
Wireless Protocols Design: Challenges and Opportunities

J. L. da Silva Jr., M. Sgroi, F. De Bernardinis, S. F. Li,
A. Sangiovanni-Vincentelli, J. Rabaey

University of California at Berkeley

e-mail: {julio, sgroi, fdb, suetfei, alberto, jan}@noyce.eecs.berkeley.edu

ABSTRACT

Modern wireless communication systems require the deployment
of increasingly complex protocols that satisfy tight requirements
at low implementation cost, especially in terms of size and power
consumption. Most protocol design methodologies currently in
use are inadequate, either because they do not rely upon formal
techniques and therefore do not guarantee correctness, or because
they do not provide sufficient support for performance analysis
and design exploration and therefore often lead to sub-optimal
implementations. Therefore, we use a refinement-based formal
methodology that relies upon the orthogonalization of function
and architecture design and emphasizes the use of formal models
to ensure correctness and reduce design time. In this paper we
present a case study, the Intercom, consisting of a network of
mobile terminals supporting voice communication among end
users. We use this case study to validate the methodology and
identify directions of further research.

Keywords

Case Study, Wireless Protocol Design, Communication
Refinement, Function/Architecture Co-design.

1. INTRODUCTION
Wireless systems usually consist of networks of mobile terminals
and remote servers (e.g. coordinating the network operation or
handling data storage). The design of a single network unit,
terminal or server, cannot be done independently on the rest of the
network. First, it is necessary to partition the functionality
between network nodes, and design the protocol, i.e. the set of
control messages and data packets that are exchanged between the
communicating units and the set of rules that define when data is
transmitted and received. This requires, among the other things, to
select the network topology and derive from the requirements of
the whole network the functional and performance constraints that
each network unit has to satisfy.

A wireless terminal is a complex system that implements on a
single chip a variety of functions: protocols, signal processing,
position location, radio modems, RF transceivers, A/D converters.

While the integration of so diverse components presents itself an
interesting research topic, in this paper we mainly focus on the
problem of designing correct and efficient protocols.

Protocols are usually described using a layered structure, each
layer implementing the communication at a different level of
abstraction. Different layers handle different data types and
formats (from multi-field messages at the top layers to raw bits at
the bottom layers) and are usually subject to different timing
requirements. ISO has defined a standard (OSI Reference Model)
that classifies the typical protocol functions into seven distinct
layers. The main advantage of identifying layers from the
beginning of the design process is that it allows to decompose the
protocol design problem into the design of a number of
subproblems (layers) delimited by well-defined interfaces.
However, decomposing into a number of smaller problems may
imply penalties as it prohibits inter-layer optimizations.

In the wireless communication domain, the protocol design
problem presents additional challenges: the limited battery life
and the dynamically changing network conditions (e.g. due to
physical medium variations or user mobility…) require to define
protocols that are energy efficient and dynamically adaptive.
Previous work [5] has already shown the importance of
considering energy efficiency as a key parameter in the design
starting from the top protocol layers. Power consumption, for
example, can be significantly reduced by shutdown of the inactive
terminal components or by reducing the data to be transmitted at
the expense of increased data compression.

Protocol specifications are heterogeneous in the sense that they
include both control and data processing functions. Data
processing, e.g. in encryption, error correction, coding algorithms,
is typically applied at regular time intervals to streams of
incoming data and is often subject to tight timing constraints.
Control functions are of two types: real-time, if data processing is
enabled by the occurrence of external (e.g. user request) or
internal (e.g. timers) events, data-dependent, if some action is
taken as a consequence of a data value (e.g. depending on the
CRC result a packet is discarded). These heterogeneous
specifications are usually implemented by mapping them into a
heterogeneous architecture including custom logic,
programmable logic and an embedded processor.

Designing protocols is difficult due to the complexity of the task
and the tight time-to-market constraints. The protocol design
methodologies commonly used in industry are rather informal
since they involve a sequence of trial-and-error steps that
terminates when the designers reach a certain level of confidence
in their design. Not relying upon formal techniques, at the end of
the design process there is no guarantee that the implementation
satisfies the requirements of the initial specification. Moreover, a

careful performance analysis is not carried out, this resulting in a
limited design exploration, based mainly on designer experience.

