
System-Level Data Format Exploration for Dynamically
Allocated Data Structures

Peeter Ellervee1, Miguel Miranda2, Francky Catthoor2;3, Ahmed Hemani1
1ESD, KTH, Electrum 229, S-16440 Kista, Sweden

2IMEC, Kapeldreef 7, B-3001 Leuven, Belgium
3Professor at the Katholieke Universiteit Leuven

lrv@ele.kth.se, miranda@imec.be, catthoor@imec.be, ahmed@ele.kth.se

ABSTRACT
Memory bandwidth and pow er consumption are important
design bottlenecks for data dominated applications. We pro-
pose a systematic system level exploration approach and for-
malised techniques to alleviate these bottlenec ks based on
rearranging the format of the data records that are later
stored in memory. The technique exploits parallelism in the
data transfer and reduction in bit waste. Using our approach
on sev eral real-life ATM processing applications, signi�cant
reduction in size, bandwidth and hence pow er consumption
are obtained.

1. INTRODUCTION
Usage of higher abstraction levels allows to increase both
productivity of designers and therefore the complexity of
systems to be speci�ed. A t the same time, performance re-
quirements motivate implementation of such abstract speci-
�cations in time-critical embedded softw are or ev en in hard-
w are. This t win motivation has been behind the advances
in VLSI CAD, which has primarily focussed on raising the
abstraction of computational aspects and automating their
implementation in hardware. Recently ho w ever,the VLSI
CAD communit y has put more emphasis on data storage and
communication aspects of speci�cations since applications
are becoming more and more data-dominated (see summary
in [1]).
Data-transfer intensiv e(DTI) applications, whic hrequire
large storage, such as in protocol processing and multimedia,
ha ve been mostly implemented in soft w are.The complexity
of protocol processing applications and its history of be-
ing implemented in soft w are and demands on productivity,
motivate the use of dynamically allocated data structures
(D ADS).Matisse [8] is a systematic design methodology
and supporting prototype tool environment, under develop-
ment at IMEC, that addresses implementation issues of such
structures and in general of telecom netw ork components. It
addresses both hardware and softw are targets.
D ADS are de�ned on the basis of functional and logical co-

herence for readability. Retaining such coherence while or-
ganising the DADS physically in the memory does not op-
timise the required storage neither the required bandwidth.
The latter optimisation goals are better addressed by anal-
ysis of the dependencies betw een memory accesses with the
aim of exploring pac king alternativ esof D ADS'selements
into single memory words. Heuristic rules have been devel-
oped to speed up the exploration phase.
Incorporated into IMEC's Ph ysicalMemory Management
project (PMM) [11; 9], the data format exploration step en-
ables opportunities for signi�cant reduction of memory bit
w aste during the later physical memory mapping phase. As
as result, it allows to reduce the number of accessed bits
and hence the required memory bandwidth and pow er con-
sumption. Additionally, it also helps in further reducing
the addressing and interconnect overhead and it simpli�es
succeeding syn thesis/optimisation steps by properly prun-
ing the search space available at the higher level. Ho w-
ever, a di�cult trade-o� is involv ed bet w een accesses to the
pac ked w ords sa ved due to the simultaneous read/write op-
erations and those lost due to the unpacking needed for non-
sim ultaneous accesses (see Subsection3.1).Therefore, a for-
malised exploration methodology supported by automated
techniques are crucial to properly explore the search space
before actual memory mapping stage.

2. RELATED WORK
Almost all published techniques for dealing with the allo-
cation of storage units are scalar-orien ted and employ a
scheduling-dir ectedview (see e.g. [5]) where the control steps
of production/consumption for each individual signal are de-
termined beforehand. This applies also for memory/register
estimation techniques (see e.g. [5; 3] and their references).
This strategy is mainly due to the fact that applications
targeted in conventional hardware syn thesis con tain a rela-
tively small number of signals. Therefore, as the major goal
is typically the minimisation of the number of registers for
storing scalars, the scheduling-driven strategy is well-�tted
to solv e a register allocation problem, rather than a back-
ground memory allocation problem.
The above techniques present serious shortcomings for most
DTI applications for several reasons. First, sc hedulingmust
precede (foreground) memory management in the con ven-
tional high-level syn thesis systems. Ho w ever, by switc hing
the order, the dominant bac kground memory cost can be
reduced further [12] and the freedom for data-path alloca-
tion and scheduling remains almost una�ected. Further-
more, within the scalar view, many examples are intractable

