
Hardware-Software Co-Design of Embedded
Reconfigurable Architectures

Yanbing Li, Tim Callahan*, Ervan Darnell**, Randolph Harr, Uday Kurkure, Jon Stockwood

 Synopsys Inc., 700 East Middlefield Rd. Mountain View, CA 94043
* Department of EECS, Univ. of California, Berkeley, CA 94720

** Silicon Spice, 415 East Middlefield Rd., Mountain View, CA 94043

Abstract
In this paper we describe a new hardware/software partitioning
approach for embedded reconfigurable architectures consisting of
a general-purpose processor (CPU), a dynamically reconfigurable
datapath (e.g. an FPGA), and a memory hierarchy. We have
developed a framework called Nimble that automatically compiles
system-level applications specified in C to executables on the
target platform. A key component of this framework is a
hardware/software partitioning algorithm that performs fine-
grained partitioning (at loop and basic-block levels) of an
application to execute on the combined CPU and datapath. The
partitioning algorithm optimizes the global application execution
time, including the software and hardware execution times,
communication time and datapath reconfiguration time.
Experimental results on real applications show that our algorithm
is effective in rapidly finding close to optimal solutions.

1. Introduction
Reconfigurable computing using FPGAs is emerging as an
alternative to conventional ASICs and general-purpose
processors[1]. Reconfigurable architectures can be post-
fabrication customized for a wide class of applications, including
multi-media, communications, networking, graphics and
cryptography, to achieve significantly higher performance over
general or even special-purpose processor alternatives (such as
DSPs). For convenience, we will use the term FPGA to refer to
any type of reconfigurable datapath, whether implemented using
FPGAs or other forms of reconfigurable logic.

Recent developments in reconfigurable architectures have
demonstrated that a tightly coupled reconfigurable co-processor
with a general purpose CPU can achieve significant speedup on a
general class of applications[6]. An abstract model of this new
class of architecture is shown in Figure 1. The architecture also
contains memory hierarchy and communication channels that
connect the CPU, datapath, and memory. The CPU can be used to
implement control-intensive functions and system I/O, leaving the
datapath to accelerate computation-intensive parts of an
application. This class of architecture defines a common, reusable

platform for a wide range of applications, and potentially provides
a better transistor utilization than a single CPU or combined CPU
and ASIC of comparable silicon area.

To exploit the potential performance gain provided by this class of
architectures, we have developed a retargetable framework named
Nimble that automatically compiles system-level applications
specified in C to executables running on these platforms. At the
core of the Nimble Compiler is a hardware/software
partitioning algorithm that partitions applications onto the CPU
and the datapath. As opposed to many co-synthesis algorithms
that work at moderate to coarse granularities (such as task-level
and function level) and extract task-level parallelism [2][7][10],
our algorithm performs fine grain partitioning at the loop and
basic block levels to exploit potential instruction-level
parallelism (ILP) to significantly accelerate important loops in
the FPGA.

There have been considerable research efforts in co-design of
conventional embedded hardware/software architectures
containing ASICs, which we will briefly review in Section 2.
However, the partitioning problem for architectures containing
reconfigurable FPGAs has a different requirement: it demands a
two-dimensional partitioning strategy, in both spatial and
temporal domains, while the conventional partitioning involves
only spatial partitioning. Here, spatial partitioning refers to
physical implementation of different functionality within different
areas of the hardware resource. For dynamically reconfigurable
architectures, besides spatial partitioning, the partitioning
algorithm needs to perform temporal partitioning, meaning that
the FPGA can be reconfigured at various phases of the program
execution to implement different functionality.

In this paper, we focus on the temporal partitioning aspect. The
input to the algorithm is a set of candidate loops for hardware,
termed kernels, that have been extracted from the source
application. Each loop has a software version and one or more
hardware versions that represent different delay and area

Figure 1. The target architecture.

Reconfigurable
Datapath

(e.g. FPGA)

Embedded CPU

On chip
SRAM /
Caches

Permission to make digital/hardcopy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

tradeoffs. The partitioning algorithm selects which loops to
implement in the FPGA, and which hardware version of each loop
should be used to achieve the highest application-level
performance. Key issues with this approach are:

• The partitioning algorithm must effectively capture the
dynamic reconfiguration costs. This is difficult as the number
of reconfigurations for one kernel depends on which other
kernels may go into the hardware.