To obviate these drawbacks, we developed a design methodology
based on:

- a formal model of computation for mixed control and
dataflow specifications

- a simulation environment for complex protocols that allows
full design space exploration and evaluation of tradeoffs
based on performance analysis

- a set of fast and accurate estimation techniques to evaluate
the implementation cost with respect to the key design
parameters, e.g. speed, power.

- a set of synthesis and optimization algorithms to derive
correct-by-construction and efficient protocol
implementations

The protocol design methodology that relies upon the basic
foundations of the POLIS methodology [1] has been modified and
extended to address the challenges of this new application
domain. To illustrate these aspects, we report here how the
methodology has been applied to a real case study, the Intercom, a
network of mobile terminals supporting voice communication
among end users.

The paper is organized as follows. Section 2 gives an overview of
the methodology. Section 3 presents the Intercom case study: first,
we describe the functional specification and the performance
constraints of the protocol stack and show how they were derived
from the overall system requirements; then, we present the results
of the design exploration that has allowed us, among the other
things, to select an architecture. In Section 4 we discuss the main
lessons learned from the case study.

2. DESIGN METHODOLOGY
The basic tenet of our methodology is the orthogonalization of
concerns, first and foremost the separation between function and
architecture. The architecture/function orthogonalization principle
can be applied to all levels of the design hierarchy. The
architecture input to a level below can be considered as a
functional spec at the lower level of abstraction. Constraints are
propagated from one level to the next to make sure that, if the
design satisfies the constraints at this level there is no need to
verify further up in the hierarchy. We refer to this aspect of the
methodology as successive refinement.

The design methodology described below (Figure 1) is based on
both the POLIS system [1] developed at UC Berkeley and its
industrial relative Virtual Component Co-design (VCC)
developed by Cadence Design Systems [2].

Functional Specification – The system specification is captured in
a pure functional way and validated through functional
simulation. Functional specification is a necessary step to
guarantee a correct choice between implementation alternatives
(e.g., hardware or software). In order to operate effectively, a
proper model of computation needs to be selected for the
specification. We opted for Co-design Finite State Machines
(CFSMs, an extension of FSMs) as underlying model of
computation because they are intrinsically good in modeling
control paths [1]. CFSMs also can include data computations as
part of the transitions, and can therefore model protocol data-
paths as well. CFSMs networks are globally asynchronous, locally

synchronous; thus they are able to model effectively different
HW/SW partitions, and asynchronous communication events.

Architecture Modeling – A set of parameterized alternative
architectures that can be used to implement the specification is
modeled. Architectures are described in terms of programmable
units (CPU’s), ASIC’s, interconnect networks, and real time
operating systems (schedulers). They capture the computational
capabilities, the degree of parallelism, the sequentialization of
blocks sharing the same resources, and the capacity of the inter-
block communication channels.

Architecture Exploration – The functional blocks are mapped
onto the candidate architecture. The performance of the resulting
designs is then estimated and compared. The mapping consists of
associating functional blocks with architectural resources. This
mapping affects the behavior of the mapped system by
introducing time delays. The effects of these implementation-
induced delays can be analyzed through performance simulations.

Architecture Refinement – After the number of possible
architectures has been restricted, functional profiling can be used
to extract regular and reoccurring operations in protocol
processing. On the hardware side, different implementation
platforms can be explored, such as configurable, standard cell and
custom implementations. On the software side, the effort is mainly
focused on the customization of a configurable processor to suit
the needs of protocol processing.

Synthesis – After architecture selection and HW/SW partitioning,
automatic synthesis of the hardware and software components can
take place.