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

because of the huge size of the ILP formulations.
Exceptions to these techniques have been initiated by early
work at IMEC and Philips. Phideo [10] at Philips is ori-
ented to periodic stream based processing of video signals.
At IMEC, since 1988 extensive research has been performed
in the direction of this array-oriented custommemory organ-
isation management. For the DTI applications, the most rel-
evant work is the one on automated memory allocation and
assignment before the scheduling or the procedural order-
ing are fully �xed [9]. A complete methodology for custom
background memory management has been proposed in the
ATOMIUM script [1].
Recently several other approaches for speci�c tasks in mem-
ory management oriented to non-scalar multi-dimensional
signal processing have been published. This includes the
MeSA [6] approach at U.C. Irvine focussing on static mem-
ory allocation, and at CMU where strategies to mapping
arrays in an algorithm on horizontally and vertically parti-
tioned dedicated memory organisations have been proposed
too [7]. The latter approach uses horizontal concatenation
of arrays, similar to our pre-packing of elements of DADS,
but does it at the same time with scheduling thus signi�-
cantly increasing the complexity of the optimisation task.
As a result, the exploration scope of the technique is heav-
ily restricted. Moreover, the focus of our approach includes
also dynamically allocated data types with sets of records.
An analysis of how merging data-�elds of dynamically al-
located data structures a�ects the number of storage oper-
ations is presented in [2]. In this paper a systematic, sig-
ni�cantly extended optimisation technique is presented to
speed up the exploration of packing alternatives.

3. PRE-PACKING METHODOLOGY
Matisse is a design ow intended for system exploration and
synthesis of embedded systems characterised by dynamic
data storage and intensive data transfer [8]. To deal with
realistic applications, the memory management task of Ma-
tisse assigns groups of scalars to memories instead of individ-
ual scalars. We call these non-overlapping groups of scalars
basic-groups (BG). This is done in such a way that for every
memory access, it is known at compile time which basic-
group is being accessed. The proposed pre-packing of �elds
of dynamic data structures works also with the basic-groups
and is executed before the storage bandwidth optimisation.

3.1 Problem definition and model
The way how the di�erent �elds of a data structure are for-
mated onto physical words signi�cantly a�ects the size of the
memories and the number of accesses needed to fetch/store
the data. The number of accesses and memory bit-width
directly a�ects the overall performance and power consump-
tion. This is crucial for both custom hardware and embed-
ded software targets.
Let us consider for illustration purposes the example shown
in Figure 1.a where the structure my type consists of two
�elds field 0 and field 1 with width 3 and 11 bits re-
spectively. Only two basic-groups can be identi�ed in this
example - the arrays corresponding to field 0 and field 1.
Software compilers would typically map the data structure
array in memory such a way that an instance of the data
structure is accessed by a pointer and its di�erent �elds are
accessed by successive o�sets (Figure 1.b). Similar solutions
in embedded software or hardware would be undesirable,

mostly because of the large bit waste due to bit-width mis-
matches and the impossibility of performing simultaneous
accesses to both �elds. Assigning each data-�eld to di�er-
ent basic-groups and allowing customised memory organisa-
tions (see Figure 1.c) would reduce the bit waste and allevi-
ate the speed requirements needed to meet the bandwidth
constraints by exploiting parallelism in the data transfer.
However, it would also increase the interconnect overhead,
the address calculation cost, and the energy required for ad-
dress decoding. An alternative similar to Case 1 could be
to decompose the data structure �elds into two independent
basic groups and map each of them onto the same memory
(Figure 1.d). Although, for this case the drawbacks of Case
2 remain, by combining cases 2 and 3 it would be possible
to make trade-o�s between bandwidth and bit waste dur-
ing the basic group to memory assignment phase. However,
more interesting trade-o�s can be enabled when assigning
two or more �elds of the same structure to the same basic-
group (Figure 1.e). The advantages are signi�cant reduction
in the number of memory accesses and a more uniform dis-
tribution of data bit width, hence resulting in less bit waste
during the subsequent basic-group to memory assignment
stage. The downside is that when the data �eld candidates
are not carefully selected, updating a single �eld requires
two accesses to avoid data corruption.

field_1 : 11;
field_0 : 3; int

{typedef struct

a) example

wasted

p ->

memo

 int

b) allocation by a compiler

Case 1:

field_0

field_1

c) separate
 memories

Case 2:

} my_type;

p->field_0 = 2;
// . . .

field_1

field_0

Case 3:

d) single memory

my_type memo[256], *p;

field_0

field_1

 single word
e) packed into a

Case 4:

