
Automatic Formal Verification of DSP Software �

David W. Currie
†

Mentor Graphics
Billerica, MA

david currie@mentorg.com

Alan J. Hu
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada

ajh@cs.ubc.ca

Sreeranga Rajan

Masahiro Fujita
‡

Fujitsu Laboratories of
America

Sunnyvale, CA
sree@cad.fla.fujitsu.com

fujita@cad.fla.fujitsu.com

ABSTRACT
This paper describes a novel formal verification approach for equiv-
alence checking of small, assembly-language routines for digital
signal processors (DSP). By combining control-flow analysis, sym-
bolic simulation, automatic decision procedures, and some domain-
specific optimizations, we have built an automatic verification tool
that compares structurally similar DSP assembly language routines.
We tested our tool on code samples taken from a real application
program and discovered several previously unknown bugs automat-
ically. Runtime and memory requirements were reasonable on all
examples. Our approach should generalize easily for multiple DSP
architectures, eventually allowing comparison of code for two dif-
ferent DSPs (e.g., to verify a port from one DSP to another) and
handling more complex DSPs (e.g. statically-scheduled, VLIW).

1. INTRODUCTION
Software for digital signal processors (DSP) is a particularly
promising area for automatic formal verification:

� DSPs have become ubiquitous as countless formerly analog
application domains have become digital (e.g., audio, video,
telecommunications, industrial control, etc.) and countless
new applications emerge. The commercial importance of
digital signal processing is enormous.

� Unlike software for desktop and larger computers, hand-
written assembly-language programming is still common for
DSPs. Even when compilers are used, the generated code
is often hand-tuned to meet stringent performance and code-
size requirements. In many respects, the situation resembles

�This work was supported by grants from Fujitsu Laboratories
of America and the National Science and Engineering Research
Council of Canada.
†Work was performed while at the University of British Columbia.
‡Current affiliation is the Department of Electrical Engineering,
University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan.

synthesizing hardware, where post-synthesis modifications
and optimizations are common, resulting in a need for equiv-
alence checking.

� Programming DSPs is difficult for both humans and com-
pilers. Typical DSP architectures are highly non-orthogonal,
with specialized instructions performing multiple operations
in parallel, special purpose registers, and complicated ad-
dressing modes. Some recent DSPs even lack pipeline in-
terlocks, forcing the programmer to ensure that the code is
scheduled properly. Exploiting the specialized features of
the DSP is imperative to attain maximum performance.

Even a very limited tool to check the correctness of small, localized
code optimizations would be very useful in practice.

In this paper, we describe such a tool and the underlying formal
verification algorithm. The verification method is based on a com-
bination of control flow analysis, symbolic simulation, and co-
operating decision procedures for memory, linear arithmetic, and
uninterpreted functions with equality. To produce useful results,
these techniques are augmented with some DSP-specific optimiza-
tions and various simplifying assumptions. As in combinational
equivalence checking, the problem is to compare two similar de-
signs (as would occur if checking small optimizations done to com-
piled/synthesized output), so we use the similarity to simplify the
verification problem. As in model checking, the goal is to provide
powerful, practically useful debugging support; the tool cannot cer-
tify correctness.

We have built a prototype implementation of the tool, targeting the
assembly language of the Fujitsu Elixir, a 16-bit fixed-point DSP
primarily used in cellular telephones. We chose this DSP as our
target because we were able to obtain assembly-language routines
for it taken from a real application. Testing the tool on these rou-
tines has demonstrated the effectiveness of our new method.

2. BACKGROUND
2.1 Digital Signal Processors
Obviously, a full treatment of digital signal processors is beyond
the scope of this paper. Many references are available, and data
books on specific DSPs are easily obtained from their manufactur-
ers.

A digital signal processor is essentially a microprocessor that has
been designed specifically to execute typical digital signal process-
ing algorithms very efficiently. Common operations that must be

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

efficient include fixed-count loops to iterate over data samples,
multiplication and multiply-accumulate for various calculations,
and data movement between memory and the registers used for
computation. The overriding design goal for a DSP is generally the
highest performance (on DSP algorithms) for a given price point
or the lowest cost for a given performance target, so other design
goals typically expected of a general purpose processor (ease of
programming, ease of compiler code generation, software compat-
ibility, etc.) are secondary. As a result, DSPs typically have non-
orthogonal architectures, with special purpose registers, complex
addressing modes, specific support for fixed-count loops, and other
specialized features.

