the UK EPSRC under grant GR/M51567 and the EC
under contract nr. 21949 (ACiD-WG) is acknowledged.

20, 1]. Complex VLSI systems can then be realized by hier-
archical composition of such modules. A variant of Hoare’s
CSP language [8], known as DI-Algebra [10], is tailored to
the specification of modules that provide delay-insensitive
interfaces, and to the verification of their compositions.

Signal transitions (changes in the logic level of wires)
control the operation of asynchronous circuits. The events
or actions of DI-Algebra can be interpreted as signal tran-
sitions, and its algebraic laws capture the possibilities of
reordering and interference as those transitions are propa-
gated along wires [19].

Variants of Petri nets, such as I-Nets [15], Signal Transi-
tion Graphs [2], or Change Diagrams [11] are popular for-
malisms for specifying dependences between signal transi-
tions. Thepetrify tool [4] has been used successfully
to synthesise asynchronous circuits from Petri nets. Asyn-
chronous VLSI design teams at the University of Manch-
ester and at Cogency Technology in the UK, and at the
Technical University of Denmark, have made extensive use
of thepetrify tool. The Burst-Mode approach, another
graphical notation and associated tools [16, 21], is the main
alternative to the Petri net approach. Burst-Mode has also
been applied to real-world designs, such as cache con-
trollers and instruction decoders.

DI-Algebra has suffered hitherto from a lack of CAD
tool support, aside from some noteworthy tool building ac-
tivity at the University of Groningen. (DI-Algebra has been
implemented in HOL [6] and PVS [17] in order to provide
support for algebraic manipulation of expressions [7, 12],
anddigg automates translation from DI-Algebra into fi-
nite state machines [13].) A route to automated circuit syn-
thesis from DI-Algebra specifications is therefore desirable,
and could be obtained by way of a translation from them to
Petri nets. Our work pertains to the development of a trans-
lation tool calleddi2pn that will perform this translation
automatically. The idea is that designers could

1. undertake “high-level” specification, decomposition,
and verification using DI-Algebra

2. translate the specification of modules into Petri nets

usingdi2pn

3. perform validation, simulation, performance analysis,
and “gate level” synthesis using existing tools, such as
petrify.

Furthermore, in view of the sizable research communities
devoted respectively to process algebras and Petri nets, it is
interesting to investigate a connection between them.

In the next section we provide a concrete syntax
for DI-Algebra that allows the convenient expression of
input/output-bursts. Section 3 explains a design flow in-
volvingdi2pn andpetrify.

2 Algebraic specification of modules

The behaviour of a module is specified by a set of mutu-
ally recursive equations of the form

I = P

where the expressionP is constructed from the operations
described below. Recursion provides the means to specify
cyclic behaviour. Each identifierI corresponds to a state of
the module, the final equation identifying the initial state.

The benefit of an algebraic specification language to an
engineer lies in the availability of a well understood seman-
tic model for DI-Algebra (Receptive Process Theory [9]) to
facilitate such things as automated checking of a proposed
design for conformity with its specification, verifying that
an improved design is consistent with the original, use of
CAD tools, etc. An informal, back-of-the-envelope design
methodology would not afford these opportunities, and ex-
perience has shown that subtle flaws in an asynchronous de-
sign can be easily overlooked without automated assistance.

The acceptable kinds of expression follow. In these ex-
pressions,P and Q stand for arbitrary expressions,fxsg
stands for an input-burst, such asfa,b,cg, andfxs : ysg
stands for an input/output-burst, such asfa,b,c:d,eg.
(An output-burst alone could be writtenf:d,eg).

� I describes a module that behaves according to the ex-
pression associated with that identifier.

� stop describes a module that does nothing.

� chaos describes a module in an undesirable state. it
is implicit that the environment should avoid supplying
an input-burst that would allow a module to evolve to
chaos.

� P with fxsg describes a module that behaves asP
would behave when supplied with an input-burstfxsg.

