
HEURISTIC TRADEOFFS BETWEEN LATENCY AND ENERGY CONSUMPTION IN REGISTER

ASSIGNMENT �

R. ANAND, M. JACOME, AND G. DE VECIANA

Department of Electrical and Computer Engineering
University of Texas at Austin, Austin, TX 78712

Tel: (512) 471-2051 Fax: (512) 471-5532

frandy,jacome,gustavog@ece.utexas.edu

Abstract

One of the challenging tasks in code generation for embedded sys-
tems is register allocation and assignment, wherein one decides on
the placement and lifetimes of variables in registers. When there
are more live variables than registers, some variables need to be
spilled to memory and restored later. In this paper we propose a
policy that minimizes the number of spills – which is critical for
portable embedded systems since it leads to a decrease in energy
consumption. We argue however, that schedules with a minimal
number of spills do not necessarily have minimum latency. Ac-
cordingly, we propose a class of policies that explore tradeoffs be-
tween assignments leading to schedules with low latency versus
those leading to low energy consumption and show how to tune
them to particular datapath characteristics. Based on experimental
results we propose a criterion to select a register assignment poli-
cy that for 99% of the cases we considered minimizes both latency
and energy consumption associated with spills to memory.

1 Introduction

Embedded processor cores used in today’s embedded systems place
heavy burdens on current compiler technology. A number of dif-
ficulties stem from architectural specializations in embedded pro-
cessors [9, 10]. In this paper we focus on clustered VLIW ASIPs
which are well suited to increasingly pervasive (portable) embed-
ded multimedia/communications applications. A clustered ASIP
has a distributed set of register files each connected to a dedicated
set of functional units, e.g., Fig.2. Such an organization can signifi-
cantly reduce the area/delay/power cost of storage and communica-
tion [4] but, if not properly accounted for during code generation,
can result in degraded performance [5, 9, 10].

A number of researchers have suggested that the first phase in
code generation for such clustered machines should be the binding
of operations and variables to the datapath’s clusters [5, 6, 11]. In
order to avoid penalties associated with data transfers, a key objec-
tive in performing cluster assignment is to try to keep operations
that share variables on the same cluster while still maximizing in-
struction level parallelism. However, since local storage resources
have finite capacity some variable sharing opportunities may be in-
feasible. Indeed, when register files fill up, variables may need to
be spilled to, and recovered from, memory. This not only increases

�This work is supported by a National Science Foundation NSF Career Award
MIP-9624231, NSF Award CCR-9901255 and Grant ATP-003658-0649-1999 of the
Texas Higher Education Coordinating Board.

a

c

d

e

c

d

e

register
 contents

capacity
 4 data
 objects

a

x

y

z

...

...

...

w...

prefetch window

t−2t−3t−4 t−1 t t+1

spill window for e

a cde cd... b a d a d

data object stream

t−5

spill ?

read b

Figure 1: Replacement policies, spilling and prefetching windows.

energy consumption but typically also increases latency. The focus
of this paper is on determining variable replacement policies, i.e.,
register assignment policies, that avoid such overloads and explore
tradeoffs to achieve low latency and energy consumption.

The key ideas in this paper can be summarized based on the
simple example shown in Fig.1. The figure exhibits the state of a
single register file (of size 4) up to time t and a stream of variables
that it needs to support, i.e., the variables that must be in the register
at each step. The stream is shown at the top of the figure and for
simplicity contains only one variable per step. At time t the register
contains fa;c;d;eg, and the variable b must be loaded at time t +
1. The basic question is: which of the variables currently in the
register file should b replace, i.e., what criterion should be used in
selecting which variable to spill ?

A forward looking policy chooses to replace variables whose
next use is the furthest away. Thus, for example, since neither c
nor e appear in the data stream after time t, they are good candi-
dates for spilling. In x3.1 we show that such a policy minimizes
the overall number of variable replacements. By minimizing the
number of replacements we not only reduce energy consumption,
but also maximize the average contiguous lifetimes of variables in
the register file. We call such intervals spilling windows since they
correspond to intervals over which one could choose to perform a
spill to memory without necessarily delaying the schedule. If we
choose to replace e at time t +1 then looking back we note that its
spilling window would have been quite long, e.g., 7 time steps.

