
Extended Design Reuse Trade-Offs in Hardware-Software
Architecture Mapping

F. Vermeulen �, F. Catthoor z, D. Verkest, H. De Man z,
IMEC, Kapeldreef 75, Leuven, Belgium.

� also Ph.D. student at the Katholieke Univ. Leuven
z also Professor at the Katholieke Univ. Leuven

ABSTRACT
In the design of embedded systems-on-chip, the success of a
product generation depends on the exibility to accommo-

date future design changes. This requirement inuences the
hardware-software partitioning strategy. Therefore we pro-
pose a novel hardware-software architecture and mapping
methodology, which provide new trade-o� opportunities for
cost-e�ective component reuse.

1. INTRODUCTION
To make the design of systems-on-chip feasible, a tremen-

dous increase in design productivity will be necessary. One
of the keys to heavily increase current design productivity is
design reuse at the level of system components. The awless
integration of reused components in a new context depends
on standardization and exibility in functionality and inter-
faces [1].

In today's design methodology, exibility is traded o� against
energy-delay performance in the hardware-software parti-
tioning phase. Based on the required exibility, a target
technology (custom or recon�gurable technology) and a pro-

cessor architecture are selected (custom or instruction set
processor).

With the processor architecture we will propose, we intro-
duce interesting new trade-o� possibilities in this selection.
We obtain more optimal results because the design changes

needed in successive versions of a product generation are
typically small and local, but the performance penalty in
any conventional co-design methodology is incurred on the
entire component that is implemented in software or on a
recon�gurable platform for exibility reasons.

In the architecture we propose, we take a di�erent approach
towards providing the needed exibility. We select the op-
timal target technology and processor architecture indepen-
dently of reuse considerations, e.g. components bene�tting

from a custom hardware implementation are still imple-
mented in their optimal architecture (but with a slightly
adapted controller). Flexibility is added to the system as
a separate (low cost, low performance) programmable com-

ponent, which can take over control in those cycles where
the functionality needs to change. Usually such a proces-
sor is already available in the system for some other back-
ground tasks and it has enough spare time to also execute
the few changed subtasks. Speci�c techniques are used in
the synchronization and in the control and context switch.

In conventional "coprocessor" solutions, the granularity of
switching between the two platforms is too large, leading to
a still large penalty. In contrast, in our approach a novel
protocol allows for �ne-grain control. This is needed since
it is not known in advance which execution cycles of the
hardware realization will have to be substituted by a new

functionality on the exible platform. The �ne-grain control
is realized with a control-ow inspection mechanism and an
interrupt mechanism. The overhead in the control switch is
minimized thanks to a speci�c memory organization scheme,
where all necessary data is available in shared memory. The
performance (in terms of power and speed) of the resulting

architecture can remain of the order of the original custom
solution, while exibility can become comparable to a soft-
ware or �eld programmable solution.

The opportunity window for the proposed solution is in com-

ponents that clearly bene�t from the custom hardware im-
plementation for power and speed reasons, and where a fea-
sibility study shows a margin on the performance speci�ca-
tions (either in a new design or in a reuse library compo-
nent). This opportunity window exists because of the orders
of magnitude performance gap between custom hardware

solutions and an instruction set processor implementation.
Delay{energy trade-o�s are made possible in a whole new
range of solutions between pure hardware and software im-
plementations.

As an example, we present in section 4 a small custom hard-

ware component which originally consumes 7 mW and which
we would like to reuse in a new design, but which requires
small modi�cations in the new context. Our approach en-
ables this reuse at a power consumption of 9.5 mW, which
in many cases will still satisfy the speci�cations (which can-
not be said about the 122 mW pure software implementa-

tion). Any part of the functionality can be adapted, but
the performance penalty incurred when implementing some
functionality in software which was formerly implemented

in hardware, typically limits the total amount of modi�ca-

tions to a small amount of code change. In practice, this
is adequate to cope with evolving standards, bug �xes, or
changes in user requirements.