For understanding this paper, one may consider a DSP to be simply
a microprocessor with many unusual features. For a simple exam-
ple, consider the following code fragment for the Fujitsu Elixir:

msm dx, a0, a1

bge ok

add dx, cx

ok: mov (x0++1), dx

The first instruction multiplies registersa0 and a1 and adds the
result to registerdx. This instruction also sets condition codes, so
the following branch instruction branches to labelok if the result
was nonnegative. Theadd instruction adds registercx to dx. The
mov instruction stores the contents of registerdx into the memory
location pointed to by index registerx0, and then incrementsx0 to
point to the next memory location.

2.2 Control Flow Analysis
The control flow analysis we used is standard and is described in
numerous sources (e.g. [1]).

A basic block is a maximal contiguous sequence of statements that
can be entered only at the first statement and exited only after the
last statement. In the simple example above, themsm andbge in-
structions form one basic block, theadd instruction is a second
basic block, and themov instruction is a third.

The basic blocks can be combined to form acontrol flow graph
(CFG). An arc goes from one basic block to another if the control
flow can proceed directly from one to the other. A path through
the CFG is called atrace and represents one possible flow of con-
trol through the program. For our simple example, the CFG is as
follows:

msm
bge

mov

add

2.3 Symbolic Simulation
Symbolic simulation has become a standard technique in hardware
verification (e.g., [5, 4]), although the general concept was origi-

nally proposed for software. The basic idea for verifying digital
circuits is that rather than simulating a circuit for a particular input
vector, we can simulate it with symbolic variables at the inputs and
compute the circuit behavior as a Boolean function of the symbolic
variables.

For software, one could employ the same approach, treating data
values as bit-vectors, exactly as the underlying processor would.
Symbolic simulation proceeds using vectors of Boolean functions.
The advantage of this approach is that the simulation is bit-for-bit
accurate. The disadvantage is that the complexity of the generated
Boolean functions quickly blows up, especially if the software per-
forms operations like multiplication and division, which DSP pro-
grams do. Because of this complexity blow-up, we need a different
approach.

Instead, we can treat variables as arbitrary values, rather than as
bit-vectors. Some functions, such as addition or if-then-else, can
be easily handled using arithmetic and logical operators. For more
complicated functions, we can introduceuninterpreted function
symbols — newly named functions about which we assume noth-
ing except that it’s a function. These uninterpreted functions let us
abstract away some of the complexity of the program. Memory can
be handled by introducing special memory functionsread, which
takes a memory and an address and returns the value of the most
recent write to that address, andwrite, which takes a memory, an
address, and a value, and returns a new memory which has that
address updated to the new value.

A powerful advantage of symbolic simulation is that it is funda-
mentally simulation. No complex mathematical model of the sys-
tem needs to be constructed. For switch-level circuit simulation,
the symbolic simulator is identical to a normal simulator, except
that symbolic values are computed. For DSP assembly language,
we need only create a simulator for the instruction set architecture
(programmer’s view of the processor). Such a simulator consists
simply of the programmer-visible state of the processor (registers,
condition codes, etc.) and code to perform the effect of each op-
code, which can be copied directly from the processor manual. In
our project, simulating the Fujitsu Elixir was straightforward; sim-
ulating any other DSP should be similarly easy.

Returning to our simple example, if we symbolically simulate the
trace that skips theadd, we find at the end of the trace that:

dx = initial dx+ f (initial a0; initial a1)

x0 = initial x0+1

memory = write(initial memory; initial x0;

initial dx+ f (initial a0; initial a1))

where f is an uninterpreted function used to denote multiplication.

2.4 Automated Decision Procedures
If the logic used in the symbolic simulation is decidable, then the
results can be compared using an automated decision procedure.
For this work, we used the Stanford Validity Checker (SVC) [6], an
efficient decision procedure that handles the combined theories of
propositional logic, linear arithmetic (arithmetic with addition and
multiplication, but multiplication can only be by constant factors),
read/write to memories, and uninterpreted functions with equality
(e.g.,a= b implies f (a) = f (b) regardless of whatf is). This com-
bination of theories was adequate for our purposes in most cases.

2.5 Related Work
We were inspired by the highly successful work on equivalence
checking of combinational circuits (e.g. [7] is a recent survey), al-
though at a technical level there are few similarities with our work.
The key insights are that comparison of two very similar designs is
an important practical problem and that conservatively exploiting
that similarity greatly simplifies verification.