Alternatively, a backward looking policy might choose to re-
place the least recently used variable, i.e., the well known LRU
policy. In x3.2 we show that this policy generates large prefetch-
ing windows. The prefetching window associated with a new vari-
able entering the register represents a window of opportunity dur-
ing which it can be pre-loaded from memory, without introducing
further delays. In Fig.1 the prefetching windows associated with
possible replacement choices are shown in gray. Thus, for exam-
ple, if we choose to replace variable c with b, a prefetching window
of length 1 would be obtained since c was used on the previous step.
By contrast if we chose to replace variable e with b a prefetching
window of length 5 would be obtained. Clearly, from the point of

Functional units
of this cluster

Cluster 1

Bus Interconnect

Memory

.

RFm...RF1

. . .FU1 FUi . . .FU1 FUj

Register files

Cluster m

Figure 2: Illustration of a simple datapath.

view of maximizing the interval of time available for prefetching
the new variable b, e is a better choice to spill.

The overall latency of a schedule will depend on which vari-
ables are spilled and the sizes of both their spilling and prefetching
windows as well as the latency of writing/reading to/from memory.
Thus in x3.3 we propose a family of heuristic policies that explore
tradeoffs between reducing the number of spills (and thus maximiz-
ing the average spilling windows) and achieving large prefetching
windows. As will be discussed in the sequel, the proposed tradeoff
policy is a basic tool to attempt to get a handle on our problem, i.e.,
to find a way to ‘steer’ data objects to and from memory that results
in a schedule with low latency and energy consumption.

1.1 Related work
Graph coloring based approaches are commonly adopted to perfor-
m register allocation. The idea is to determine the number of colors
(registers) required to cover the interval graph associated with the
lifetimes of variables [2]. Modified forms of this algorithm are
used in the FlexCC compiler [9], the ROCKET Compiler [12] and
the AVIV retargetable code generator [5]. A version of the graph
coloring approach, called the Left Edge Algorithm, is a greedy al-
gorithm which explicitly determines a register assignment requir-
ing a minimum number of registers [1, 8, 9]. Specifically, it starts
by sorting the variables in increasing order of birth. Then, starting
from those with earliest birth, it assigns those with non-overlapping
lifetimes to the first register. If a sub-set of variables still remains
unassigned, a new register is created and the process is repeated on
the remaining variables. Variants of this algorithm have been used
in a number of compilers, e.g., CodeSyn [3]. Unfortunately this
method does not exploit locality when variables have non-trivial
(i.e., non-contiguous) lifetimes in order to reduce spills for fixed
size register files.

Kolson et. al., [7] proposed an optimal, though exponential
time, algorithm which assigns variables to registers so as to mini-
mize the number of spills. They also report a heuristic with a poly-
nomial run time that gives good results. However as will be seen in
the sequel minimization of spills need not translate to a minimum
latency schedule.

1.2 Paper organization
In x2 we introduce notation and discuss the problem setup. In x3
we analyze the forward, backward and tradeoff replacement poli-
cies in the context of a single cluster. In x4 we discuss heuristics
that exploit more detailed information on the dataflow’s variables
characteristics. We briefly discuss our approach for datapaths with
multiple clusters in x5. Experimental results and conclusions are
included in x6 and x7 respectively.

2 Problem formulation

Datapath and data
ow model. The target family of VLIW
ASIPs consists of storage resources, functional units and a bus in-
terconnect as shown in Fig.2. Storage resources are of two types:
finite capacity register files and “infinite” capacity memory block-
s. Functional units are connected to register files from which they
draw their operands and place their results. We assume that prima-
ry inputs required for execution are loaded from memory into the

ba c

t2t1

u

a1 a2
Code:

a3

+ +

+

t1 = a + b
t2 = b + c
u = t1+t2

Activity
Schedule: a1 a2 a3

 c

Associated Data a t1 t1 u
Object Stream: b b t2

Program

Figure 3: Data stream for a given binding/schedule of activities.

register files using the finite capacity bus interconnect. Similarly,
primary outputs generated during execution are stored into memory
through the bus.