2. RELATED WORK
In hardware-software co-design methodologies [2, 3, 4], a
partitioning step decides which functionality is implemented
as custom or as instruction set processor and on a custom or

recon�gurable technology. This decision is based on energy
consumption, speed, area, design cost and reusability. The
global architecture consists of components communicating
via one or more system busses and controlled by a global
controller [5, 6, 7].

Integrating reusable components at the stage of hardware
design is possible through con�gurable or parameterizable
components. Flexibility in the component's functionality
after hardware design can be provided by recon�gurable
hardware (e.g. �eld programmable logic) and programmable

hardware (e.g. instruction set processors).

To make custom hardware components more exible, recon-
�gurable computing architectures ranging from general pur-
pose FPGAs [8, 9, 10] to application speci�c architectures,
especially with a speci�c memory architecture [11, 12, 13]

are proposed. General purpose recon�gurable logic su�ers
from a performance penalty (area, power, clock frequency).
This penalty can be reduced in dedicated recon�gurable ar-
chitectures with custom designed subblocks. In order to
guarantee the exibility that will be necessary in the appli-
cation, a large design-for-reuse investment is then needed.

Instruction set processors are more and more being cus-
tomized with dedicated instructions (e.g. MMX [14]), data
types and memory architectures [15, 16, 17]. This is sup-
ported by retargetable compilers and memory optimizing

compilers [18, 19, 20, 21]. The trade-o� is here between
�ne-grain software control and associated bus load bottle-
neck, and accelerators implementing complex operations.
The latter solution limits exibility. Design changes may
make the (re)use of the accelerator hardware impossible. In
the presented architecture, the hardware is not running as

a slave of the instruction set processor, but both have syn-
chronized master controllers. This allows to further reduce
the data transfer and instruction control bottleneck, beyond
the arithmetic bottleneck.

To obtain optimal performance especially in data-intensive

applications, the data access mechanisms of the accelerator
hardware also need careful integration with the instruction
set processor memory architecture. Compared to our archi-
tecture, which also has this memory architecture integration,
the accelerator hardware solution shows a higher design cost
and less exibility.

3. FLEXIBLE SYSTEM ARCHITECTURE
To allow the reuse of an optimized but inexible IP com-
ponent, even when small functional changes are necessary,
we adapt its controller and add a exible component (e.g. a
small programmable processor) to the system (see Fig. 1).
This exible component, combined with our novel proto-

col, allows to implement any changed functionality at reuse

system
controller

IP1’ IP2’
prog.

component

IP3 IP4 memory

synchronization

system bus

Figure 1: System architecture for a reusable plat-

form. IP' are IP components with slightly adapted
controller to support the proposed protocol.

time (providing that typically less than about 10% of the
functionality is changed), creating the illusion of full pro-
grammability (see Fig. 2).

For the optimized IP component vs. exible component
combinations, multiple feasible implementations exist:

� custom processor { instruction set processor

� custom processor { recon�gurable hardware

� recon�gurable hardware { instruction set processor

In the following discussion, we will concentrate on the cus-
tom processor { instruction set processor platform.

custom hardware software

Figure 2: CDFG of original custom hardware func-
tionality, with one part (dotted lines) replaced by a
CDFG implemented in software. The crosses rep-

resent the context switching, occurring at a point
which is not fully prede�ned when the chip is pro-
cessed.

To obtain negligible power overhead when the custom hard-
ware is performing its original functionality, both the custom
and the instruction set processor run as master controllers.
This minimizes the system bus load generated by the com-
munication between hardware and software and it allows
for a selective power-down of the instruction set processor,

using conventional low-power techniques [22].

The novel protocol that allows the custom and the instruc-

tion set processor to run both as master, but still to be
tightly synchronized, will be described in detail in a future
publication. The hardware controller is modi�ed to support
this protocol. State information is communicated to the in-
struction set processor through a synchronization register
at relevant points in the control ow. The modi�ed con-

troller allows for a exible interrupt by the instruction set
processor. After being interrupted, the custom hardware is
powered down.