• The algorithm must integrate compiler optimizations and
hardware design space exploration into the
hardware/software partitioning process.

• Partitioning must be guided by various forms of profiling
information to accurately assess the tradeoffs between
hardware and software implementations.

The rest of the paper is organized as follows. Section 2 reviews
related work. In Section 3, we first present an overall picture of
the Nimble Compiler framework, of which our partitioning
algorithm is a component, and then describe the formulation of
the hardware/software partitioning problem itself. Section 4
explains the details of the partitioning algorithm. Section 5
presents the experimental results on several benchmarks.

2. Previous Work
Related work includes studies from general areas of
hardware/software co-design and reconfigurable computing.

Earlier work in hardware-software co-design mainly focused on
hardware-software partitioning. Most of the partitioning
algorithms model the system based on an architectural template of
a CPU (software) and an ASIC (hardware)[4] [5][7][11]. Recent
work in co-synthesis has used a more generalized model
consisting of heterogeneous multiprocessors with various
communication topologies [2][9][10]. Although some of the
above techniques use highly abstract architecture models that
might be retargetable to reconfigurable architectures, none of
them can represent the special characteristics of the platform such
as the reconfiguration overhead or possibility of both spatial and
temporal partitioning.

Some recent efforts in reconfigurable computing address
automatic compilation and partitioning to reconfigurable
architectures. Callahan et al. [1] developed a compiler for the
Berkeley GARP architecture[6] which compiles source
applications in C to a CPU and FPGA. They use a feasibility-
driven approach that does not take performance into account
during the hardware/software partitioning process. Gokhale et al.
worked on compiling C onto reconfigurable processors but did
not address the hardware-software partitioning problem
directly[12].

Dick and Jha proposed the CORDS algorithm to synthesize real-
time tasks onto distributed systems containing dynamically
reconfigurable FPGAs [3]. CORDS uses a coarse, task-level input
represented by acyclic graphs and exploits task-level parallelism.
Kaul et al. [8] recently proposed an ILP based algorithm for
temporal partitioning of reconfigurable designs that also starts
with acyclic task graph specifications. The algorithm finds optimal
solutions but has a very high computation cost. Its acyclic task
inputs only allow a single configuration of a task and therefore use
a simple configuration cost model. Both works assume a single
implementation of a task in the hardware and do not explore
compiler optimizations and the hardware design space to evaluate
tradeoffs between different implementations of the same task.

3. Problem Formulation
In this section, we first give an overview of the Nimble Compiler
environment. This provides a context for the problem formulation
and cost function formulation of our hardware/software
partitioning algorithm, which is the focus of this paper.

3.1 Nimble Compilation Overview
The Nimble Compiler environment depicted in Figure 2 focuses
on extracting hardware kernels from the source application to
accelerate on the FPGA. It is originally based on an early version
of the GARP compiler[1].

The Nimble Compiler is retargetable and can be parameterized
to the target platform described by the Architecture Description
Language (ADL). ADL defines the components and parameters of
the system such as the type of processor being used,
characteristics of the reconfigurable array, memory hierarchy, etc.

Our studies show that loops represent a significant portion of
application execution time, and yet are usually compact enough to
implement in modest hardware resources. Therefore, the compiler
focuses on finding the most profitable loops to extract out as
hardware kernels. At the front end of the Nimble flow, the C
program is preprocessed to extract the loop-level representations
and parameters needed by the partitioning algorithm.
Optimizations are applied to concentrate much of the execution
time in as few loops as possible. A preprocessing step provides
the partitioning algorithm a set of hardware candidates (kernels)
to select from. Preprocessing not only extracts loops as kernels,
but it also applies various hardware-oriented compiler
transformations to generate multiple optimized versions of the
same loop. These transformations are important because
transformed code has different performance and area tradeoffs
when implemented in hardware. For example, an unrolled loop
requires more area in the FPGA, but it may accelerate the
execution by exposing increased instruction-level parallelism.
Potentially useful transformations include loop unrolling, fusion,
pipelining, procedure inlining, and branch trimming, just to name
a few. Profiling performed on the application and each extracted
kernel to estimate the software performance, memory bandwidth
need, trace behavior etc. A quick synthesis is done to estimate the
delay and area of the hardware implementations.