A dataflow is modeled by a polar DAG G(A;T) where A is the
set of activities (operations) to be executed and the edges T are
labeled with data objects corresponding to the program’s variables,
and its primary inputs and outputs. The edges represent both prece-
dence constraints among activities and data transfers that may be
necessary to bring data objects from producer activities to con-
sumer activities. Data objects are further partitioned into three
disjoint sets D = PI [PO[LD corresponding to: primary inputs
which are initially stored in memory, primary outputs which must
be output to memory, and local data objects which are generated
and consumed internally but need not be output to memory. Prima-
ry inputs/outputs are associated with edges exiting/abutting in the
source/sink node of the polar DAG. We let IDa denote the set of
input data objects for an activity a 2 A and RDa denote a set with
the resulting data object.

Problem statement. As discussed in the introduction, for clus-
tered machines the binding of activities and data objects to clusters
is a critical step that should be performed early on in code gener-
ation [5, 6, 11]. In this paper we assume that such a binding has
been determined and we are given a partial order for the activities’
execution ~S = (St j0 � t � T �1) where St � A is a set of activities
to be executed prior to those in St+1: This partial order results from
the coarse/simplified scheduling problems used to drive the clus-
ter binding phase, that ignore some datapath specifics, e.g., register
capacities and data transfers [6].

For simplicity, we first consider a datapath with a single regis-
ter file, i.e., single cluster and discuss extensions to datapaths with
multiple clusters in x5. Suppose an activity a 2 St is scheduled
on step t. Then its operand(s) IDa, must be present in the regis-
ter file at time t and the result RDa must be placed in the register
file at step t + 1. Thus we can translate ~S into a sequence of data
objects that must be supported by the register file over time, i.e.,
~D = (Dt j1 � t � T) where Dt � D is given by

Dt = (
[

a2St

IDa)
[

(
[

a2St�1

RDa) for 1 � t � T:

We shall assume that jDt j � R where R denotes the size of the reg-
ister file.

We let Xt �D denote the set of data objects in the register file at
time t, where jXt j � R. In order to ensure that Dt � Xt for all t, data
transfers may need to be scheduled, possibly delaying execution
of the activities in St . Given these requirements, we can consider
various ways of ‘steering’ data objects between the register file and
the memory banks so that activities can be executed as soon as
possible but in the proposed order. Consider the dataflow shown in
Fig.3, and suppose that all operations are bound to a single ALU
connected to a register file. The figure shows the resultant data
object stream for the given partial order for the activities.

Our problem is to find an optimal way to ‘steer’ data objects
to and from memory that will result in a schedule with low latency
and energy consumption.

3 Replacement policies - Spilling and prefetching windows

We shall consider various data object replacement policies paying
special attention on the resulting spilling and prefetching windows.
All policies are parameterized based on three simple control ac-
tions, ‘load,’ ‘replace’ and ‘do nothing’. A load(b) action corre-
sponds to loading an additional data object b 2 D into the register
file, which is admissible only if there is free space in the file. The
replace(a;b) action corresponds to replacing a data object a, cur-
rently in the register file, with data object b:

3.1 Forward policy

Let ~D = fDt j1 � t � Tg represent a register’s data stream, where
Dt is the set of data objects that need to be in the register file at time
t. Our goal is to select a sequence of control actions that ensure that
Dt � Xt for each time step t. In general, control actions are parame-
terized by pairs of sets of data objects (A;B) where A;B�D. Such
pairs are interpreted as replace(A;B) i.e., the action of replacing
the data objects in A with those in B. For example, if A = fa;bg
and B = fc;d;eg then a;b would be replaced with c;d;e. Clear-
ly these correspond to a set (not necessarily unique) of load and
replace actions, e.g., freplace(a;c); replace(b;d); load(e)g. Given
these control choices the dynamics of the register file contents can
be described as follows:

Admissible action space: let U(Xs;Ds+1) denote the set of admis-
sible actions at time s when the register contents are Xs. An
action Us = (A;B) 2 U(Xs;Ds+1) is admissible if it result-
s in a new register state Xs+1 satisfying Ds+1 � Xs+1 and
jXs+1j � R. To be admissible an action Us = (A;B) must be
such that A� Xs;B\Xs = /0; and jAj � jBj:

System dynamics: let f denote the system dynamics correspond-
ing to modifying the contents of the register bank according
to an admissible action Us = (A;B) which replaces A with B,
i.e., Xs+1 = f (Xs;Us) = (Xs nA)[B:

Cost of an action: we assume the cost, c(Us), of an action Us =

(A;B) is given by jBj the total number of data objects loaded
into the register.

Next we define the problem associated with determining a replace-
ment policy with minimum cost, i.e., resulting in a minimum over-
all number of loads, and an algorithmic for this problem.

Problem 1 Given a register bank of size R, with initial state X0,
that needs to support the data sequence ~D find a sequence of con-
trols ~U = (Usj0 � s� T �1) with minimum overall cost:

J�(X0;~D) = min
~U
f

T�1

∑
s=0

c(Us)jXs+1 = f (Xs;Us);Us 2U(Xs;Ds+1)g:

Algorithm 3.1 (Forward Policy) The following policy is optimal
for Problem 1. Starting from t = 0 with initial state X0 proceed
forward until T � 1. At time t, given the state of the register bank
Xt , let B = Dt+1 nXt and select actions as follows:

� if B = /0, do nothing;

� else replace(A�;B) where A� � Xt nDt+1 is a (not necessar-
ily unique) set of max[0; jXt j+ jBj�R] data objects with the
largest lt(a), where lt(a) is given by

lt(a) = minfT �1; min[s j a 2 Ds and t < s � T] g:

The forward policy corresponds to replacing data objects only when
necessary, and replacing those objects which will be used the latest
(or not used again) first, i.e., those with the largest lt(): Space pre-
cludes us from presenting our proof of optimality – it is based on
dynamic programming results.

X0 X1 X2 X3 X4 X5 X6 X7
a a a a x c c a
y y b b b b b b
~d a b b x c b a

X0 X1 X2 X3 X4 X5 X6 X7
a a ! ! x c ! a
y ! b ! ! ! ! !

~d a b b x c b a

Table 1: Forward policy: state evolution, spilling windows.

This policy minimizes the number of state changes (cost) by
keeping data objects which are likely to be used in the sequel in
the register file. As a consequence it also maximizes the average
length of spilling windows. Table 1 exhibits the state evolution of
the register file for the forward policy using an example. The ta-
ble exhibits the data stream ~D and the states of the register file Xt .
Consider the first row of data objects in the register. It shows that a,
which is needed in the register at time 1, is replaced by x at time 4.
We call this time interval its spilling window and denote its length
by spillwin(a;x) = 4�1 = 3. As discussed in the introduction large
spilling windows correspond to available time to make a possible
spill of a to memory combined with a load of x into the register
file. The table below shows such spilling windows using right ar-
rows (!) to indicate that a transaction can take place during this
time interval. Note that data object b first appears in the register
at time 2 and can be written to memory (if needed) thereafter. By
contrast, x is immediately replaced with c and has a spilling win-
dow of length 1. So there is little leeway for spilling x to memory
before time 5. We may expect the schedule to be delayed if ac-
cesses to memory are lengthy. Thus, although the number of state
changes is a minimum and the average size of the spill windows is
large, we may have some data objects with very large spill windows
that are not fully utilized and others with very small spill windows
that force the delaying of the schedule. This suggests that it may
be desirable to explore alternate policies that would generate spill
windows that are consistently large.

