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ABSTRACT 

Modern wireless communication systems require the deployment 
of increasingly complex protocols that satisfy tight requirements 
at low implementation cost, especially in terms of size and power 
consumption. Most protocol design methodologies currently in 
use are inadequate, either because they do not rely upon formal 
techniques and therefore do not guarantee correctness, or because 
they do not provide sufficient support for performance analysis 
and design exploration and therefore often lead to sub-optimal 
implementations. Therefore, we use a refinement-based formal 
methodology that relies upon the orthogonalization of function 
and architecture design and emphasizes the use of formal models 
to ensure correctness and reduce design time. In this paper we 
present a case study, the Intercom, consisting of a network of 
mobile terminals supporting voice communication among end 
users. We use this case study to validate the methodology and 
identify directions of further research. 
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1. INTRODUCTION 
Wireless systems usually consist of networks of mobile terminals 
and remote servers (e.g. coordinating the network operation or 
handling data storage). The design of a single network unit, 
terminal or server, cannot be done independently on the rest of the 
network. First, it is necessary to partition the functionality 
between network nodes, and design the protocol, i.e. the set of 
control messages and data packets that are exchanged between the 
communicating units and the set of rules that define when data is 
transmitted and received. This requires, among the other things, to 
select the network topology and derive from the requirements of 
the whole network the functional and performance constraints that 
each network unit has to satisfy. 

A wireless terminal is a complex system that implements on a 
single chip a variety of functions: protocols, signal processing, 
position location, radio modems, RF transceivers, A/D converters. 

While the integration of so diverse components presents itself an 
interesting research topic, in this paper we mainly focus on the 
problem of designing correct and efficient protocols.  

Protocols are usually described using a layered structure, each 
layer implementing the communication at a different level of 
abstraction. Different layers handle different data types and 
formats (from multi-field messages at the top layers to raw bits at 
the bottom layers) and are usually subject to different timing 
requirements. ISO has defined a standard (OSI Reference Model) 
that classifies the typical protocol functions into seven distinct 
layers. The main advantage of identifying layers from the 
beginning of the design process is that it allows to decompose the 
protocol design problem into the design of a number of 
subproblems (layers) delimited by well-defined interfaces. 
However, decomposing into a number of smaller problems may 
imply penalties as it prohibits inter-layer optimizations.  

In the wireless communication domain, the protocol design 
problem presents additional challenges: the limited battery life 
and the dynamically changing network conditions (e.g. due to 
physical medium variations or user mobility…) require to define 
protocols that are energy efficient and dynamically adaptive. 
Previous work [5] has already shown the importance of 
considering energy efficiency as a key parameter in the design 
starting from the top protocol layers. Power consumption, for 
example, can be significantly reduced by shutdown of the inactive 
terminal components or by reducing the data to be transmitted at 
the expense of increased data compression. 

Protocol specifications are heterogeneous in the sense that they 
include both control and data processing functions. Data 
processing, e.g. in encryption, error correction, coding algorithms, 
is typically applied at regular time intervals to streams of 
incoming data and is often subject to tight timing constraints. 
Control functions are of two types: real-time, if data processing is 
enabled by the occurrence of external (e.g. user request) or 
internal (e.g. timers) events, data-dependent, if some action is 
taken as a consequence of a data value (e.g. depending on the 
CRC result a packet is discarded). These heterogeneous 
specifications are usually implemented by mapping them into a 
heterogeneous architecture including custom logic, 
programmable logic and an embedded processor. 

Designing protocols is difficult due to the complexity of the task 
and the tight time-to-market constraints. The protocol design 
methodologies commonly used in industry are rather informal 
since they involve a sequence of trial-and-error steps that 
terminates when the designers reach a certain level of confidence 
in their design. Not relying upon formal techniques, at the end of 
the design process there is no guarantee that the implementation 
satisfies the requirements of the initial specification. Moreover, a 

 

 

 



careful performance analysis is not carried out, this resulting in a 
limited design exploration, based mainly on designer experience. 

To obviate these drawbacks, we developed a design methodology 
based on: 

- a formal model of computation for mixed control and 
dataflow specifications 

- a simulation environment for complex protocols that allows 
full design space exploration and evaluation of  tradeoffs 
based on performance analysis  

- a set of fast and accurate estimation techniques to evaluate 
the implementation cost with respect to the key design 
parameters, e.g. speed, power. 