3. CASE STUDY: INTERCOM
The Intercom is a single-cell wireless network supporting full-
duplex voice communication among up to twenty mobile users
located in a small geographical area (100 m2). The network
includes a number of units, called remote terminals that operate in
one of the following three modes: idle (the remote is switched on
but has not subscribed to the network and cannot participate to a
conference with other remotes), active (the remote has subscribed
to the network and is enabled to participate in a conference),
communicating (the remote is participating in a conference). Each
remote can request one of the following services: subscription to
enter active mode, unsubscription to return to idle mode, query of
active users, conference with one or multiple remotes, and

Functional
Specification

Architecture
Exploration

Architecture
Modeling

Architecture
Refinement

Link to HW/SW
implementation

Verify
Performance

Verify
Performance

Verify
Architecture

Map Behavior
to Architecture

Capture
Behavior

Verify
Behavior Capture

Architecture

Architecture
Libraries

Behavioral
Libraries

Functional
profiling

Platform
exploration

Processor
customization

Functional
Specification

Architecture
Exploration

Architecture
Modeling

Architecture
Refinement

Link to HW/SW
implementation

Verify
Performance

Verify
Performance

Verify
Architecture

Map Behavior
to Architecture

Capture
Behavior

Verify
Behavior Capture

Architecture

Architecture
Libraries

Behavioral
Libraries

Functional
profiling

Functional
profiling

Platform
exploration

Platform
exploration

Processor
customization

Processor
customization

Figure 1 – Design Flow

broadcast communication. The system specification includes also
performance requirements on the transmission of voice samples,
e.g. latency (below 200 ms) and throughput (64 kbps), as well as
requirements on low power consumption.

3.1 Protocol Stack
In this section we describe the specification of the Intercom
protocol stack and show how it was derived from the system
requirements (in a top-down manner) and the wireless channel
properties (bottom-up). This process has required, among the
other things, to select algorithms (e.g. CRC for error control and
TDMA for medium access control) and define a number of key
design parameters (e.g. messages and header format, frame length
and number of slots).

The first step was to define the network architecture. Since voice
is the type of data transmitted over the network, we have selected
a centralized network architecture including a special unit, called
base station that coordinates the network operation. The base
station only provides control functionality, while data channels
carrying voice are set up as peer-to-peer links between remote
terminals. The base station keeps track of the evolving network
configuration using an internal database that stores information
about the currently active users and the IDs (e.g. a slot in TDMA,
a code in CDMA…) of the physical channels. Making the
implementation choice of providing each Intercom unit with
identical capabilities (i.e. each unit can operate as either a base-
station or a remote depending on the mode set on power-on) has
allowed us to design, at the price of an additional implementation
cost1, a protocol that is robust in case of failures (it enables on-
the-fly reconfiguration if the unit operating as base-station fails).

Figure 2 shows the structure of the protocol stack, which is
composed of the following layers:

User Interface Layer. The UI module interfaces the remote
terminal with the environment, capturing user service requests and
displaying their current status. The UI filters user requests and, to
avoid waste of resources, forwards only the relevant ones to the
transport layer (for example, the UI discards a StartConference
request if the user is not in active operation mode). The Mulaw

1 In the final implementation we present in the next section, this

additional cost consists of two CFSMs.

module performs logarithmic quantization of a PCM-encoded bit
stream, sampled at 64 kbps.

Transport Layer. The Transport Layer defines the format and the
retransmission policy for the control messages that are exchanged
between the remotes and the base station for network operation
management (e.g. user subscription, connection setup). These
messages contain information such as remote ID and type of
service request and are retransmitted a number of times until an
acknowledgment is received.

Mac Layer. For medium access control, we have selected Time
Division Multiple Access (TDMA), since it is an appropriate
policy for guaranteeing the Quality of Service requirements of
voice communication. In a TDMA scheme a physical channel,
implementing a virtual channel defined at the application layer, is
uniquely identified by a set of two or more time slots (the number
of slots depends on the number of users involved in the
conference and the bandwidth assigned to each user). Slots are
allocated on a per-demand basis. When a remote wants to start a
conference, it sends a request to the base station. If the base
station detects the availability of a physical channel, it
communicates the remotes the slots in which they can transmit
and receive. At the remote, this information is stored within an
internal table, so that, at the beginning of each new slot, the MAC
layer can read the table and activate either the transmit or the
receive functions. To implement the TDMA scheme, the MAC
Layer includes also a set of queues, one for each flow of data.
Queues are used to shape the input and output flows, e.g. storing
the outgoing data during the slots when other remotes are
transmitting over the channel. The TDMA slots are allocated as
follows: the first two are used for control messages, one uplink
(from the remotes to the base station) and one downlink (from the
base station to the remotes) while the remaining slots are used for
voice communication among users. A frame lasts 62.5ms, while
each of the twenty slots lasts 3ms. These values have been derived
from the requirements on delay and throughput. An example
scenario is shown in Figure 3. Six remotes are active: R1, R2, and
R3 are involved in a conference, R5 and R6 are in one-to-one
conversation, and R4 is not communicating with anyone. The
annotations next to each remote show its transmission and
reception slots (R1 transmits in slot 2, R2 in slot 5, R3 in slot 12).