Preprocessing
4Kernel extraction
4Compiler transformations
4Performance profiling

HW / SW partitioningHW / SW partitioning

Datapath synthesis

HW Kernels as DFGs

C code

FPGA bit stream C code to
run on CPU

Kernels as CFGs
labeled with profiling info

Architecture
Description
Language

(ADL)

Figure 2. The Nimble Compiler flow: an overview.

The extracted kernels, internally represented as basic block
control flow graphs (CFGs), are fed to the hardware/software
partitioner which decides which kernels will go into the hardware.
The selected hardware kernels are then input into our backend
datapath synthesis tool to generate the corresponding FPGA bit
streams, which are then used to configure the FPGA for a kernel’s
execution at runtime.

3.2 Hardware/software Partitioning Problem
Formulation
We now define the hardware/software partitioning problem. The
input to the partitioning step comprises two parts: the target
architecture, and the set of loops/kernels extracted from the source
application. The algorithm uses a fixed FPGA total size constraint
as described in ADL, along with other parameters, such as
configuration times and memory bandwidth.

Representing possible hardware candidates is a set of loops L,
with each loop Li having multiple kernels Kj, which include an
original software version and several hardware versions generated
from compiler transformed code. Figure 3 shows an example with
two versions for one loop. Figure 3(a) is the original CFG
implemented totally in hardware. Figure 3(b) shows a transformed
version after unrolling the loop once and trimming off an
infrequently executed branch (marked A) by keeping it in
software. Con, En, and Ex are overheads incurred by putting a
kernel in hardware and they refer to configuration cost, hardware
entry and exit costs, respectively.

The kernels and the basic blocks are labeled with profiling
information obtained in the preprocessing step of the Nimble flow
(Figure 2). Profiling data includes the total software execution
time for each kernel, average time for each basic block and
execution frequencies of basic blocks. Hardware implementation
data includes the hardware area and delay for each kernel. Details
of our profiling approach is beyond the scope of this paper and are
not discussed further here.

As pointed out earlier, we aim to exploit ILP in loops instead of
task-level parallelism. Therefore, the compiler currently only
supports mutually exclusive execution of the CPU and FPGA.
This simplifies the partitioner since it does not have to consider
multiple loops fired off simultaneously. Loops are executed
purely sequentially according to their original C specification even
if pulled off onto the FPGA for acceleration.

The goal of the partitioning algorithm is to select whether to put
each loop into software or hardware, and if a loop is selected as
hardware, which version to use, such that the execution time for
the whole application is minimized. Note that while the
partitioning is generally done at loop-level, the partitioner can
make basic-block level decisions by putting only a subset of the
basic blocks of a kernel CFG into the hardware.

3.3 Global Cost Function
As the algorithm tries to maximize the overall application
performance, it uses a global cost function that incorporates the
hardware and software execution times, hardware kernel entry and
exit delay, and hardware reconfiguration time. Equation 1 shows
the global cost of all loops Tall_loops, which is the sum of time spent
in each individual loop T(Li). T(Li) denotes the total time spent in
loop Li, including all its iterations and entries.

T T Lall loops i

i L

_ ()=
∈
∑ (1)

T L T L Iter Li sw i i() () ()= • , if Li is in software. (2)

)(

)()(

)()(

)()(

)()()(

,

,,2

,,2

,

,,

jiconfig

jijiswhw

jijihwsw

ijisw

ijihwji

KLT

KLExKLT

KLEnKLT

LIterKLT

LIterKLTKLT

+
•+
•+

•+
•=

if kernel Kj of Li is in hardware (3)

T L K N L T L K

N L T L K

config i j miss i miss i j

hit i hit i j

() () ()

() ()

, ,

,

= •
•+

 (4)

As shown in Equation 2, if Li is selected to be implemented in
software only, its execution time can be characterized as the
average time per iteration Tsw(Li) times its number of iterations
Iter(Li). The computation of hardware time is more complex.
Suppose we put kernel version Kj of loop Li in hardware. The
hardware loop time shown in Equation 3 is composed of several
terms:

1. Execution time spent in the hardware itself. Similar to
software time, it is the average hardware time per iteration
Thw(Li, Kj) times the number of iterations Iter(Li).

2. Execution time spent in the software if kernel Kj only
implements a portion of the loop in the FPGA. (See
Figure3(b) for an example of a partial loop in hardware.)