Figure 1: Di�erent data format possibilities

An intuitive approach, based on the experiences of designers,
is rather simple in its nature - two similar accesses (read or
write) can be merged when: a) the same base address is
used; and b) the candidate �elds are accessed in a basic
block, indicating data transfer locality.
A brief description about analysis of dependency cases is
given below. A systematic analysis of dependencies and a
detailed description of how the cases are collected, are pre-
sented in [2].
A simpli�ed CDFG is used for dependency analysis since
only information relevant for the data-transfer is needed.
The only nodes of interest of the pruned graph are read
and write operations. All dependencies between any pair of
memory accesses (read or write) can be classi�ed as one of
the two main types - sequential or parallel dependency. The
types of dependencies are control, data and address depen-
dencies. The following well-motivated assumptions are used

in the analysis:
� accesses to the same basic-group are ignored;
� a single execution thread is assumed, i.e. all accesses can
be statically ordered on a relative time axis;
� only pairs of accesses to the same data structure and
depending on the same pointer (base address) are analyzed;
� only static dependencies are analysed to avoid the need
for pro�ling data (which may be misleading); and
� only access paths with length one are analysed since the
long dependency chains are covered by shorter ones.
Only two cases exists which are used to build compatibility
graph. The �rst one, read-read, covers relevant sequential
and parallel read dependencies; and the second one, write-
write, covers relevant parallel write dependencies.

if (p1->MSN2==bits(cell,48,55) || // r(MSN2)
 p1->MSN2s==bits(cell,48,55)) { // r(MSN2)
 ... = p1->TUC2 - ... ;
}

 p1->TUC2 = bits(cell,56,71); // w(TUC2)

}

if (...) { /******* OAM cells *******/

w(TUC2s)

r(MSN2)
r(MSN2s)

w(MSN2)
r(TUC2) r(TUC2s)

w(TUC2s)

w(MSN2s)

w(MSN2)

r(MSN2)

r(TUC2)

w(TUC2)

w(TUC2)

 p2->TUC2s = new_TUC2; // w(TUC2s)

// ...

Case Fields

TUC2-TUC2s

read-read

read-read

write-write

TUC2-MSN2

TUC2-MSN2s

TUC2s-MSN2

MSN2-MSN2s

1

2

1

1read-read

read-read

No.

write-write

write-write

write-write

1

TUC2-TUC2s 2

TUC2-MSN2 1

TUC2s-MSN2 1

MSN2-MSN2s 1

read-read

Dependency cases

Compatibility graph:
6 reads & 7 writes

if (new_TUC - p2->TUC2s == 128) { // r(TUC2s)

2 TUC2 : 16 2

p2->TUC2 = new_TUC2; // w(TUC2)

TUC2s : 16 21

new_TUC2 = p2->TUC2 + 1; // r(TUC2)

2 MSN2 : 8 2

1 MSN2s : 8 1

ni

wi,j

wi
r i

r i,j

}
 p1->TUC2s = bits(cell,56,71); // w(TUC2s)
 p1->MSN2 = bits(cell,48,55); // w(MSN2)

 p2->MSN2 = old_MSN2 + 1; // w(MSN2)
 p2->MSN2s = old_MSN2; // w(MSN2s)
 old_MSN2 = p2->MSN2; // r(MSN2)

Pruned CDFG

 /******* user cells ******/

1 2

1

1

1

1

1

1

2

writeread

Figure 2: Example of a compatibility graph

3.2 Compatibility graph construction
To illustrate how the dependency cases are collected and how
the corresponding compatibility graph is built, an example
consisting of a simpli�ed CDFG is shown in Figure 2. The
CDFG is a part of the Operation and Maintenance (OAM)
handler of an ATM switch [4]. The exploration results of
the full design are described in the results section. The data
structure consists of four �elds. `r()' and `w()' mark reading
and writing a �eld. Edges with circles denote control depen-
dencies in the CDFG. Column \No." in the table shows the
total number of corresponding dependency cases.
The compatibility graph (G=(N;E)) of basic-groups is built
based on the collected dependency cases. The nodes of the
graph, each node corresponding to a BG, are grouped into
clusters using a partitioning/clustering method commonly
referred as \hierarchical clustering" [3].
Every node, ni2N , of the compatibility graph has two weights
associated with it - one to represent writings (wi) and an-
other to represent readings (ri). The value of a weight is
equal to the number of corresponding accesses. For clarity,
the nodes of the compatibility graph in the �gure are placed
in such a way that their \read-sides" are directed to the
left. Every node is marked with its �eld name, bit-width
and with the number of read and write accesses.
Any relevant pair of memory accesses forms a weighted edge
in the graph. The edges, <ri;rj>2E or <wi;wj>2E, cor-
respond to dependency cases, i.e. read-read or write-write.