3.2 Backward policy
Suppose b 2 Dt is a data object that needs to be in the register file
at time t. If the register is not currently full, we can simply load the
data object – in fact we could have prefetched it earlier. However
if the register is full, a data object currently in the register file will
need to be replaced. We will consider a greedy policy which looks
back in time and selects a data object a� 2 Xt that was least recently
used, i.e., a� 2 argminafpt(a)ja2Xtgwhere pt(a) denotes the time
that a was last used or is set to 0, i.e.,

pt(a) = maxf0; max[s j a 2Ds and 1 � s < t] g:

This backward looking policy is summarized below.
Algorithm 3.2 (Backward Policy) Starting from t = 0 with initial
state X0 proceed forward to T �1. At time t, given the state of the
register bank Xt , let B = Dt+1 nXt and select actions as follows:

� if B = /0, do nothing;

� else replace(A�;B) where A� � Xt nDt+1 is a (not necessar-
ily unique) set of max[0; jXt j+ jBj�R] data objects with the
smallest pt(a).

Suppose a data object a� is replaced by b in the register file at time
t, then the prefetching window is given by prefetchwin(a�;b) = t�
pt(a�). This measures the time frame during which the data object
b could have been loaded from memory. Note that if b were the
result of an activity at step t�1, one would not be able to prefetch
the data object. For the time being we ignore such information
which is of course embedded in the dataflow. In the case where a
data object is loaded at time t without replacement we shall denote
its prefetching window by prefetchwin(/0;b) = t.

X0 X1 X2 X3 X4 X5 X6 X7
a a a a x x b b
y y b b b c c a
~d a b b x c b a

X0 X1 X2 X3 X4 X5 X6 X7
a a ! ! x ! b b
y ! b b ! c ! a
~d a b b x c b a

Table 2: Backward policy: state evolution, prefetching windows.

Fact 3.1 Suppose the “backward policy” is used to determine a
sequence of controls for the register bank to support the data se-
quence ~D given an initial condition X0. Assume that ~D satisfies
jDt j � M for all t, and suppose (for simplicity) that R = kM for
some integer k. The prefetching window associated with any re-
placement of a data object in the register file, say replace(a�;b), at
any time t � k satisfies

prefetchwin(a�;b) = t� pt(a
�)� k�1:

Similarly if the register is not full at time t and an object b is loaded
its prefetching window is given by prefetchwin(/0;b) = t � k�1:

Due to space constraints we have not included a proof of Fact
3.1. Its significance is that it assures us that the prefetching win-
dows associated with the backward policy will eventually always
exceed some minimal size. Such uniformity, has advantages as it
ensures all replacements will have a reasonable time to take place.
The backward policy, however, has some drawbacks of its own. It
may incur many more changes in state, and since the capacity of the
bus interconnect is limited it may result in increased delays. The
increased number of fetches and spills may increase the latency of
the schedule although one has consistently ‘large’ prefetching win-
dows in which to load data objects. Table 2 shows the state evolu-
tion obtained for our simple example using the backward policy as
well as the associated prefetching windows. Note that all prefetch-
ing windows exceed (R=M), viz., 2. The number of state changes is
5 with the backward policy while it was 4 with the forward policy.
As we will see in x6 such comparisons are more interesting when
we quantify the latency of a schedule for a given datapath and use
it as a measure to rank the performance of a policy.

3.3 Tradeo� policy - Latency versus Energy Consumption
To find a compromise between minimizing state changes (and thus
energy consumption) and obtaining large prefetching windows we
propose to use policies that look both forward and backward. Sup-
pose data object a2 Xt nDt+1 is a candidate for replacement at time
t. The tradeoff policy proposed below takes decisions on replace-
ment based on a ranking function rt(a) that may depend on both
pt(a) and lt(a) as well as various other aspects of the problem.

Algorithm 3.3 (Tradeoff Policy) Starting from t = 0 with initial
state X0 proceed forward to T �1. At time t, given the state of the
register bank Xt, let B = Dt+1 nXt and select actions as follows:

� if B = /0, do nothing;

� else replace(A�;B) where A� � Xt nDt+1 is a (not necessar-
ily unique) set of max[0; jXt j+ jBj�R] data objects with the
largest ranks rt(a), where ties are broken arbitrarily.