3. Communication time between hardware and software,
which involves the copying of live variables to and from the
FPGA. Since variable transfer only happens when the
program enters or exits from hardware, it is obtained by
multiplying the cost per transfer (Thw2sw or Tsw2hw) and the
number of hardware entries En(Li, Kj) and exits Ex(Li, Ki),
respectively.

4. Configuration time of the loop on the FPGA. Unlike the
previous terms which only depend on decisions made about
the current loop Li, configuration time depends on decisions
made for other loops that interleave with Li during
application execution. Some architectures (such as the
GARP[6]) utilize a configuration cache to store recent
configurations, so that they can be quickly reconfigured. The
configuration cost for the cache miss (Tmiss (Li, Kj)) and hit
(Thit (Li, Kj)) can be dramatically different, therefore, they
must be computed separately as shown in Equation 4. The
numbers of configuration cache hits and misses (Nhit (Li) and

Figure 3. Multiple hardware kernels for one loop.

Con

En

Ex

Configuration

HW entry, live
variables
copy to HW

HW exit, live
variables
copy to SW

Ex1

Ex2

A

Con

En

Ex

A1

A2

Ex3

ConEn

(a) (b)

Basic block

Continue
in SW

Continue
in SW

HW

HW

Nmiss (Li)) for a loop depend what hardware/software
partitioning decisions are made for all loops.

If configuration time is not included, optimizing execution time
can be reduced to locally selecting the fastest implementation of
each loop that satisfies the FPGA size constraint. However,
because of the complexity of computing configuration cost, the
partitioning problem is NP-complete, and involves evaluating
loops in a global cost function to find the optimal solution.

4. Algorithm Flow
Since the total number of kernels can be large for many
applications, we need to deploy a heuristic algorithm to efficiently
solve the hardware/software partitioning problem. The two key
heuristics that we have applied are:

1. Reducing the number of loops and kernels that the algorithm
needs to analyze, by focusing solely on “interesting” loops
that contribute significantly to the application time.

2. For the remaining loops, partitioning them into small clusters
and performing optimal selection in each loop cluster.

Based on the above heuristics, the partitioning algorithm consists
of the following main steps.

1. Loop entry trace profiling (LEP). LEP generates a complete
trace that records all loops entries, such that the
configuration cost for all loops can be inferred.

2. Interesting loop detection (ILD). ILD screens all hardware
candidate loops and only selects a subset of “interesting”
loops.

3. Intra-loop kernel selection. This selects the best hardware
kernel among the multiple versions of a loop
implementation.

4. Inter-loop selection. Selects among loops and decides which
go into hardware and software, respectively.

Steps 2 and 3 apply the first heuristic, in an attempt to cut down
the number of loops and kernels to be considered. Step 4 applies
the second heuristic and is the most critical step of the algorithm.
The rest of this section describes these steps in detail.

4.1 Loop Entry Trace Profiling and
Compression
When a hardware loop is entered for the first time, it needs to be
configured onto the FPGA. If it is entered again before being
overwritten by another loop, it does not require reconfiguration.
To compute configuration cost, we need to know the exact
runtime sequence of all hardware candidate loops (i.g. the entries
to these loops). Loop entry trace profiling (LEP) identifies and
instruments loop entries to generate a trace. The trace can
potentially be huge, e.g. encoding four frames using standard
MPEG-2 generates ~200M bytes of loop entry trace. LEP
incorporates an online compression scheme to encode the trace.
Loop trace compression not only saves storage space, but more
importantly, the compact representation allows fast traversing of
the trace in later steps of the algorithm. For the MPEG-2 encoding
example, the trace size is reduced to several Kbytes after
compression.

4.2 Interesting Loop Detection
While the goal of the partitioning algorithm is to select loops to
implement in the FPGA to achieve maximum overall acceleration,
Amdahl’s law implies that we should focus on loops that
represent a large portion of the application total time. We have
implemented an interesting loop detector (ILD), which reports the
percentage contribute a loop makes to total application time.

Table 1 shows the ILD results for several benchmarks. The third
column of the table shows the number of loops that contribute to
more than 1% of the total program execution time. The fourth
column shows the total contribution of these >1% loops. Table 1
suggests that, even though the total number of loops in an
application may be large, only a small number of these loops (2—
15 in the examples) contribute to most of the applications’
execution time (90+%). Therefore, if we focus on these few
loops, we can expect the computation cost for the algorithm to
reduce significantly, yet still achieve comparable quality of results
because we are accelerating most of the significant loops of the
program. Furthermore, even if all loops can be accelerated by the
FPGA, any speedup for insignificant loops is usually negated by
the configuration overhead.