- a set of synthesis and optimization algorithms to derive 
correct-by-construction and efficient protocol 
implementations 

The protocol design methodology that relies upon the basic 
foundations of the POLIS methodology [1] has been modified and 
extended to address the challenges of this new application 
domain. To illustrate these aspects, we report here how the 
methodology has been applied to a real case study, the Intercom, a 
network of mobile terminals supporting voice communication 
among end users. 

The paper is organized as follows. Section 2 gives an overview of 
the methodology. Section 3 presents the Intercom case study: first, 
we describe the functional specification and the performance 
constraints of the protocol stack and show how they were derived 
from the overall system requirements; then, we present the results 
of the design exploration that has allowed us, among the other 
things, to select an architecture. In Section 4 we discuss the main 
lessons learned from the case study. 

2. DESIGN METHODOLOGY 
The basic tenet of our methodology is the orthogonalization of 
concerns, first and foremost the separation between function and 
architecture. The architecture/function orthogonalization principle 
can be applied to all levels of the design hierarchy. The 
architecture input to a level below can be considered as a 
functional spec at the lower level of abstraction. Constraints are 
propagated from one level to the next to make sure that, if the 
design satisfies the constraints at this level there is no need to 
verify further up in the hierarchy. We refer to this aspect of the 
methodology as successive refinement.  

The design methodology described below (Figure 1) is based on 
both the POLIS system [1] developed at UC Berkeley and its 
industrial relative Virtual Component Co-design (VCC) 
developed by Cadence Design Systems [2]. 

Functional Specification – The system specification is captured in 
a pure functional way and validated through functional 
simulation. Functional specification is a necessary step to 
guarantee a correct choice between implementation alternatives 
(e.g., hardware or software). In order to operate effectively, a 
proper model of computation needs to be selected for the 
specification. We opted for Co-design Finite State Machines 
(CFSMs, an extension of FSMs) as underlying model of 
computation because they are intrinsically good in modeling 
control paths [1]. CFSMs also can include data computations as 
part of the transitions, and can therefore model protocol data-
paths as well. CFSMs networks are globally asynchronous, locally 

synchronous; thus they are able to model effectively different 
HW/SW partitions, and asynchronous communication events. 

Architecture Modeling – A set of parameterized alternative 
architectures that can be used to implement the specification is 
modeled. Architectures are described in terms of programmable 
units (CPU’s), ASIC’s, interconnect networks, and real time 
operating systems (schedulers). They capture the computational 
capabilities, the degree of parallelism, the sequentialization of 
blocks sharing the same resources, and the capacity of the inter-
block communication channels. 

Architecture Exploration – The functional blocks are mapped 
onto the candidate architecture. The performance of the resulting 
designs is then estimated and compared. The mapping consists of 
associating functional blocks with architectural resources. This 
mapping affects the behavior of the mapped system by 
introducing time delays. The effects of these implementation-
induced delays can be analyzed through performance simulations. 

Architecture Refinement – After the number of possible 
architectures has been restricted, functional profiling can be used 
to extract regular and reoccurring operations in protocol 
processing. On the hardware side, different implementation 
platforms can be explored, such as configurable, standard cell and 
custom implementations. On the software side, the effort is mainly 
focused on the customization of a configurable processor to suit 
the needs of protocol processing.  

Synthesis – After architecture selection and HW/SW partitioning, 
automatic synthesis of the hardware and software components can 
take place.  

3. CASE STUDY: INTERCOM 
The Intercom is a single-cell wireless network supporting full-
duplex voice communication among up to twenty mobile users 
located in a small geographical area (100 m2). The network 
includes a number of units, called remote terminals that operate in 
one of the following three modes: idle (the remote is switched on 
but has not subscribed to the network and cannot participate to a 
conference with other remotes), active (the remote has subscribed 
to the network and is enabled to participate in a conference), 
communicating (the remote is participating in a conference). Each 
remote can request one of the following services: subscription to 
enter active mode, unsubscription to return to idle mode, query of 
active users, conference with one or multiple remotes, and 
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Figure 1 – Design Flow 



broadcast communication. The system specification includes also 
performance requirements on the transmission of voice samples, 
e.g. latency (below 200 ms) and throughput (64 kbps), as well as 
requirements on low power consumption. 