The general software verification literature contains no closely re-
lated work. The naive application of successful hardware verifica-
tion techniques to software is frustrated by theoretical undecidabil-
ity results, extremely large (considered infinite) state spaces, while
loops, recursion, pointers, etc. We will see that low-level DSP soft-
ware does not exhibit many of the features that complicate software
verification in general, making DSP software particularly appropri-
ate for the techniques we describe.

Non-DSP embedded software has some similarities to DSP soft-
ware, in particular stringent performance and code size require-
ments, hand-optimization, and the concomitant need for verifica-
tion. There has been some work in verifying assembly-language
programs for embedded systems. For example, Thiry and Clae-
sen [10] proposed a model-checking approach based on BDDs.
Balakrishnan and Tahar [2] proposed a similar approach based on
the more general multiway decision graph to avoid some BDD size
problems. Both were able to verify a mouse controller and find
inconsistencies between the assembly code and flow chart specifi-
cations.

For verification of DSP software, Brock and Hunt’s work on the
Motorola Complex Arithmetic Processor stands out [3]. They were
able to verify assembly code by specifying the entire processor in
ACL2 logic and using the ACL2 theorem-prover to carry out the
mechanical proofs. Their verification is bit-for-bit accurate and ca-
pable of verifying algorithms involving both hardware and software
components. Although much more extensive and accurate than our
work, their specification of the chip required eight man-years of ef-
fort. Our work, in contrast, trades accuracy for ease-of-use. In an
application for which the highest assurance of correctness is needed
(and can be cost-justified), Brock and Hunt’s approach is clearly su-
perior. Our approach, on the other hand, offers quick and easy (but
still reasonably powerful) debugging assistance, for more routine
usage.

3. VERIFICATION APPROACH
3.1 Simplifying Assumptions
Software verification in general is notoriously difficult, so we have
imposed several simplifying assumptions. The main assumptions
are structural:

� We assume we are comparing a single function to another
single function, i.e. we do not allow subroutines, co-routines,
interrupts, etc. In practice, we envision the tool being applied
to bottom-level functions in a much larger program. Such a
decomposition could be automated.

� The two routines must have very similar CFGs. Specifically,
the traces of the two must encounter corresponding branches.
This restriction exploits the fact that we are verifying that
small changes made to a piece of code do not change its func-
tionality, making it likely that the CFGs will be very similar.

� To simplify control flow analysis, we do not allow arithmetic
on the program counter and self-modifying code. Such pro-

gramming practices are generally disparaged and are actually
impossible on most DSPs.

� To guarantee decidability, we do not permit while-loops or
recursion. Fortunately, neither of these are common in low-
level DSP routines, in part because of the need for easily
bounded runtimes. Fixed-count loops, of course, are very
common, and we do allow them.

The other simplifying assumptions regard the notion of equiva-
lence:

� We consider two routines to be equivalent if the user-
specified outputs are the same for all traces.

� We ignore rounding and precision. Because we are us-
ing uninterpreted constants and function symbols (to avoid
complexity blow-up), we cannot model the actual bit preci-
sions of registers and operations. Arithmetic is essentially
infininte-precision.

� In practice, extremely powerful optimizations can be based
on subjective user testing. A routine might compute a com-
pletely different mathematical result, but it’s “equivalent” if
most users don’t notice the difference. Obviously, such a no-
tion of equivalence is beyond what can be expected of our
tool.

Of the simplifying assumptions, only the rounding and precision
issue is particularly troubling. The other assumptions are trivial to
assure, or are conservative — the tool may erroneously declare two
routines inequivalent if an assumption is violated, but will not de-
clare equivalence of inequivalent routines. The inability to model
accurately at the bit-level, on the other hand, could allow the tool
to incorrectly declare equivalence in some cases. This is the most
serious weakness of our verification method. If we consider the
tool a debugging aid rather than a certification of correctness, how-
ever, and given that the verification is completely automatic, the
tool should still be useful despite this theoretical limitation.

3.2 Verification Overview
Given the simplifying assumptions, the overall verification ap-
proach is straightforward. The user specifies input equivalences
and which outputs are supposed to be equivalent. The tool performs
a depth-first traversal over the CFGs of the two routines being com-
pared, symbolically simulating along the way. At each branch, the
branch conditions (as a function of the inputs) are checked for com-
patibility: identical branch conditions or complementary branch
conditions maintain correspondence between the two routines. At
the end of each trace, the outputs are checked for equivalence. If a
miscompare is found, the tool produces an error trace showing the
flow of control to the problem.