� fxs : ysg;P describes a module that waits for input-
burstxs, then emits the output-burstys, and then be-
haves likeP.

� any N end , whereN can be any sequence of one
or more expressions separated by the keywordor,
describes a module that may non-deterministically
choose to behave like any of the expressions in the se-
quence.

� select S end , whereS can be any sequence of zero
or more guarded-expressions of the special formfxs :
ysg then P separated by the keywordor, describes
a module that will wait for an input-burstxs to tell it
how to behave, whereupon it will emit the associated
output-burstys and behave likeP.

� connect P using fxs : ysg to Q end describes a
module formed by connecting the modules described
by P andQ together, with the output signals of each
identified with the similarly named input signals of the
other.xs, the input signals ofP that are output signals
of Q, andys, the output signals ofP that are input sig-
nals ofQ, become unavailable for further connections.

Readers previously familiar with DI-Algebra will have
noticed that we have replaced symbols by keywords so as
to make the language more “user-friendly”. Another change
has been the use of bursts, rather than sequences of individ-
ual signal transitions. With the following algebraic laws,
however, we can always transform a sequence of distinct
input transitions followed by a sequence of distinct output
transitions into a single input-output burst:

fxs0g;fxs1g;P = fxsg;P , wherexs0 andxs1 partitionxs

f: ys0g;f: ys1g;P = f: ysg;P , whereys0 andys1 partitionys

fxsg;f: ysg;P = fxs : ysg;P
The following algebraic law shows how to eliminate

output-bursts from guards:

fxs : ysg then P = fxsg then f: ysg;P
Nevertheless, the generalisation from a single input tran-

sition as a guard to input-bursts as guards can lead to more
concise (and natural) specifications.

For readers unfamiliar with DI-Algebra, we list a few
more laws that testify to the rich algebraic structure of the
language.

fxs0g;fxs1g;P = stop , if xs0 andxs1 are not disjoint

f: ys0g;f: ys1g;P = chaos , if ys0 andys1 are not disjoint

stop = select end

fxs : ysg;P = select fxs : ysg then P end

any P or Q end = select fg then P or fg then Q
end

Note also that “silly recursions” such asX = X are
equivalent toX = chaos.

A number of case studies in DI-Algebra have been pub-
lished that use an “expansion theorem” to convert connec-
tion into selection, for the purpose of verifying that a mod-
ule has been correctly decomposed into a network of sub-
modules.

We conclude this section with the algebraic specification
of several well-known modules.

2.1 JOIN element

J = {a,b:c}; J.

2.2 MERGE element

M = select {a:c} then M
or {b:c} then M end.

2.3 Martin’s D element

D = {ar:ak}; {ar:br};
{bk:br}; {bk:ak}; D.

2.4 Mutual Exclusion element

X = select {r0:g0} then {r0:g0};X
or {r1:g1} then {r1:g1};X

end.

3 Design flow

di2pn reads the contents of a file, which contains an al-
gebraic specification, and writes a file containing an equiva-
lent Petri net. A standard format is used for the Petri net file
so as to facilitate compatibility with other tools. In particu-
lar: the tooldraw astg, packaged withpetrify and in-
terfaced todot, allows the Petri net to be displayed;pet-
rify itself, when provided with a library of gates, attempts
to generate the logic description of an asynchronous circuit
that implements the specification. In other words,di2pn
can be used as a front-end topetrify.
di2pn also writes a file containing a list of the expres-

sions and signal names associated with each place in the
Petri net. This file is intended for documentation or debug-
ging purposes, clarifying the correspondence between alge-
braic specification and Petri net.

The translation time needed bydi2pn, invariably no
more than a few tens of seconds on conventional hardware
even for Petri nets with upwards of a hundred places, has
not been significant enough to be worth benchmarking. The
bottleneck in the design flow tends to be elsewhere. Further-
more, the asymptotic behaviour of the translation algorithm
poses no impediment to its application to larger examples.