3.1 Protocol Stack 
In this section we describe the specification of the Intercom 
protocol stack and show how it was derived from the system 
requirements (in a top-down manner) and the wireless channel 
properties (bottom-up). This process has required, among the 
other things, to select algorithms (e.g. CRC for error control and 
TDMA for medium access control) and define a number of key 
design parameters (e.g. messages and header format, frame length 
and number of slots). 

The first step was to define the network architecture. Since voice 
is the type of data transmitted over the network, we have selected 
a centralized network architecture including a special unit, called 
base station that coordinates the network operation. The base 
station only provides control functionality, while data channels 
carrying voice are set up as peer-to-peer links between remote 
terminals. The base station keeps track of the evolving network 
configuration using an internal database that stores information 
about the currently active users and the IDs (e.g. a slot in TDMA, 
a code in CDMA…) of the physical channels. Making the 
implementation choice of providing each Intercom unit with 
identical capabilities (i.e. each unit can operate as either a base-
station or a remote depending on the mode set on power-on) has 
allowed us to design, at the price of an additional implementation 
cost1, a protocol that is robust in case of failures (it enables on-
the-fly reconfiguration if the unit operating as base-station fails). 

Figure 2 shows the structure of the protocol stack, which is 
composed of the following layers: 

User Interface Layer. The UI module interfaces the remote 
terminal with the environment, capturing user service requests and 
displaying their current status. The UI filters user requests and, to 
avoid waste of resources, forwards only the relevant ones to the 
transport layer (for example, the UI discards a StartConference 
request if the user is not in active operation mode). The Mulaw 

                                                                 
1 In the final implementation we present in the next section, this 

additional cost consists of two CFSMs. 

module performs logarithmic quantization of a PCM-encoded bit 
stream, sampled at 64 kbps. 

Transport Layer. The Transport Layer defines the format and the 
retransmission policy for the control messages that are exchanged 
between the remotes and the base station for network operation 
management (e.g. user subscription, connection setup). These 
messages contain information such as remote ID and type of 
service request and are retransmitted a number of times until an 
acknowledgment is received. 

Mac Layer. For medium access control, we have selected Time 
Division Multiple Access (TDMA), since it is an appropriate 
policy for guaranteeing the Quality of Service requirements of 
voice communication. In a TDMA scheme a physical channel, 
implementing a virtual channel defined at the application layer, is 
uniquely identified by a set of two or more time slots (the number 
of slots depends on the number of users involved in the 
conference and the bandwidth assigned to each user). Slots are 
allocated on a per-demand basis. When a remote wants to start a 
conference, it sends a request to the base station. If the base 
station detects the availability of a physical channel, it 
communicates the remotes the slots in which they can transmit 
and receive. At the remote, this information is stored within an 
internal table, so that, at the beginning of each new slot, the MAC 
layer can read the table and activate either the transmit or the 
receive functions. To implement the TDMA scheme, the MAC 
Layer includes also a set of queues, one for each flow of data. 
Queues are used to shape the input and output flows, e.g. storing 
the outgoing data during the slots when other remotes are 
transmitting over the channel. The TDMA slots are allocated as 
follows: the first two are used for control messages, one uplink 
(from the remotes to the base station) and one downlink (from the 
base station to the remotes) while the remaining slots are used for 
voice communication among users. A frame lasts 62.5ms, while 
each of the twenty slots lasts 3ms. These values have been derived 
from the requirements on delay and throughput. An example 
scenario is shown in Figure 3. Six remotes are active: R1, R2, and 
R3 are involved in a conference, R5 and R6 are in one-to-one 
conversation, and R4 is not communicating with anyone. The 
annotations next to each remote show its transmission and 
reception slots (R1 transmits in slot 2, R2 in slot 5, R3 in slot 12). 

Logical Link Layer. This layer includes the following modules. 
Transmit/Receive perform a Cyclic Redundancy Check (CRC) 
function that allows detecting errors in the received packets and 
eventually discarding them, and a filtering function that 
distinguishes bit patterns equal to the frame and slot 
synchronization pilots. Synchronization detects frame and slot 
synchronization pilots in the bit stream coming from the wireless 
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Figure 2 – Intercom Protocol Stack 

 

Figure 3 – Intercom Network 



channel. Then, using also a timer and a slot counter, it notifies to 
the MAC layer the number of the new slot.  