An obvious alternative would be to build a single expression for the
outputs over all possible traces, rather than comparing traces indi-
vidually. Unfortunately, we encountered some performance issues
with SVC, so we chose the approach described here.

3.3 Verification Details
The overall approach may be simple, but creating a useful tool, not
surprisingly, requires addressing many practical details. Our im-
provements to the basic method can be grouped into three general
categories: handling specific architectural features, increasing effi-
ciency, and strengthening the decision procedure.

Loop Unrolling: As mentioned, low-level DSP code contains nu-
merous fixed-count loops. These loops are handled by unrolling
them completely, as if they had been straight-line code. No loop
invariants or fixed-point iterations are needed. Many DSPs, includ-
ing the Fujitsu Elixir, have special instructions and hardware sup-
port for fixed-count loops, so identifying these loops in the code is
especially easy.

Condition Codes: Condition codes can be handled in symbolic
simulation just as any other register is. Branch instructions simply
refer to the condition codes. No special modeling is needed for
comparison instructions.

Modulo Addressing: Many DSPs, including the Fujitsu Elixir,
have special modulo or circular addressing modes, which com-
pute auto-increment and auto-decrement of index registers modulo
a specified modulus. These addressing modes ease accessing cir-
cular data buffers. We handle these addressing modes with a sim-
ple if-then-else. For example, an auto-increment onx0 would be
treated as(ite (x0+1� md) (x0+1�md) (x0+1)), wheremd is
the modulus. Note that the tool is not actually computing the math-
ematical modulo operator (e.g., ifx0 were more than twicemd), but
fortunately, real DSPs typically perform the same computation as
our tool for these addressing modes, rather than true mathematical
modulo.

Memory: A key efficiency improvement concerns our modeling
of the DSP’s memory. Memory was implemented as a single array
with all reads and writes directed at this array using the read/write
functions described earlier. This strategy was chosen because it
correctly handles reads and writes to unknown locations, as well
as relative addressing (using address arithmetic on index registers
based on knowing the layout of data in memory). Handling mem-
ory accurately is imperative for verifying real programs. This mod-
eling strategy, however, has the problem that the symbolic expres-
sion denoting the contents of memory can grow too large, espe-
cially when simulating unrolled loops that repeatedly write to mem-
ory.

The problem was largely contained by using three simplifications
during symbolic simulation. The first simplification checks when
a write is performed whether it overwrites a previous write to the
same location, the contents of which can then be eliminated. The
second simplification is done when a read is performed to check if
the location sought has been written to, and returns the associated
value if it has. The third simplification is performed in conjunction
with the first to establish the earliest write for which every follow-
ing write’s location can be proven not to be the location currently
being sought. This simplification incurs a time penalty, as it re-
quires repeated calls to the decision procedure to prove that writes
are to different locations. Combined, these simplifications greatly
reduce the size of the symbolic expression for the contents of the
DSP’s memory.

Context Management: The verification method is based on a
depth-first traversal of the CFG. For the tool to run efficiently, it
must quickly recall the previous state of the partially simulated
trace during backtracks. We call the state of the symbolic simu-
lation at a given point in the program acontext. The tool maintains
a stack of contexts. When a branch in the CFG is encountered dur-
ing the depth-first traversal, the current context is pushed onto the
stack. When backtracking, the symbolic simulation can continue
from this point by popping the previously saved context.

Axioms: The ability to specify axioms was crucial to strengthen
the decision procedure enough to produce useful results. The ver-
ification tool makes extensive use of uninterpreted functions to
model most operations on data (almost everything except addi-
tion and subtraction). Using uninterpreted functions abstracts away
the specific operation being performed, greatly reducing the com-
plexity of verification. Unfortunately, the theory of uninterpreted
functions with equality is too weak to capture many properties we
want. For example, suppose we use an uninterpreted function sym-
bol MULT to denote multiplication. Given thatb = c, SVC is able
to prove that(MULT a b) = (MULT a c), but it cannot prove that
(MULT a b) = (MULT b a), because it does not know that we are
using MULT to denote a commutative operator. To address this
problem, the tool supports user-defined axioms, which are used to
rewrite all assertions to SVC. For example, the axiom

MULT assert (= (MULT argMULT1 argMULT2)

(MULT argMULT2 argMULT1))

specifies thatMULT is commutative. Fortunately, only a few axioms
were needed for our experiments (e.g., commutativity of multipli-
cation, equivalence of shift to multiplication by 2, etc.).