At the moment of the control switch between the custom
and the instruction set processor, also a context switch has

to happen. The context switch is usually the most expen-
sive aspect, since copying data between custom and instruc-
tion set processor memory space (message passing) involves
a large speed and power penalty. Therefore the proposed
architecture exhibits a partly shared memory architecture
between the custom and instruction set processors and we

require the context to be in the shared memory at the mo-
ment of the potential control switch points. This limits the
number of switching points in the hardware control ow.
It means that in the memory hierarchy and management,
a trade-o� between (re)design cost and performance is in-
volved, which can be tuned for a speci�c application context.

4. DEMONSTRATORS
To substantiate the relevance and feasibility of the method-
ology in real-life designs, drivers were taken from di�erent
application domains: video compression, wireless commu-

nication and ADSL (Asymmetric Digital Subscriber Loop)
modem.

In the most simple instance of the proposed architecture
(Fig. 3), we have a single IP component (custom hardware)
and an external memory. The added instruction set proces-

sor chosen was an ARM7 [23]. The ARM was chosen as a
power e�cient small embedded processor with tool support
(compiler, simulator, : : :). The ARM should be regarded
as one instance of a class of embedded processors (present in
a reuse library), from which an optimal solution is selected.

An ASIP (application speci�c instruction set processor) may
have a more optimal performance on speci�c applications
and can also have dedicated support for the synchroniza-
tion protocol through speci�c instructions and registers. It
requires more design e�ort to derive initially though, so a
trade-o� is involved.

custom
hardware

ARM7
processor

RAM

sync int
register

&

bus

Figure 3: Simple instance of proposed exible archi-
tecture (with original architecture in bold).

4.1 IDCT component in H.263
In the H.263 video conferencing block coding standard, a
block-based encoding/decoding of image frames is performed
to exploit spatial and temporal redundancy. The inverse
discrete cosine transform (IDCT) operates on 8-by-8 blocks.
The hardware was synthesized and the power was evaluated

on the resulting netlist. The software was compiled using
the ARM compiler and power was evaluated using the av-
erage power �gure of 1:6 mW/MHz [23]. For a standard
image size IDCT implemented in a :35� technology, power
consumption is 7 mW and area 2.8 mm2. The real-time
pure software solution needs 122 mW and 20.5 mm2 (which

is still optimistic, since the implemented algorithm matched
the ARM rather well).

The �nite state machine (FSM) description of the IDCT
controller was adapted to support the synchronization pro-
tocol (Fig. 4). This means:

� adding a write to the external synchronization regis-

ter (read by the instruction set processor) at selected
points in the control ow. In this speci�c case, the
loop counter is written at the end of the loop body.

� reading the external interrupt register (written by the

instruction set processor) at synchronization points and
jump to the interrupt state.

� adding an interrupt state. It polls the interrupt regis-
ter. When the interrupt ag is cleared, the controller

resumes execution at the state (e.g. loop counter)
speci�ed in the interrupt register.

The necessary adaptations were done at the behavioral level,
as a post-processing step on an existing soft IP compo-
nent [1], so the design e�ort is very limited.

We found that no speed overhead is incurred and limited

area (1%) and power (2%) increases are due to adding the
protocol control to the custom solution.

S1

INT

S2

S3

interrupt

!interrupt:
 read new state

interrupt

int

Figure 4: Custom hardware controller adapted to
support the proposed protocol (original state tran-
sition diagram in bold).

Starting point for the software development at reuse time, is

that the hardware behavior is �xed and hence fully known.

Synchronizing to the exact point of interruption is done

through cycle counting and reading of the synchronization
register. The low power goal is realized by powering down
most of the instruction set processor when the hardware is
active.

The �nal architecture has an area of 23 mm2 which is ap-

proximately the combined area of the custom and instruc-
tion set processor. Power consumption is now 7.1 mW when
nothing of the functionality is moved to the instruction set
processor. When active, the processor adds a proportional
share of 116 mW to this. The extra instructions to move
control between custom and instruction set processor form

a �xed cost, which is most of the time negligible with respect
to the functional instructions.

Figure 5 shows the evolution of power consumption as func-
tion of the fraction of changed functionality (counted in
ARM cycles compared to the cycle count of a pure software

implementation). For example, if we change the speci�ca-
tion for the corner block calculation (2% of the calculations),
the power increases from 7 mW to 9.5 mW, which is still ac-
ceptable (which is not the case for the 122 mW pure software
implementation) and would not legitimate the major design
cost that would be incurred if the hardware were redesigned.