The weight of an edge, ri;j or wi;j , is equal to the number
of corresponding dependency cases. It should be noted that
ri�ri;j and wi�wi;j because the number of cases related to
two accesses can never be larger than the smallest of these
two accesses. Every edge is marked with its weight.

1

2MSN2 : 82

TUC2s : 32

1

MSN2s : 8

read write
TUC2 +

merging TUC2 & TUC2s:
5 reads & 5 writes.

11

2

2 2TUC2 +
TUC2s : 32

MSN2s : 16
MSN2 +

1

Compatibility graph after
2

3 2

22

read write

11
merging MSN2 & MSN2s:
5 reads & 4 writes.

Compatibility graph after

An extra read required
to load MSN2s field.

Figure 3: Clustering example

3.3 Clustering
The clustering algorithm considers pairs of objects (nodes)
and groups them according to their closeness. The two clos-
est objects are considered to be a single object in the next
iterations of the clustering. The algorithm stops when a
single cluster is generated and a hierarchical cluster tree has
been formed. The cost of the compatibility graph for the
memory �eld pre-packing is equal to the sum of weights of
nodes - the total number of accesses. The \closest pair" is
de�ned as the pair of nodes which gives the best improve-
ment of the cost function. A set of heuristic re-evaluation
rules of weights, described below, have been developed to
avoid rebuilding the CDFG and compatibility graph after
every clustering iteration.
Modi�cation rules: Let the nodes to be merged are ni

and nj , and the new node is nk. The weights of the node
nk and the edges connected to it have the following values:

� read-weight - rk = max(ri; rj)+(wi�wi;j)+(wj�wi;j) -
takes into account that all �elds are loaded anyway;
wi�wi;j and wj�wi;j take into account the number of
extra reads needed before writings;

� read-edge-weight - rk;l = max(ri;l; rj;l) - the new num-
ber of cases read-read;

� write-weight - wk = max(wi; wj) - the new number of
write accesses;

� write-edge-weight - wk;l = max(wi;l; wj;l) - the new
number of cases write-write.

Figure 3 demonstrates the clustering of the example graph
from Figure 2. It should be noted that merging �elds MSN2
and MSN2s has introduced an extra read to avoid corruption
of �eld MSN2 when writing MSN2s. At the same time the
total number of accesses is reduced.
Additionally, the total width of �elds in bits can be used as
an extra cost or as a constraint. The cost function can be
modi�ed to evaluate also the uniformity of the �eld widths.
Field splitting, another possibility to make the word width
uniform, can be performed using the same clustering prin-
ciples described above.

4. EXPLORATION RESULTS
Four subsets from real-life ATM cell processing applications
[4; 9; 8] have been used as test drivers for pre-packing. The
functionality of the drivers is dominated by intensive ma-
nipulation of dynamically allocated data structures. Explo-
ration results after the memory allocation and assignment
phase are shown in Table 1. \Critical path" is the number
of memory accesses in the critical path. Relative memory

Table 1: Results after memory allocation and assignment
Design Number of Number Crtical Number of Relative Relative

accesses of BG-s path memories size power

#1 without pre-packing 18 18 12 4 1.0 1.0
with pre-packing 6 4 4 4 0.798 0.397

#2 without pre-packing 85 44 50 8 1.0 1.0
with pre-packing #1 38 17 30 8 0.907 0.552

#3 without pre-packing 234 49 - - - -
intuitive packing 149 22 29 8 1.0 1.0
with pre-packing #1 156 19 34 7 1.011 0.787

#4 without pre-packing 219 23 - - - -
intuitive packing 76 16 - 10 1.0 1.0
with pre-packing #1 36 8 - 6 0.970 0.592
with pre-packing #2 35 7 - 6 0.970 0.586

Average 0.931 0.583

size and relative power consumption are measured using ac-
curate memory models against the solutions without pre-
packing (if available). The basic groups are counted after
pre-packing and the number of memories shows the number
of physical memories after the memory allocation phase.
Design #3 represents a network component of an ATM Seg-
ment Protocol Processor [8]. The �rst (intuitive) packing
alternative is based on manually packing data together to
greedily reduce the number of accesses without involving
any trade-o�. By formally exploring the search space, it is
possible to get another combination of �elds that increases
slightly the area size and the number of accesses but �nally
leads to a power improvement of more than 20% (pre-packing
#1). Design #4 illustrates the Operation and Maintenance
(OAM) handler of an ATM switch. The intuitive packing
case corresponds to a process partitioned description that is
synthesised using conventional high-level synthesis tools[4].
However, cases pre-packing #1 and pre-packing #2 corre-
sponds to the approaches illustrated in Figures 2 and 3 while
keeping the total number of memories constant.
For small size drivers (e.g., drivers #1 and #2), the proposed
methodology gives very similar results when compared to
the ones obtained without actual exploration (e.g., steered
by a greedy reduction in the number of accesses). However,
for larger ones (e.g., drivers #3 and #4) it clearly outper-
formed the intuitive approaches. This substantiates the ne-
cessity and validity of formalised techniques for data format
exploration. Some other points of interests, suggested by the
clustering, were explored for further optimisation, but the
�nal area/power �gures did not change much. Very small
di�erences in area and power consumption point out the
need for accurate estimates for �ner trade-o�s [11].