In any case,di2pn has been written only in an interpretive,
prototyping language. We estimate that an order of magni-
tude improvement would be possible if necessary by porting
it to native code.

Details of the translation algorithm itself can be found
in [5]. They are straightforward but a bit lengthy to recount
fully here. Essentially, the strategy is to represent process-
expressions and signal buffers as places in the Petri net. An
’expression’ place is marked when the process has evolved
to behave in the way expressed. A ’signal buffer’ place is
marked when a signal transition has been transmitted but
not absorbed. For each case in which a process requires
an input event in order to proceed, the places in question
have arcs leading to a common transition, which upon firing
deposits tokens into the places corresponding to the subse-
quent state and relevant output events.

The rules by whichdi2pn translates an expression in
DI-Algebra into a Petri net are very simple and do not at-
tempt to model the environment explicitly, i.e., input signal
transitions are always enabled. Unfortunately,petrify
requires a closed Petri net describing both a module and its
environment in order to synthesise an asynchronous circuit
that implements the module.

Our solution to this mismatch is to specify both the mod-
ule and its environment in DI-Algebra. Thendi2pn will
produce a closed Petri net. A welcome side-effect of this
approach is thatpetrify will now validate the specifica-
tion: the net should be “1-safe” if the module and its envi-
ronment are communicating delay-insensitively.

A word of caution needs to be added here: an implemen-
tation of the module is only guaranteed to be correct if the
environment behaves according to its specification. Alge-
braic transformation can help, for example, by proving that
the specification of the module does not change when it is
restricted to the specified environment.

We now return to the examples of the previous section,
specify suitable environments, and present the logic equa-
tions synthesised bypetrify from the Petri nets produced
by di2pn.

3.1 JOIN element

F = {c:a,b}; F
env = F with {c}.

The Petri net that results from translating the combined
specification ofJ andenv is given in Fig. 1. petrify
generates the equation[c] = b(a+ c)+ac .

3.2 MERGE element

E = any {c:a};E or {c:b};E end
env = E with {c}.

INPUTS: a,b
OUTPUTS: c

DUMMY: T0,T1

a

P0

b

P1

T0

P2 P3

c T1

P4

place signal buffer
----- -------------

P0 e.a
P1 e.b
P2 e.c
P3 s.a
P4 s.b
P5 s.c

place expression
----- -------------

P6 F
P7 J
P8 {a,b:c} ; J
P9 {c:a,b} ; F

Figure 1. Petri net description of JOIN ele-
ment.

petrify recognises thatM can be implemented with an
XOR gate. Note that in the more restrictive environment
given by

E = any {c:a};{c:a};E
or {c:b};{c:b};E end

env = E with {c}.

petrify synthesises the cheaper OR-gate implementa-
tion.

3.3 Martin’s D element

E = {ak:ar}; {ak:ar};
{br:bk}; {br:bk}; E

env = E with {ak}.

petrify inserts an internal signal and generates the equa-
tions[ak] = csc00

+bk; [br] = ar0csc00; [csc0] = ar0csc0+bk
.

3.4 Mutual Exclusion element

E0 = {g0:r0}; E0
E1 = {g1:r1}; E1

env = connect E0 with {g0} using {}
to E1 with {g1} end.

Althoughdi2pn produces a Petri net,petrify is unable
to synthesise a circuit. (Indeed, MUTEX should be imple-
mented using analog techniques.)

4 Conclusion

A concrete syntax for DI-Algebra has been presented,
together with some of its algebraic laws. The language
now includes input/output-bursts. Examples were given of
delay-insensitive interface specification using DI-Algebra.
Our tool di2pn translates such specifications into Petri
nets and so can be used as a front-end to the asynchronous
circuit synthesis toolpetrify. This automated design
flow, which includes a validation step, was applied to the
examples.

References

[1] K. v. Berkel. Handshake Circuits: an Asynchronous Ar-
chitecture for VLSI Programming, volume 5 of Interna-
tional Series on Parallel Computation. Cambridge Univer-
sity Press, 1993.