Remark that in these experiments we have normalized to-
wards execution speed (all implementations execute the al-
gorithm real-time). In practice one will trade-o� execution
time and power increase when adapting functionality at the

time of reuse.

5 10

7

19

122

% changed
functionality

mW

hardware

software

proposed
architecture

Figure 5: IDCT energy consumption as function of
fraction changed functionality, evaluated for conven-
tional and proposed architecture.

Apart from the o�-the-shelf instruction set processor, two
other alternatives to provide a exible implementation plat-
form were evaluated: an implementation on recon�gurable
hardware and an ASIP implementation. The design was

compiled on a Xilinx Virtex XCV600 FPGA and power has
been estimated with Xilinx Virtex Power Estimator 1.5.

Between ASICs and general purpose instruction set proces-
sors, a large range of ASIP instruction set architectures can
be designed, where exibility and design time are spent to

gain performance. W. Dougherty [24] et al. have found a

factor 3 power increase going from an ASIC to a minimal

ASIP for a FIR �lter. We made an estimation of a best-case
power consumption in an ASIP based on the power attribu-
tion in a StrongARM [25] low power processor and assuming
the best case of same datapath and internal memory energy
and only considering the instruction and memory manage-
ment overhead. Energy consumption �gures are summarized

in Table 1. An indication of the (re)design cost is given to
stress the design reuse trade-o�s involved.

Implementation Power Area (re)design

(mW) (mm2) cost

custom hardware 7 2.8 very high
proposed arch. 9.5 23.3 moderate

ASIP 16.1 17.8 high
FPGA 67 { moderate
software 122 20.5 moderate

Table 1: Energy consumption and (re)design cost
for di�erent architectures.

4.2 Other applications
Our exible reusable component architecture was also proven
on a Fast Fourier Transform component used in Orthogo-
nal Frequency Division Multiplexing (OFDM) based wire-

less Local Area Networks (LANs). The FFT is a major
contributor in cost and can gain signi�cantly from an op-
timized data storage organization. This explains the factor
41 in power di�erence found with respect to the instruction
set processor implementation. The energy saving compared
to a full software solution is again signi�cant. If for example

a simple windowing operation has to be added to the FFT,
an (extrapolated) instruction set implementation would re-
quire 7.8 W, against 0.3 W for the solution with our hybrid
architecture.

Another reusable component on which we have evaluated
the proposed architecture is a Reed-Solomon forward error
correcting code as found in ADSL modems. This applica-
tion bene�ts even more from a speci�c memory architecture
and from bit-level operations. That explains the 305 times
larger power and 6 times larger area in a pure ARM imple-

mentation.

While relative power gains vary over application domains,
the driver applications show that for applications bene�t-
ting from a custom hardware implementation, our solution
provides a signi�cant power gain compared to components

implemented in software to provide the necessary exibility.

5. CONCLUSION
We discussed the impact of design reuse goals on hardware-
software architecture mapping, where exibility has to be

traded o� against energy consumption and performance. We
have proposed a novel hybrid processor architecture that al-
lows to switch functionality from the original custom hard-
ware to an added instruction set processor with minimal
overhead. This architecture provides an interesting alterna-
tive to existing platforms for hardware-software mapping, as

was substantiated by several realistic design experiments.

6. REFERENCES
[1] VSI Alliance, \VSI Alliance Architecture Document,"

VSI Alliance, 1.0 edition, 1997.

[2] M.Chiodo, P.Giusto, A.Jurecska, H.Hsieh,

A.Sangiovanni-Vincentelli, L.Lavagno,
\Hardware-Software Co-Design of Embedded Systems,"
IEEE Micro, pp.26-36, Aug. 1994.

[3] I.Bolsens, H.De Man, B.Lin, K.Van Rompaey,
S.Vercauteren, D.Verkest, \Hardware-Software
Co-Design of Digital Telecommunication Systems,"
Proc. of IEEE, spec. issue on HW-SW Co-Design,
pp.391-418, Mar. 1997.