Note that the backward and forward policies are special cases
with ranking functions given by �pt(a) and lt(a) respectively. In
looking backward, it is desirable to replace data objects that have
been in the register file for a long time, since such replacements will
be associated with large transaction windows. In looking forward
it is desirable to retain data objects that might be reused in the near
future. We might however want to preempt the formation of large
spill windows, particularly when the number of registers is low. To

achieve tradeoffs between these two policies we considered (among
others) the following ranking function:

rt(a) = α(lt(a)� t)+β(t � pt(a)) where α;β� 0;

are parameters that emphasize the minimization of state changes
and sizes of prefetching windows respectively.

4 Heuristics that account for data object type

We propose data type dependent tie breaking heuristics to further
improve our register assignment policies. They are based on the
characterization of data objects, as PI, PO or LD, and the history of
the data object in the schedule. We propose the following policies:

1. If one of the data objects is not used in the future, it is a better
candidate for replacement.

2. PIs and POs are preferred over LDs for replacement because
there is only one memory transaction associated with them.
An LD has to be stored and then retrieved when needed.

3. LDs that have once been spilled to memory are treated as
PIs. Future replacements of this LD do not require a write to
memory.

5 Clustered VLIW datapaths

Until now for simplicity we have focused on a single register file.
Our approach can however be applied to clustered datapaths such
as that shown in Fig.2. Note that, the same data object may now
be required in different register files. As discussed in the sequel,
this does not affect our policies in any significant way. In this new
scenario we have m data streams corresponding to m register files
which we assign using our policies as before. We do, however, need
to enforce data-dependency constraints across clusters. Specifical-
ly, we need to ensure that a data object is not read from a register
file by a functional unit before it has been created in some other
register file and copied to its current location. In such cases one
can introduce stalls in the schedule on a given register file while
waiting for the creation of a data object on another.

6 Experimental Results

Until here we have discussed a class of policies aimed at deciding
which data objects to spill to memory when required, with a view
on reducing both latency and number of load/stores to memory (en-
ergy consumption). Based on a replacement sequence obtained us-
ing such a policy, we propose to greedily schedule data transfers
to ensure that activities are executed in the specified order, see x2.
This greedy schedule makes the most of spill and prefetch win-
dows, and enforces if need be, synchronization constraints among
streams assigned to different register files, see x5. Space precludes
us from giving a detailed account of this process. Although the
obtained schedule may not be optimal it certainly exploits the lo-
cality of the stream, the spill and prefetch windows, as well as the
available buses in a greedy fashion.

In our examples we considered the class of policies discussed in
x3.3 which are parameterized by α 2 [0;1] where α+β = 1. Thus
α = 0 corresponds to the backward policy and α = 1 to the forward
policy. We consider register assignment policies for loop bodies
of an FFT and a 4th order Avenhous filter bound to a clustered
datapath as shown in Fig.2. We generated results for a total of
144 cases associated with the FFT and Avenhous filter and several
datapaths with varying register file sizes, load/store latencies and
bus widths.

In 99% of our cases, the schedules obtained from replacemen-
t policies having α 2 [0:6;0:8] resulted in both minimum latency
and read/writes to memory. Note that α in this range roughly cor-
responds to a mix of the forward and backward policies that places
more weight on the forward view. Although one might expect the

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

3
2

Latency

25

35

L
a
t
e
n
c
y

Alpha

Bus = 1

Bus = 2

Registers = 5
Load Store

Figure 4: Latency obtained for different α for datapaths with dif-
ferent number of buses and load/store latencies.

R = 7
R = 5
R = 3

Load/Store
Bus = 1

Latency = 1

α=0.6L
a
t
e
n
c
y

18

22

24

26

28

16 18 20 24 2622

20

30

Load/Store

α=1

α=1

α=1

α=0

α=0

α=0

Figure 5: Latency vs. number of load/stores for different register
file sizes and different α.

forward policy to minimize spills and thus also latency, our result-
s show that slightly biasing it with the backward view, and thus
increasing prefetch windows, results in even lower latency. The re-
sults shown in Fig. 4 are typical of the cases we considered. The
figure exhibits the latency obtained as α was varied from 0 to 1, for
a cluster with register file of size 5, bus width 1 and 2 and load/store
latencies of 2 and 3. As can be seen, the range for α indicated above
corresponds to the best latency in these four cases.