[2] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from
Graph-Theoretic Specifications. PhD thesis, MIT Labora-
tory for Computer Science, June 1987.

[3] W. A. Clark and C. E. Molnar. Macromodular computer sys-
tems. In R. W. Stacy and B. D. Waxman, editors,Computers
in Biomedical Research, volume IV, chapter 3, pages 45–85.
Academic Press, 1974.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. In
XI Conference on Design of Integrated Circuits and Systems,
Barcelona, Nov. 1996.

[5] D. Furey and M. B. Josephs. Translation of DI-algebra
to Petri nets. Technical Report SBU-CISM-98-10, South
Bank University, Centre for Concurrent Systemsn and VLSI,
1998.

[6] M. Gordon and T. Melham.Introduction to HOL, a theo-
rem proving environment for higher order logic. Cambridge
University Press, 1993.

[7] R. Groenboom, M. B. Josephs, P. G. Lucassen, and J. T.
Udding. Normal form in a delay-insensitive algebra. In
S. Furber and M. Edwards, editors,Asynchronous Design
Methodologies, volume A-28 ofIFIP Transactions, pages
57–70. Elsevier Science Publishers, 1993.

[8] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[9] M. B. Josephs. Receptive process theory.Acta Informatica,
29(1):17–31, 1992.

[10] M. B. Josephs and J. T. Udding. An algebra for delay-
insensitive circuits. In R. P. Kurshan and E. M. Clarke, edi-
tors,Proc. International Workshop on Computer Aided Veri-
fication, volume 531 ofLecture Notes in Computer Science,
pages 343–352. Springer-Verlag, 1990.

[11] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Var-
shavsky. Concurrent Hardware: The Theory and Practice
of Self-Timed Design. Series in Parallel Computing. John
Wiley & Sons, 1994.

[12] W. C. Mallon and J. T. Udding. Using metrics for proof
rules for recursively defined delay-insensitive specifications.
In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 175–183. IEEE
Computer Society Press, Apr. 1997.

[13] W. C. Mallon and J. T. Udding. Building finite automatons
from DI specifications. InProc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
pages 184–193, 1998.

[14] A. J. Martin. Programming in VLSI: From communicating
processes to delay-insensitive circuits. In C. A. R. Hoare, ed-
itor, Developments in Concurrency and Communication, UT
Year of Programming Series, pages 1–64. Addison-Wesley,
1990.

[15] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthe-
sis of delay-insensitive modules. In H. Fuchs, editor,1985
Chapel Hill Conference on Very Large Scale Integration,
pages 67–86. Computer Science Press, 1985.

[16] S. M. Nowick and D. L. Dill. Synthesis of asynchronous
state machines using a local clock. InProc. International
Conf. Computer Design (ICCD), pages 192–197. IEEE
Computer Society Press, Oct. 1991.

[17] S. Owre, J. Rushby, and N. Shankar. PVS: a prototype ver-
ification system. In D. Kapur, editor,11th Int. Conf. on Au-
tomated Deduction, Lecture Notes in Artificial Intelligence,
pages 748–752. Springer-Verlag, 1992.

[18] C. L. Seitz. System timing. In C. A. Mead and L. A.
Conway, editors,Introduction to VLSI Systems, chapter 7.
Addison-Wesley, 1980.

[19] J. T. Udding. A formal model for defining and classifying
delay-insensitive circuits.Distributed Computing, 1(4):197–
204, 1986.

[20] V. I. Varshavsky, editor. Self-Timed Control of Concur-
rent Processes: The Design of Aperiodic Logical Circuits in
Computers and Discrete Systems. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1990.

[21] K. Y. Yun, D. L. Dill, and S. M. Nowick. Synthesis of 3D
asynchronous state machines. InProc. International Conf.
Computer Design (ICCD), pages 346–350. IEEE Computer
Society Press, Oct. 1992.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