Logical Link Layer. This layer includes the following modules.
Transmit/Receive perform a Cyclic Redundancy Check (CRC)
function that allows detecting errors in the received packets and
eventually discarding them, and a filtering function that
distinguishes bit patterns equal to the frame and slot
synchronization pilots. Synchronization detects frame and slot
synchronization pilots in the bit stream coming from the wireless

UI

MAC

Transmit Receive

Synchronization

Filter

Tx_data Rx_data

Mulaw Mulaw

Transport

User Interface Layer

Transport Layer

Mac Layer

Data Link Layer

Voice samples

Tx/Rx

Service Requests

UI

MAC

Transmit - CRC Receive - CRC

Synchronization

Filter

Tx_data Rx_data

Mulaw Mulaw

Transport

User Interface Layer

Transport Layer

Mac Layer

Logical Link Layer

Voice samples

Tx/Rx

Service Requests

Figure 2 – Intercom Protocol Stack

Figure 3 – Intercom Network

channel. Then, using also a timer and a slot counter, it notifies to
the MAC layer the number of the new slot.

Physical Layer. The Physical Layer includes intensive bit-level
data processing such as QPSK (de)modulation, timing recovery,
phase/frequency correction. The Direct Sequence Spread
Spectrum radio operates at a rate of 1.6 Mbps at 2.4 GHz. The
design of the physical layer is not in the scope of this paper.

3.2 Design Exploration
This section presents the results of the design exploration
followed to select an implementation of the protocol stack. First,
we describe the process of architecture evaluation and HW/SW
partitioning of the entire protocol stack performed in the Cadence
VCC [2] environment. Then, we consider in detail the Transport
and the MAC Layers and provide more precise measures of their
implementation cost.

The functional specification of the protocol stack has been
decomposed in 46 CFSMs and each CFSM has been described
either using Whitebox C2 or as a State Transition Diagram. Table
1 presents the complexity of each protocol layer.

The target architecture includes an embedded processor,

programmable logic, custom logic, a memory sub-system, a
communication backplane. The basic architecture has been
described using parameterizable modules from the VCC library
extended with processor models. We have used conservative
performance models so that the real implementation will certainly
satisfy the timing requirements. The architecture model consists of
the following blocks:

• an embedded processor model parameterized with respect to
the clock frequency,

• an RTOS scheduler (Cyclo-Static, Static Priority, Round
Robin, etc.) that is parameterized with respect to context
switch, suspend, resume and other overheads,

• an ASIC delay model,

• a bus model, that includes both the bus bandwidth (operating
frequency and word length) and the operating policy (FIFO,
Time Sliced, etc.)

Mappings of the functionality onto the parameterized architecture
have been done in the Cadence VCC environment. Figure 4
presents three mapping experiments, done using an ARM model
for the processor, a processor frequency of respectively 1, 11 or
200MHz, a preemptive RTOS (tasks at higher levels of the

2 White-box C is ANSI C plus port pragmas.

protocol were assigned lower priorities), an RTOS overhead of
200 cycles, and an ASIC delay of 10 ns for each hardware
module. Figure 4 shows for each mapping the processor
utilization, including the RTOS overhead. At lower processor
frequency, fewer modules can be implemented in software without
timing violations (detected as event losses).