Next we briefly consider how register file size impacts the ef-
fectiveness of the proposed policies. Fig.5 exhibits the latency and
number of load/stores obtained for various register files sizes (R=
3,5 and 7) as the parameter α was increased from 0 to 1. As ex-
pected, decreasing the register file size increases latency and the
number of load/stores. Perhaps more interesting was a systemat-
ic trend we observed with respect to the two extremes associated
with “large” and “small” register files. Indeed when the register
file size is of the order of the number of live variables, i.e., large,
the schedules obtained for different α have precisely the same num-
ber of load/stores, i.e., all the primary inputs/outputs that must be
loaded/stored from/to memory. Note that further increase in the
register file size can not decrease the number of load/stores. Simi-
larly, when the register file size is of the order of the number of new
variables required at each time step, i.e., small, different α have
once again little impact on the resulting number of load/stores. In-
deed, in this scenario, there are few opportunities to keep local data
objects and primary inputs in the register file so that they may be
reused later and thus the same number of load/stores are obtained
for the various α. Finally when the register file is medium sized,
we notice a marked change in the number of load/stores as α varies.
As mentioned above, although the forward policy results in mini-
mal load/stores, when the forward policy is slightly biased with the

backward view one can achieve both minimum latency and mini-
mum load/stores.

In general we found that examples with data streams in which
variables appeared repeatedly and datapaths with sufficiently large
register files, i.e., enabling reuse, the choice of α had a more sig-
nificant effect on latency and number of load/stores. Nevertheless
α within the range [0:6;0:8] consistently gave the best results over
a wide range of datapaths for our two dataflow examples.

7 Conclusions

We discuss a novel approach to the register assignment problem
aimed at both exploiting the locality in the streams of data to be
supported by the register files as well as incurring low delays due to
spills to memory. We propose a parameterized class of data object
replacement policies that covers various compromises that might
need to be made when determining a minimum latency schedule
for a dataflow as well as minimization of spills due to energy con-
sumption on a given datapath. Our experimental studies show that
the policies enable one to explore these compromises in a system-
atic fashion. This work is complementary to the work in [6] which
strives to find good joint binding/scheduling of a dataflow to clus-
tered datapaths so as to minimize the required data transfers among
register files.

References

[1] G. de Micheli. Synthesis and Optimization of Digital Ciruits.
McGraw-Hill, Inc, 1994.

[2] G. Chaitin et al. Register allocation via coloring. Computer
Languages, 6:47–57, Jan. 1981.

[3] P. Paulin et al. FlexWare: A flexible firmware development
environment for embedded systems. In Code Generation for
Embedded Processors, pages 67–84. KAP, 1995.

[4] S. Rixner et. al. Register organization for media processing.
In 6th International Symposium on High-Performance Com-
puter Architecture, 2000.

[5] S. Hanono and S. Devadas. Instruction selection, resource
allocation, and scheduling in the aviv retargetable code gen-
erator. In Proceedings of the 35th Design Automation Confer-
ence, 1998.

[6] M. Jacome and G. de Veciana. Lower bound on latency for
VLIW ASIP datapaths. In IEEE/ACM International Confer-
ence on Computer Aided Design, 1999.

[7] D. Kolson, A. Nicolau, N. Dutt, and K. Kennedy. Optimal
register assignment to loops for embedded code generation.
ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), 1996.

[8] F. Kurdahi and A. Parker. REAL: A program for REegister
ALlocation. In Proc. of the 24th DAC, pages 210–15, 1987.

[9] C. Liem. Retargetable compilers for embedded core proces-
sors. Kluwer Academic Publishers, 1997.

[10] P. Marwedel and G. Goossens, editors. Code Generation for
Embedded Processors. Kluwer Academic Publishers, 1995.

[11] B. R. Rau, V. Kathail, and S. Aditya. Machine-description
driven compilers for epic processors. Technical report,
Hewlett-Packard Laboratories, 1998.

[12] P. Sweany and S. Beaty. Post-compaction register assignment
in a retargetable compiler. In Proceedings of the 23rd An-
nual Workshop in Microprogramming and Microarchitecture
(MICRO-23), 1990.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