[4] A.Kalavade, E.Lee, \Manifestations of Heterogeneity in
Hardware-Software Co-Design," Proc. of Design
Automation Conf., San Diego, CA, Jun. 1994.

[5] VSI Alliance, On-Chip Bus Development Working
Group, \On-Chip Bus Attributes 1.0," VSI Alliance,
Aug. 1998.

[6] D.Flynn, \AMBA: Enabling Reusable On-Chip
Designs," IEEE Micro, Vol.17, No.4, Jul. 1997.

[7] H.Chang, L.Cooke, M.Hunt, G.Martin, A. McNelly,
L.Todd, \Surviving the SOC Revolution," Kluwer Ac.
Publ, Boston, MA, 1999.

[8] A.DeHon, J.Wawrzynek, \Recon�gurable Computing:
What, Why, and Implications for Design Automation,"
Proc. of Design Automation Conf., New Orleans, LA,
pp.610-615, Jun. 1999.

[9] G.Borriello, C.Ebeling, S.Hauck, S.Burns, \The
Triptych FPGA Architecture," IEEE Trans. on VLSI
Systems, Vol.3, No.4, pp.491-501, Dec. 1995.

[10] F.Vahid, T.Givargis, \The Case for a
Con�gure-and-Execute Paradigm," 7th Int. Workshop
on HW/SW Co-Design, Rome, Italy, pp. 59-63, May

1999.

[11] H.Schmitt, D.Thomas, \Synthesis of
Application-Speci�c Memory Designs," IEEE Trans. on

VLSI Systems, Vol.5, No.1, pp.101-111, Mar. 1997.

[12] P.Lippens, J.van Meerbergen, W.Verhaegh,
\Allocation of Multiport Memories for Hierarchical

Data Streams," Proc. of IEEE/ACM Int. Conf. on
Comp.-Aided Design, Santa Clara, CA, pp. 728-735,
Nov. 1993.

[13] S.Bakshi, D.Gajski, \A Memory Selection Algorithm
for High Performance Pipelines," Proc. of the European
Design Automation Conf, Brighton, Great Britain, Sep.
1995.

[14] A.Peleg, U.Weiser, \MMX Technology Extension to
the Intel Architecture," IEEE Micro, vol.16, no.4,
pp.42-50, Aug., 1996.

[15] http://www.tensilica.com/.

[16] http://www.carmeldsp.com/.

[17] P.Panda, N.Dutt, A.Nicolau, \Data Cache Sizing for

Embedded Processor Applications," Design
Automation and Test in Europe Conf, Paris, France,
pp.925-926, Feb. 1998.

[18] S.Adve et al, \Changing Interaction of Compiler and
Architecture," IEEE Computer, Vol.30, No.12, pp.
51-58, Dec. 1997.

[19] E.Torrie, M.Martonosi, C.Tseng, M.Hall,
\Characterizing the Memory Behavior of
Compiler-Parallelized Applications," IEEE Trans. on

Parallel and Distributed Systems, Vol.7, No.12,
pp.1224-1236, Dec. 1996.

[20] D.Truong, F.Bodin, A.Seznec, \Improving Cache
Behavior of Dynamically Allocated Data Structures,"
Int. Conf. on Parallel Architectures and Compilation
Techniques, Los Alamitos, CA, pp.322-329, 1998.

[21] Target Compiler Technologies NV,
http://www.retarget.com/.

[22] \Low power CMOS design," (eds. A.Chandrakasan,

R.Brodersen), IEEE Press, 1998.

[23] Advanced RISC Machines, Ltd,

http://www.arm.com/Pro+Peripherals/Cores/ARM7TDMI/

[24] W.Dougherty, D.Pursley, D.Thomas, \Instruction
Subsetting: Trading Power for Programmability," IEEE
Wshop on VLSI 1998, Los Alamitos, CA, pp.42-47,
1998.

[25] J.Montanaro et al, \A 160-MHz, 32-b, 0.5W CMOS
RISC Microprocessor," IEEE Journal of Solid-State
Circuits, vol.31, no.11, pp.1703-14, Nov. 1996.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