Physical Layer. The Physical Layer includes intensive bit-level 
data processing such as QPSK (de)modulation, timing recovery, 
phase/frequency correction. The Direct Sequence Spread 
Spectrum radio operates at a rate of 1.6 Mbps at 2.4 GHz. The 
design of the physical layer is not in the scope of this paper. 

3.2 Design Exploration 
This section presents the results of the design exploration 
followed to select an implementation of the protocol stack. First, 
we describe the process of architecture evaluation and HW/SW 
partitioning of the entire protocol stack performed in the Cadence 
VCC [2] environment. Then, we consider in detail the Transport 
and the MAC Layers and provide more precise measures of their 
implementation cost.  

The functional specification of the protocol stack has been 
decomposed in 46 CFSMs and each CFSM has been described 
either using Whitebox C2 or as a State Transition Diagram. Table 
1 presents the complexity of each protocol layer.  

The target architecture includes an embedded processor, 

programmable logic, custom logic, a memory sub-system, a 
communication backplane. The basic architecture has been 
described using parameterizable modules from the VCC library 
extended with processor models. We have used conservative 
performance models so that the real implementation will certainly 
satisfy the timing requirements. The architecture model consists of 
the following blocks: 

• an embedded processor model parameterized with respect to 
the clock frequency, 

• an RTOS scheduler (Cyclo-Static, Static Priority, Round 
Robin, etc.) that is parameterized with respect to context 
switch, suspend, resume and other overheads, 

• an ASIC delay model, 

• a bus model, that includes both the bus bandwidth (operating 
frequency and word length) and the operating policy (FIFO, 
Time Sliced, etc.) 

Mappings of the functionality onto the parameterized architecture 
have been done in the Cadence VCC environment. Figure 4 
presents three mapping experiments, done using an ARM model 
for the processor, a processor frequency of respectively 1, 11 or 
200MHz, a preemptive RTOS (tasks at higher levels of the 

                                                                 
2 White-box C is ANSI C plus port pragmas. 

protocol were assigned lower priorities), an RTOS overhead of 
200 cycles, and an ASIC delay of 10 ns for each hardware 
module. Figure 4 shows for each mapping the processor 
utilization, including the RTOS overhead. At lower processor 
frequency, fewer modules can be implemented in software without 
timing violations (detected as event losses). 

The following modules are mapped onto the processor: for the 
experiment at 1MHz, transport and user interface, at 11MHz we 
add the Μυlaw module, and at 200MHz we add part of the MAC 
layer. In the mapping at 1MHz only network control functions 
(e.g. connection setup), with very few context switches and loose 
time constraints, are implemented as software. When we added a 
data processing function (Mulaw module) with tighter timing 
constraints to the software partition with the processor still 
running at 1MHz, we detected losses of critical events. Only after 
increasing the frequency to 11MHz, the Μυlaw could be executed 
with no event losses. In the mapping at 200MHz the MAC layer 
function requires most of the execution time. The low utilization 
of the processor in this case is due to the MAC operating in burst 
mode: the processor works mostly during transmit/receive slots, 
otherwise it waits. In our simulation experiments the processor 
has one slot allocated for data transmission in a total of 16 slots. 
We simulated 14 frames, 4 with data transmission and 8 with 
control transmissions. 

The design methodology allowed us to perform dozens of 
different performance simulations in a few days, mapping each of 
the 46 functional blocks into either hardware or software and also 
by changing the parameters in our architecture. None of the 
functional blocks in the Transmit, Synchronization, and Receive 
layers can run successfully into the ARM processor. However, 
increasing the clock speed of the processing unit is useless due to 
RTOS overhead. 

3.2.1 Transport Layer 
We have conducted an experiment concerning the functional 
profiling of the transport layer and the processor characterization 
step needed for architecture definition. The protocol 
implementation used for this experiment is based on C code 
generated from an SDL specification using Telelogic Tau [3]. All 
the data involved in the profiling have been derived in the 
Tensilica Xtensa [4] processor design environment. The Tensilica 
processor generation tools were used to configure a sample ARM 
like processor and then tune the architecture optimally for the 
protocol application. 