Expression Normalization: This optimization can be considered
a special-case, extra powerful axiom. The basic problem is that
arithmetic with multiplication is undecidable, so we cannot expect
SVC to handle arbitrary arithmetic expressions. On the other hand,
programs often generate complex arithmetic expressions, so we
want a more powerful means to check equivalence. The solution
is to rewrite arithmetic expressions heuristically into a fixed nor-
mal form, to increase the likelihood that mathematically equivalent
expressions can be proven equivalent by SVC.

The heuristics consist of a number of transformations and simplifi-
cations in an attempt to bring the two expression to a reduced form.
Constants in additions and in multiplications are evaluated as much
as possible. Address expressions are simplified based on the mem-
ory layout (e.g., if memory locationa+3 is being accessed, and we
know thata+3= b, then replace the reference toa+3 by b). In a
sequence of multiplications and divisions, the divisions are moved
to the end. Most importantly, the arguments of multiplications are
reordered according to a fixed order. Although these transforma-
tions are obviously not complete, they are sound and were suffi-
ciently powerful to handle all the instances that arose in the indus-
trial examples.

4. EXPERIMENTAL RESULTS
Given the heuristics and abstractions the verification method em-
ploys, the true test of the method is in its ability to find bugs in
real code. We were fortunate to obtain a set of four matched pairs
of code.1 Each pair consists of two subroutines that were believed
to be functionally equivalent [9]. One subroutine was production
code taken from a cellular telephone application, hand-written by
experts. The other was compiled from an allegedly equivalent C
program, using a highly optimizing compiler [9]. The examples
range in size from 37 lines to 190 lines of code for the compiled
version.

1The examples were obtained under a non-disclosure agreement
with Fujitsu Laboratories of America so we cannot give code list-
ings or detailed descriptions of functionality.

All errors discovered were found completely automatically. When
an error was discovered, we generally considered the hand-written
code to be “golden”, modified the other program to fix the problem,
and repeated the verification.

4.1 Yhaten
Yhaten was the smallest of the examples and was found to have no
errors other than minor syntax problems in the compiler-generated
code.

4.2 Hup
The Hup example contained only one branch to check a rounding
flag and set the appropriate register, followed by a fixed-count loop
to calculate a sum and multiplication.

The tool found two errors. The first is that the compiled code lacked
the aforementioned branch to check the rounding flag. The tool
detected this error due to discrepancies between the two CFG. The
second error was that a register used in modulo addressing was set
to a fixed value in the generated version while in the hand-coded
version it was set from a memory location.

4.3 Kncal
Kncal contained a number of branches, a fixed count loop to calcu-
late a division as well as a much more interesting array of opera-
tions, such as shifting, negating and logical ANDing.

The first error located was that the compiled code used LSL (logi-
cal shift left) where the hand code was using ASL (arithmetic shift
left). Depending on the value of the input this could generate dif-
ferent results.Another error occurred when, along a particular trace
through several branch choices, the compiled code attempted to ac-
cess a temporary memory location that had not been set properly.
Errors of this sort (missed initialization along one particular trace)
are common and can be extremely difficult to detect if the branch-
ing structure is complex.

4.4 Dt pow
Dt pow was the largest example and also the most complex in terms
of branching structure (Figure 1). Further complicating this exam-
ple was the extensive use of auto-incrementing and decrementing
in the hand-coded version. Thus, at many points in the program,
it was difficult to determine which memory address was actually
being accessed by visual inspection alone.

The tool found several errors in this example. There is a trivial
computation error (order of operations), apparently resulting from
a typo in the C code. In the compiled code, several computed
results were not being stored properly. More interestingly, there
are several distinct cases of missed initializations along particular
traces. For example, both programs contain a branch to allow the
program to skip initialization of several memory locations. In the
hand-written code, if this branch is taken, those addresses would
have default values instead. In the compiled code, however, if the
branch is taken, default values are not properly supplied. The most
interesting bug is one that we believe is a missed initialization along
an involved sequence of branch choices in the expert hand-written
code.

In summary, we emphasize again that in all examples, all bugs were
discovered automatically using the tool. The examples were fairly
small, but were sufficiently tricky that the bugs had eluded previous

Example Size Time SVC Time Mem

Yhaten 37 254s 121s 77MB
Hup 47 15h 14h 120MB

Kncal 69 5s 5s 3MB
Dt Pow 190 245s 243s 8MB

Table 1: Tool Performance on Examples

detection. We also note that most bugs resulted from errors in the
C program, and not the compiler.