5. CONCLUSIONS
In this paper we have shown that for data dominated ap-
plications, exploring data format alternatives at the system
level is crucial to enable signi�cant reduction in all three
memory cost aspects: size, bandwidth and power. We pro-
pose a formalise approach to e�ciently explore the search
space available before the actual memory mapping stage.
This exploration results in signi�cant reduction in the num-
ber of accessed bits. We have validated our techniques using
several real-life ATM cell processing applications where we
have obtained signi�cant reductions in memory size (up to
20%), power (up to a 60%) and bandwidth.

6. ACKNOWLEDGEMENTS
We gratefully acknowledge the discussions with our colleagues
at IMEC especially to Arnout Vandecappelle and Sven Wuy-
tack and at University of Queensland to Adam Postula.

7. REFERENCES
[1] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa,

L. Nachtergaele, A. Vandecappelle, \Custom Memory
Management Methodology { Exploration of Memory
Organisation for Embedded Multimedia System De-
sign", Kluwer Academic Publishers, 1998.

[2] P. Ellervee, M. Miranda, F. Catthoor, A. Hemani,
\Exploiting Data Transfer Locality in Memory Map-
ping", Proc. 25th Euromicro Conf., pp. 14-21, Sept.
1999.

[3] D. Gajski, N. Dutt, A. Wu, \High-level synthesis: in-
troduction to chip and system design", Kluwer Aca-
demic Publishers, 1992.

[4] A. Hemani, B. Svantesson, P. Ellervee, A. Postula, J.
�Oberg, A. Jantsch, H. Tenhunen, \High-Level Synthe-
sis of Control and Memory Intensive Communications
System", Proc. 8th Annual IEEE Intnl. ASIC Confer-
ence and Exhibit, pp. 185-191, Sept. 1995.

[5] F. J. Kurdahi, A. C. Parker, \REAL: a program for
register allocation", Proc. 24th ACM/IEEE Design
Automation Conf., pp. 210-215, June 1987.

[6] L. Ramachandran, D. Gajski, V. Chaiyakul, \An
algorithm for array variable clustering", Proc. 5th
ACM/IEEE Europ. Design and Test Conf., pp. 262-
266, Feb. 1994.

[7] H. Schmit, D. Thomas, \Synthesis of Application-
Speci�c Memory Designs", IEEE Trans. on VLSI Sys-
tems, Vol.5, No.1, pp. 101-111, Mar. 1997.

[8] J. L. da Silva Jr., C. Ykman-Couvreur, M. Miranda,
K. Croes, S. Wuytack, G. de Jong, F. Catthoor, D.
Verkest, P. Six, H. De Man, \E�cient System Explo-
ration and Synthesis of Applications with Dynamic
Data Storage and Intensive Data Transfer", Proc.
35th ACM/IEEE Design Automation Conf., pp. 76-
81, June 1998.

[9] P. Slock, S. Wuytack, F. Catthoor, G. de Jong,
\Fast and extensive system-level memory exploration
for ATM applications", Proc. 10th ACM/IEEE Intnl.
Symp. on System-Level Synthesis, pp. 74-81, Sep.
1997.

[10] J. Van Meerbergen, P. Lippens, W. Verhaegh, A.
van der Werf, \PHIDEO: high-level synthesis for high
throughput applications", Journal of VLSI signal pro-
cessing, Vol.9, No.1/2, Kluwer, pp. 89-104, Jan. 1995.

[11] A. Vandecappelle, M. Miranda, E. Brockmeyer, F.
Catthoor, D. Verkest, \Global Multimedia SystemDe-
sign Exploration using Accurate Memory Organiza-
tion Feedback", Proc. 36th ACM/IEEE Design Au-
tomation Conf., pp. 327-332, June 1999.

[12] I. Verbauwhede, F. Catthoor, J. Vandewalle, H. De
Man, \In-place memory management of algebraic
algorithms on application-speci�c IC's", Journal of
VLSI signal processing, Vol.3, Kluwer, pp. 193-200,
1991.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