The experiments have highlighted the following issues. 1) A 
significant amount of execution time is spent in memory 

Layer CFSMs C-code 
(lines) 

State-transition 
Diagram (states) 

User interface 1 100 - 

Mulaw 2 100 - 

Transport 5 300 - 

MAC 23 270 42  

Transmit 6 120 16 

Receive 6 140 2 

Synchronization 3 - 17 
  

Table 1 – Complexity of the Intercom Specification ARM
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management routines (32% CPU time on calloc, 11% on 
memcpy).  2) Due to the lack of a branch prediction scheme, many 
instructions flushed by taken branches. A simple branch 
prediction scheme would improve performance of 12%. 3) 
Telelogic SDL generated code is excessively modular. 14.7% of 
all instructions are for procedure calls.  

Our results indicated a significant amount of execution time spent 
in memory management routines, and many instructions flushed 
by taken branches. The protocol application also has an unusually 
large number of short function calls. Some of these problems are 
inherent of the protocol processing, such as excessive looping and 
branching and the maintenance of a slot set database in memory, 
others, such as excessive procedure calls and inefficient memory 
management, are caused by the inefficiency of the code generation 
tool. Thus, it is crucial to have both: better tools and compilers to 
generate more efficient code from high-level language 
descriptions of the protocol and efficient memory management 
schemes, that can be achieved using the methodology presented in 
[8]. Adding special instructions to handle branching and memory 
access should be very helpful. 

3.2.2 Mac Layer  
Energy efficiency is a key parameter to be considered in HW/SW 
partitioning, since the variations in power consumption between 
different implementations may be significant. To quantify this 
difference we have mapped the control part of the Intercom MAC 
layer into three different platforms: ASIC, FPGA, ARM processor 
and made a comparison from the energy perspective. For the 
ASIC platform power measurements have been done using Epic 
Tools, for the ARM using a table containing information on the 
consumption of each instruction. All simulations have been run at 
25MHz with 3V supply voltage and using the same technology. 

Table 2 quantifies the dependency of the power consumption from 
the platform: the same MAC Layer function, if implemented as 
software running on an ARM processor, requires more than 400 
times the power consumed by an ASIC implementation. 

4. CONCLUSIONS 
The design of the Intercom protocol has highlighted strengths and 
weaknesses of the methodology and suggested directions of 
further research. In particular 

1.CFSM [1] is a well-suited model for wireless protocols. It 
allows representing both the control and the dataflow components 
and therefore permits to fully explore the design space (and make 
optimizations) across the two domains. One limit of the model is 
that CFSMs communicate using one-place buffers and non-
blocking write communication semantics. This implies that, 
whenever a new event is emitted over a channel before the 
previous one is consumed, the latter is overwritten and lost. 
Modeling lossless communication using CFSMs is possible but 
usually requires additional overhead in the form of explicit 
request/acknowledgement protocols. The design experience with 
this case study has further motivated the definition of a new 
model, called Abstract CFSMs (ACFSMs) [6].  

2. We were able to perform fast and extensive design exploration. 
To specify, validate, and perform a preliminary architecture 
exploration the Intercom protocol required us approximately 4 
person/months (including time necessary to learn the 
methodology and get familiar with the tools).  

3. Performance analysis was essential to select an architecture 
where most of the protocol is implemented in hardware to satisfy 
timing and low-power constraints and only the higher protocol 
layers are implemented as software tasks. 

4. We have separated the design of the physical layer from that of 
the rest of the protocol stack and defined the interfaces between 
the two. The design should now be extended to include also the 
physical layer. This will open new challenges especially in 
developing new abstractions and, possibly, supporting tools to 
deal with the increased design complexity. 

5. Functional profiling may be used to recognize critical 
operations in protocol processing and enable the realization of a 
very efficient implementation of the overall system.  Past work 
has shown that functional profiling is very useful for data 
processing intensive systems [6].  We are confident that it may 
also apply to control intensive systems. 

6. In the wireless application domain, energy-efficiency is a key 
design parameter both at the functional and at the architectural 
level, as we have shown in Table 2. Our group is doing further 
research to identify fast and reliable power estimation techniques 
through all the layers and new algorithms to reduce power. 

In conclusion, the Intercom case study has shown that a 
methodology based on the communication refinement paradigm 
and the orthogonalization of functionality and architecture is 
effective in designing wireless protocols since it supports full and 
fast exploration from the early stages of the design process. This 
paper has described the design the Intercom system from the 
network-level specification to the final implementation and 
presented experimental results from the design exploration.  
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ASIC FPGA ARM
Power 0.26mW 2.1mW 114mW
Energy 10.2pJ/op 81.4pJ/op n*457pJ/op  

Table 2 –Power Consumption for different implementations 
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