4.5 Performance
The performance for each example is given in Table 1. The Size
column is the number of lines of code in the compiler-generated
version. Time is the total clock time taken by the program to ver-
ify the assembly code, given no errors were found. SVC Time
is the time that the program spent in SVC. Mem gives the maxi-
mum memory used during the verification. The memory usage was
shared between SVC and our program, but a large percentage of
the execution time was spent in SVC. Most of the examples ran in a
reasonable amount of time, but Hup slowed down significantly be-
cause of the memory simplifications that needed to be performed.
The tests were run on a Sun Ultra 60 (360mhz) with 768MB of
memory.

5. CONCLUSION
This paper has presented a new method for verification of DSP as-
sembly language routines. The method has been implemented in
a prototype tool which has already been successful in finding dis-
crepancies in real production code. Performance was reasonable.

One direction for future work is to improve the power of the verifi-
cation method — in capacity, in accuracy, and in the types of pro-
grams that can be verified. For improved capacity, we have already
implemented an automated abstraction mechanism that attempts to
find equivalences between the two programs at basic block bound-
aries. Our initial implementation was too conservative, but more
research along these lines is warranted. For better accuracy, the
challenge is how to allow bit-level modeling without losing the
powerful abstraction provided by uninterpreted functions. To han-
dle a wider range of programs, more general CFGs must be han-
dled. While-loops, for example, might be handled by a fixed-point
iteration (cf. [8]), or by heuristics to seek loop invariants. With a
faster decision procedure, considering all traces in a single expres-
sion, rather than a single trace at a time, would allow additional
CFG flexibility.

A more immediate direction for future work is to broaden the appli-
cability of the tool to more DSPs. The tool is already useful, albeit
only for the Fujitsu Elixir. The verification method, however, was
easy to implement and should be easy to extend. Because of the
simplicity of symbolic simulation, implementing new opcodes or
features consists mostly of copying algorithmic descriptions from
the DSP manual. Natural extensions would handle other DSP ar-
chitectures, allowing comparison of code for different DSPs (e.g.,
to verify a port from one DSP to another), and support more com-
plex DSPs (e.g. statically-scheduled, VLIW).

Represents a terminal block

Represents a TRUE branch

Represents a FALSE branch

Represents a branch with no condition

Represents an intermediate block

Figure 1: Branching Structure for Dt pow. This diagram is the CFG unfolded into a tree, showing all possible paths through the
routine.

6. REFERENCES
[1] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1988.

[2] S. Balakrishnan and S. Tahar. On the formal verification of
embedded systems using multiway decision graphs.
Technical Report TR-402, Concordia University, Montreal,
Canada, 1997.

[3] B.C. Brock and W.A. Hunt, Jr. Formally specifying and
mechanically verifying programs for the Motorola complex
arithmetic processor DSP. InInternational Conference on
Computer Design: VLSI in Computers and Processors
(ICCD ’97), pages 31–36, Washington, October 1997. IEEE.

[4] Randal E. Bryant. A methodology for hardware verification
based on logic simulation.Journal of the ACM,
38(2):299–328, April 1991.

[5] W.C. Carter, W.H. Joyner, Jr., and D. Brand. Symbolic
simulation for correct machine design. In16th Design
Automation Conference Proceedings, pages 280–286, New
York, USA, June 1979. IEEE Computer Society Press.

[6] D.L. Dill et al. SVC home page.
<URL:http://sprout.Stanford.EDU/SVC/>, 1999.

[7] Jawahar Jain, Amit Narayan, Masahiro Fujita, and Alberto
Sangiovanni-Vincentelli. Formal verification of
combinational circuits. InInternational Conference on VLSI
Design, 1997.

[8] Shin-ichi Minato. Generation of BDDs from hardware
algorithm descriptions. InInternational Conference on
Computer-Aided Design. IEEE/ACM, 1996.

[9] A. Sudarsanam, S. Malik, S. Rajan, and M. Fujita.
Development of a high-quality compiler for a Fujitsu
fixed-point digital signal processor. InProceedings of the
Seventh International Workshop on Hardware/Software
Codesign, pages 2–7, Rome, May 1999. ACM SIGDA.

[10] O. Thiry and L. Claesen. A formal verification technique for
embedded software. InIEEE International Conference on
Computer Design, pages 352–357, New York, USA, 1996.
IEEE Computer Society Press.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