The following modules are mapped onto the processor: for the
experiment at 1MHz, transport and user interface, at 11MHz we
add the Μυlaw module, and at 200MHz we add part of the MAC
layer. In the mapping at 1MHz only network control functions
(e.g. connection setup), with very few context switches and loose
time constraints, are implemented as software. When we added a
data processing function (Mulaw module) with tighter timing
constraints to the software partition with the processor still
running at 1MHz, we detected losses of critical events. Only after
increasing the frequency to 11MHz, the Μυlaw could be executed
with no event losses. In the mapping at 200MHz the MAC layer
function requires most of the execution time. The low utilization
of the processor in this case is due to the MAC operating in burst
mode: the processor works mostly during transmit/receive slots,
otherwise it waits. In our simulation experiments the processor
has one slot allocated for data transmission in a total of 16 slots.
We simulated 14 frames, 4 with data transmission and 8 with
control transmissions.

The design methodology allowed us to perform dozens of
different performance simulations in a few days, mapping each of
the 46 functional blocks into either hardware or software and also
by changing the parameters in our architecture. None of the
functional blocks in the Transmit, Synchronization, and Receive
layers can run successfully into the ARM processor. However,
increasing the clock speed of the processing unit is useless due to
RTOS overhead.

3.2.1 Transport Layer
We have conducted an experiment concerning the functional
profiling of the transport layer and the processor characterization
step needed for architecture definition. The protocol
implementation used for this experiment is based on C code
generated from an SDL specification using Telelogic Tau [3]. All
the data involved in the profiling have been derived in the
Tensilica Xtensa [4] processor design environment. The Tensilica
processor generation tools were used to configure a sample ARM
like processor and then tune the architecture optimally for the
protocol application.

The experiments have highlighted the following issues. 1) A
significant amount of execution time is spent in memory

Layer CFSMs C-code
(lines)

State-transition
Diagram (states)

User interface 1 100 -

Mulaw 2 100 -

Transport 5 300 -

MAC 23 270 42

Transmit 6 120 16

Receive 6 140 2

Synchronization 3 - 17

Table 1 – Complexity of the Intercom Specification ARM
@200MHz

Processor
Utilization

Clock
Frequency

2.7%

ARM
@11MHz

32.7%

ARM
@1MHz

5.46% User Interface
Transport

User Interface

Mulaw
Transport

User Interface

Mulaw
Transport

0.5 MAC

ARM
@200MHz

Processor
Utilization

Clock
Frequency

2.7%

ARM
@11MHz

32.7%

ARM
@1MHz

5.46% User Interface
Transport

User Interface

Mulaw
Transport

User Interface

Mulaw
Transport

0.5 MAC

Figure 4 – Architecture Exploration

management routines (32% CPU time on calloc, 11% on
memcpy). 2) Due to the lack of a branch prediction scheme, many
instructions flushed by taken branches. A simple branch
prediction scheme would improve performance of 12%. 3)
Telelogic SDL generated code is excessively modular. 14.7% of
all instructions are for procedure calls.

Our results indicated a significant amount of execution time spent
in memory management routines, and many instructions flushed
by taken branches. The protocol application also has an unusually
large number of short function calls. Some of these problems are
inherent of the protocol processing, such as excessive looping and
branching and the maintenance of a slot set database in memory,
others, such as excessive procedure calls and inefficient memory
management, are caused by the inefficiency of the code generation
tool. Thus, it is crucial to have both: better tools and compilers to
generate more efficient code from high-level language
descriptions of the protocol and efficient memory management
schemes, that can be achieved using the methodology presented in
[8]. Adding special instructions to handle branching and memory
access should be very helpful.

3.2.2 Mac Layer
Energy efficiency is a key parameter to be considered in HW/SW
partitioning, since the variations in power consumption between
different implementations may be significant. To quantify this
difference we have mapped the control part of the Intercom MAC
layer into three different platforms: ASIC, FPGA, ARM processor
and made a comparison from the energy perspective. For the
ASIC platform power measurements have been done using Epic
Tools, for the ARM using a table containing information on the
consumption of each instruction. All simulations have been run at
25MHz with 3V supply voltage and using the same technology.