4.3 Intra-Loop Selection
Since each hardware candidate loop can have multiple kernels
generated by compiler transformations, we apply intra-loop
selection, to evaluate these multiple hardware versions, and select
the best one that fits within the FPGA size constraint. This further
cuts down the number of kernels to be considered in the next
step—inter-loop selection. The decision of whether to put a loop
in hardware or software can not be made until the inter-loop
selection step. Therefore, along with the best hardware version,
we also keep the original software version for further evaluation
in Step 4.

The criterion for intra-loop selection is the total loop execution
time, not including configuration time. This is because the
number of configurations for a loop is not available until we know
the hardware/software partitioning result for all loops.

Figure 4 illustrates intra-loop selection. A—D, P and Q represents
several points in the hardware design space for a loop. Kernels P
and Q do not satisfy the hardware size constraint. We can trim off
infrequently executed branches in P and Q by keeping these
branches in software to obtain the more compact implementations

Total %

(>1%)

99%

92%

99%

98%

85%

99%

 Benchmarks

Wavelet image compression

EPIC encoding

UNEPIC decoding

Media Bench ADPCM

MPEG-2 encoder

Skipjack encryption

loops

25

132

62

3

165

6

loops

>1%

13

13

15

3

14

2

Table 1. Interesing loop detection for benchmarks.

Figure 4. Multiple hardware versions of a loop, in
the area and delay design space.

FPGA area

Delay

FPGA area
available

0

A

B

C Q*
Q

D P*

P

Kernel that is too big

Kernel fits in FPGA

selected

P* and Q*. For all kernels within the area limit, the fastest one (in
this case, kernel Q*) is selected.

4.4 Inter-Loop Selection
Inter-loop selection is the most critical step of the algorithm, as
the final partitioning decision has to be based on the global cost
function described in Section 3.3. Selections in previous steps
eliminate loops/kernels based on execution time metrics for each
individual loop, while in this step, we analyze the interaction
among all loops, and optimize execution time and configuration
time.

Even though the number of loops (say n) left after steps 1 and 2
may not be very large, the number of configuration possibilities is
exponential (2n). We introduce a clustering technique to partition
loops into small clusters to allow us to solve the partitioning
problem optimally for each cluster.

4.4.1 Hierarchical Loop Clustering Based on the
Loop-Procedure Hierarchy Graph
Clustering of loops is based on the loop-procedure hierarchy
graph (LPHG) which represents the procedure call and loop nest
relations in the application. Figure 5 shows the LPHG for the
wavelet image compression benchmark. A square node indicates a
procedure definition, and a circular node indicates a loop. Edges
into a procedure node represent calling instances to that
procedure. An edge from a procedure to a loop indicates the loop
is defined within the procedure. An edge from a loop a to another
loop b indicates that b is nested inside loop a. There may be
multiple incoming edges for a procedure, indicating multiple
calling instances of the same procedure. Recursive procedures
create cycles in the graph.

An LPHG captures loops and their relative positions in the
application and therefore provides a navigation tool for the
partitioning algorithm to traverse the loops. We define the shortest
distance from a node to the root node (main) as the level of that
node. We can make the following observations:

• If two loops have different first-level predecessors, they
appear in a disjoint part of the LEP trace and do not compete
for the FPGA configuration. For example, in Figure 5, all
entries of loop FW3 appear strictly before those of RLE2.
These loops can be partitioned into different clusters.

• Conversely, loops sharing common loop or procedure
predecessors tend to compete with each other, and therefore
should be placed in the same cluster. In the example, entries
of FW3 and FW4 interleave and hence compete for the
FPGA resource.

Based on the above observations, we have developed a
hierarchical loop clustering algorithm based on the LPHG.We
predefine a size limit for the loop clusters to ensure that the
clusters are small enough for feasible optimal selection. The loop
clustering algorithm traverses the loop-procedure hierarchy graph
in a top-down fashion and recursively clusters loops until the sizes
of all clusters are within the pre-defined limit. The algorithm
works as follows.