Table 2 quantifies the dependency of the power consumption from
the platform: the same MAC Layer function, if implemented as
software running on an ARM processor, requires more than 400
times the power consumed by an ASIC implementation.

4. CONCLUSIONS
The design of the Intercom protocol has highlighted strengths and
weaknesses of the methodology and suggested directions of
further research. In particular

1.CFSM [1] is a well-suited model for wireless protocols. It
allows representing both the control and the dataflow components
and therefore permits to fully explore the design space (and make
optimizations) across the two domains. One limit of the model is
that CFSMs communicate using one-place buffers and non-
blocking write communication semantics. This implies that,
whenever a new event is emitted over a channel before the
previous one is consumed, the latter is overwritten and lost.
Modeling lossless communication using CFSMs is possible but
usually requires additional overhead in the form of explicit
request/acknowledgement protocols. The design experience with
this case study has further motivated the definition of a new
model, called Abstract CFSMs (ACFSMs) [6].

2. We were able to perform fast and extensive design exploration.
To specify, validate, and perform a preliminary architecture
exploration the Intercom protocol required us approximately 4
person/months (including time necessary to learn the
methodology and get familiar with the tools).

3. Performance analysis was essential to select an architecture
where most of the protocol is implemented in hardware to satisfy
timing and low-power constraints and only the higher protocol
layers are implemented as software tasks.

4. We have separated the design of the physical layer from that of
the rest of the protocol stack and defined the interfaces between
the two. The design should now be extended to include also the
physical layer. This will open new challenges especially in
developing new abstractions and, possibly, supporting tools to
deal with the increased design complexity.

5. Functional profiling may be used to recognize critical
operations in protocol processing and enable the realization of a
very efficient implementation of the overall system. Past work
has shown that functional profiling is very useful for data
processing intensive systems [6]. We are confident that it may
also apply to control intensive systems.

6. In the wireless application domain, energy-efficiency is a key
design parameter both at the functional and at the architectural
level, as we have shown in Table 2. Our group is doing further
research to identify fast and reliable power estimation techniques
through all the layers and new algorithms to reduce power.

In conclusion, the Intercom case study has shown that a
methodology based on the communication refinement paradigm
and the orthogonalization of functionality and architecture is
effective in designing wireless protocols since it supports full and
fast exploration from the early stages of the design process. This
paper has described the design the Intercom system from the
network-level specification to the final implementation and
presented experimental results from the design exploration.

ACKNOWLEDGMENTS
We acknowledge the contributions of Vandana Prabhu, Fred
Burghardt, Chunlong Guo, Xuejue Huang, Per Bjureus, Kevin
Camera, and Tim Tuan.

REFERENCES
[1] F.Balarin, et al.. Hardware-Software Co-Design of Embedded
Systems:the POLIS approach. Kluwer Academic Publisher, 1997.

[2] Cierto Virtual Component Codesign (VCC). Cadence Design
Systems. http://www.cadence.com/technology/hwsw/ciertovcc/

[3] Telelogic, Inc. http://www.telelogic.com/

[4] Tensilica, Inc. http://www.tensilica.com/

[5] P.Lettieri, M.Srivastava. Advances in Wireless Terminals.
IEEE Personal Communication. Feb 1999. Vol.6 No.1

[6] M.Sgroi, L.Lavagno, A.Sangiovanni-Vincentelli. Formal
Models forEmbedded System Design. To appear on the IEEE
Design & Test of Computers. Special Issue on System Design,’00.

[7] S. F. Li, M. Wan and J. Rabaey, Configuration Code
Generation and Optimizations for Heterogeneous Reconfigurable
DSPs, SIPS99, Taipei, Taiwan.

[8] S. Wuytack, J. L. da Silva Jr., F. Catthoor, G. de Jong, C.
Ykman, Memory Management for Embedded Network
Applications. IEEE Transactions on Computer-aided Design, May
1999.

ASIC FPGA ARM
Power 0.26mW 2.1mW 114mW
Energy 10.2pJ/op 81.4pJ/op n*457pJ/op

Table 2 –Power Consumption for different implementations

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