1. Starting from the first level of the loop-procedure hierarchy,
loops with a common predecessor at this level are clustered
together. In Figure 5, the unshaded loop nodes are discarded
after ILD. Clusters {R4}, {FW2, FW3, FW4, FW5, FW6,
FW7}, {Q3, Q6}, {RLE2, RLE3}, and {E4, E3} are
generated based on their level 1 predecessors.

2. If the size of any cluster exceeds the cluster size limit, we
need to traverse down a level in the hierarchy and refine the
clusters by grouping loops again with common predecessors

at the new level. For example, the FW loop cluster has six
loops. If we set the size limit at 5, we need to go down a
level, to level 2, and recompute the clusters. All the other
clusters are within the size limit and need no further
refinement.

3. Repeat step 2 until all loop clusters satisfy the cluster size
limit. In the example, at level 2, the FW loops still can not
be resolved into smaller clusters and it is necessary to go
down to level 3. The clustering result is shown in the figure,
{FW2, FW3, FW4} and {FW5, FW6, FW7}.

4.4.2 Optimal Selection in Loop Clusters
After the loops have been partitioned into smaller clusters, our
algorithm performs optimal hardware/software partitioning for
each individual loop cluster. The approach adopted is to
exhaustively search the solution space of all partitioning
possibilities, evaluate each of these possibilities, and select the
one with the best overall performance for all loops in the cluster.

To evaluate the overall performance, we must compute the
number of reconfigurations needed in each partitioning
possibility. This is achieved by walking through the compressed
loop entry trace. The state of the configuration cache (if there is
one) is taken into account to estimate the number of hits and
misses.

5. Experimental Results
The hardware/software partitioning algorithm has been applied on
real benchmarks, as part of the Nimble compilation flow. The
Nimble flow takes off-the-shelf C code and compiles it onto a
target architecture of a combined CPU and FPGA. The flow is
fully implemented and completely automated.

In order to show the result quality and computation efficiency of
our partitioning algorithm, we compare it here with a local
optimization algorithm that selects loops by evaluating individual
loop cost, instead of the global cost function used by our
algorithm. The local optimization uses a greedy approach: if a
loop shows acceleration in the FPGA, assuming it is configured
once, then it is put in hardware.

We also compare the result quality of our algorithm with an
absolute performance upper bound. The upper bound is obtained
via the following method: For each loop (not limited to ILD
loops), we use the performance of its best hardware kernel,
regardless of what size it is, to estimate its hardware execution

Figure 5. Loop-procedure hierarchy graph for wavelet
image compression benchmark.

Main

I R FW Q RLE E W

I1 R1 R2 R3 R4 FW1 Q1 RLE1 E1 E4

FW2 FW5 RLE2 E2

FW3 FW4 FW6 FW7

BQ

Q2 Q4 Q5 RLE3 E3

Q3 Q6

I
R
FW
Q
BQ
RLE
E
W

I1

R

loop

procedure

loop cluster

initialization
read image
forward wavelet
quantization
blockquantization
run-length encoding
entropy encoding
write compressed file

level

1

2

3

4

5

time, and we make the idealizing assumption that only one
configuration is needed. The lesser of the software version time
and the hardware version time (combined hardware execution
time and configuration time) is used as the estimated time for that
loop. This estimate provides an absolute lower bound on the
execution time for that loop. This bound is optimistic: even an
optimal algorithm may not always achieve this performance upper
bound because of the single configuration assumption used in
obtaining the bound.

The benchmarks we have used include the wavelet image
compression algorithm, an MPEG2 encoder and decoder from the
MPEG Simulation Group, the MediaBench ADPCM, the Unepic
benchmark from MIT, and the Skipjack encryption algorithm,
among other smaller test programs. All are off-the-shelf C code
and compiler directly using the Nimble framework.

We experimented with the partitioning algorithm targeting two
different platforms: GARP[6] and the ACEII card[13]. GARP is a
single-chip architecture with a MIPS 4000 CPU, a reconfigurable
array of 21 by 32 CLBs, on-chip data and instruction caches, and
a 4-level configuration cache. ACEII is a board-level platform
developed by TSI Telsys. It consists of a uSparc CPU and Xilinx
4085 FPGAs. There is no configuration cache on the ACEII.

Table 2 shows the experimental results of our partitioning
algorithm on the GARP architecture. The table includes the
performance of the partitioned design and the CPU time spent in
the partitioning algorithm. These results are compared to that of
the local-optimal partitioning algorithm, and the absolute
performance upper bound. The results indicate that while our
algorithm consumes comparable CPU time to that of a greedy
local-optimal algorithm, it generates close-to-optimal
hardware/software partitions in all the benchmarks shown.

6. Conclusions
We have presented a hardware-software partitioning algorithm
that targets dynamically reconfigurable architectures consisting of
a single CPU and an FPGA co-processor. The algorithm applies
heuristics to achieve high computation efficiency yet finds optimal
or near optimal solution in most cases. Using the algorithm in a
fully automated framework on real off-the-shelf benchmarks
demonstrate its effectiveness.

We plan to extend our work in the following directions: 1) instead
of allowing only one loop in hardware at any time, we consider
introducing multiple kernels into the same hardware configuration
to improve hardware utilization; 2) improve the algorithm by
more closely coupling compiler optimizations with the
hardware/software partitioning, e.g. the partitioning algorithm
should provide directives on what are the best optimizations to
perform.

7. Acknowledgement
This work is partly sponsored by DARPA/AFRL under grant
F33615-98-2-1317. The authors would like to thank our
collaborators at Lockheed Martin ATL and UC Berkeley.

8. References
[1] T. J. Callahan and J. Wawrzynek, “Instruction level

parallelism for reconfigurable computing,” Proc. 8th Intl.
Workshop on Field-Programmable Logic and Applications,
Sept. 1998.

[2] B. Dave, G. Lakshminarayana, and N. Jha, “COSYN:
hardware-software co-synthesis of embedded systems,”
Proc. 34th Design Automation Conference, 1997.

[3] R. P. Dick and N. K. Jha, “Cords: hardware-software co-
synthesis of reconfigurable real-time distributed embedded
systems,” Proc. Intl. Conference on Computer-Aided Design,
1998.

[4] R. Ernst, J. Henkel, and T. Benner, “ Hardware-software
cosynthesis for microcontrollers,” IEEE Design and Test of
Computers, vol.10, no.4, pp.64-75, Dec. 1993.

[5] R. Gupta and G. De Micheli, “Hardware-software
cosynthesis for digital systems,” IEEE Design and Test of
Computers, vol.10, no.3, pp.29-41, Sept. 1993.

[6] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor
with a reconfigurable coprocessor,” Proc. FCCM ’97, 1997.

[7] A. Kalavade and E. A. Lee, “A global criticality/local phase
driven algorithm for the constrained hardware/software
partitioning problem,” Proc. International Workshop on
Hardware-software Co-design, pp. 42-48, 1994.

[8] M. Kaul et al., “An automated temporal partitioning and loop
fission approach for FPGA based reconfigurable synthesis of
DSP applications,” Proc. 36th Design Automation
Conference, 1999.

[9] Y. Li and W. Wolf, “Hardware/software co-synthesis with
memory hierarchies,” IEEE Transactions on CAD, vol. 18,
no.10, pp.1405-1417, Oct. 1999.

[10] S. Prakash and A. Parker, “SOS: synthesis of application-
specific heterogeneous multiprocessor systems,” Journal of
Parallel and Distributed Computing, vol.16, pp.338-351,
1992.

[11] W. Wolf. “Hardware/software co-design of embedded
systems,” Proceedings of the IEEE, July 1994.

[12] M. B. Gokhale and A. Marks. “Automatic synthesis of
parallel programs targeted to dynamically reconfigurable
logic arrays,” Proc. FPL, 1995.

[13] TSI Telsys, “ACE2 Card Manual”, 1998.

Benchmarks #loops
Performance
upper-bound

(cycles)

Our algorithm

CPU time
(sec)

Result performance
(cycles)

Local-optimal algorithm

CPU time
(sec)

Result performance
(cycles)

Wavelet compression

MPEG-2 encoder

MediaBench ADPCM

Unepic decoding

Skipjack encryption

25

165

16

62

6

0.17

1.92

0.08

1.53

0.04

 1.74e+5

7.47e+8

7.09e+4

8.57e+6

8.00e+4

0.05

0.49

0.04

0.28

0.01

1.74e+5

7.17e+8

7.00e+4

8.42e+6

8.00e+4

5.10e+5

1.58e+9

8.00e+4

1.47e+7

1.10e+5

Table 2. Results of our algorithm compared to a local-optimal algorithm and the absolute performance upper bound.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

