
Performance Estimation of Multiple-Cache IP-based Systems: Case Study of an Interdependency
Problem and Application of an Extended Shared Memory Model

Sungjoo Yoo Kyoungseok Rha Youngchul Cho Jinyong Jung Kiyoung Choi

Design Automation Laboratory
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

fysj,contron,rams,jyjung,kchoig@poppy.snu.ac.kr

Abstract

In estimating the performance of multiple-cache IP-based systems,
we face a problem of interdependency between cache configuration
and system behavior. In this paper, we investigate the effects of the
interdependency on system performance in a case study. We present
a method that gives fast and accurate estimation of system perfor-
mance by simulating IP cores at the behavioral level with annotated
delays and by simulating the multiple-cache communication archi-
tecture with an extended shared memory model. Experiments show
the effectiveness of the proposed method.

1 Introduction

As communication architectures of IP-based systems, shared-bus
architectures are widely used in many IP-based systems. Recently,
research on performance estimation [1][2] and optimization [3] of
such communication architectures are gaining more and more at-
tention. In shared-bus architectures, since performance bottleneck
comes mostly from excessive bus conflicts, placing data caches
near IP cores can give significant improvement of system perfor-
mance by reducing bus conflicts. In such multiple-cache IP-based
systems (where each IP accesses shared data via its own cache), due
to the huge design space of cache configurations1, finding an op-
timal cache configuration in terms of system performance metrics
such as runtime (best, average, or worst case), power consumption,
etc, requires fast and accurate performance estimation.

In applying traditional trace-driven cache simulation methods
[4][5][6][7] to the performance estimation of multiple-cache IP-
based systems, we face a significant problem. In such methods, ad-
dress traces are initially obtained and assumed invariant over var-
ious cache configurations. However, in multiple-cache IP-based
systems, system behavior, i.e. address traces can vary significantly
as the cache configuration changes. Thus, cache simulation using
the address trace, which does not vary for the whole design space of
cache configurations, which we call astatic trace, can give signif-
icantly inaccurate performance estimation, and possibly incorrect
design decisions.

In this paper, in a case study, we investigate the effects of the
interdependency between cache configuration and system behavior
in terms of system performance estimation. In the case study with a

1Even a single cache can have several parameters such as cache size, associativity,
block (line) size, sub-block size, replacement policy, etc.

CDMA modem system [8][9] and a CD2DAT system, we measure
the accuracy of cache simulation with static traces for various cache
configurations and analyze the effects of interdependency. We also
present a performance estimation method that calculates accurate
system performance by simulating IP cores at the behavioral level
with annotated delays and by simulating the multiple-cache shared-
bus architecture with an extended shared memory model.

This paper is organized as follows. In section 2, we review
related work. In section 3, we introduce a multiple-cache shared-
bus communication architecture. In section 4, we give the case
study. In section 5, we present a performance estimation method
and related experimental results. We give conclusion in section 6.

2 Related Work

Cache issues have been investigated in many studies of IP-based
design. In [10], processing elements are assumed to have caches
and task-level analysis of cache effects is performed assuming well-
contained tasks that cause only compulsory misses. In [11], an
instruction cache simulation method is presented which gives ac-
curate estimation of intra-task cache conflicts and approximates
inter-task cache conflicts. In [12], an iterative cache simulation
method, comparable to one-pass cache simulation in terms of run-
time, has been presented. Energy consumption issues related to
cache (and bus) dedicated to the processor have been investigated
in [13]. In [14], to reduce the latency of fetching internal data to the
boundary of IP core, a prefetch technique is presented. For fast and
accurate performance estimation of shared-bus architectures (with-
out caches), methods based on scheduling abstract traces are pre-
sented in [1] and [2]. As simulation-based performance estimation
methods, in [15], three methods (macromodeling, cached simula-
tion, and statistical sampling/sequence compaction) are presented
to give efficient estimation of power consumption of SoC design.

In [16], a study of the effects of shared memory bus (e.g. bus
conflict) and a method of modeling a shared bus have been pre-
sented. Since the method proposed in this paper extends the basic
concept [16] of modeling the shared bus at the behavioral level
to the multiple-cache shared-bus architecture with shared mem-
ory, we named our model anextended shared memory model.
In this paper, our contribution is to investigate an interdependency
problem in multiple-cache IP-based systems and to present a high-
level model of multiple-cache communication architecture thereby
speeding up the estimation of system performance.

3 Preliminaries

Figure 1 shows an example of a shared-bus communication archi-
tecture for IP-based systems considered in this paper. In the ar-
chitecture, each IP core may (or may not) have a data cache to
access data shared by other IP cores. For the coherency of multiple
caches, we assume an invalidation-based cache coherency protocol

shared
memory

IP1

bus
arbiter

cache cache

IP2 IP3 IP4

cache

Figure 1: An example of shared-bus communication architecture.

/t1&f=1

/t2

/t3

f=1/t4

(b) IP1 $ size = 1KB

t1&f=1
t3

t5

t3

f=0/t5

t4

(c) IP1 $ size = 2KB

IP1 IP2

t1&f=1

IP1 IP2
time IP1 IP2

t2

time

(a) FSM representation of two IP cores

S1 S2 S3 S4

Figure 2: Interdependency between cache configuration and system
behavior: an illustrative example.

[17]. In the protocol, each block (line) in a cache has five states :
invalid , exclusive clean/modified, shared clean/modified. Exclu-
siverepresents that only the block has the valid copy among caches.
Sharedrepresents that the block shares the same copy with another
cache(s).Cleanrepresents that the contents of the block is the same
with that of the shared memory andmodified represents the copy
in the shared memory is not valid and only the copy of the cache
block is valid.

For cache coherency, each cache sends four types of special
message (CORD, WR, INV, and CORD INV) to the other caches
in one of three cases : read miss, write miss, and write hit with
shared clean/modified. When read miss, if the victim block2 is in
statevalid, its contents is written back to shared memory with a
WR type message. To read a new block from another cache or the
shared memory, a CORD type message is used. When it is read
from another cache (the owner of the block), the contents of shared
memory is also updated (memory reflection). When write miss, a
WR type message is used to write back the victim block in the case
that its state isvalid. To read a new block which will be overwritten
immediately, a CORD INV type message is used. When write hit
to a block with stateshared, an INV type message is used forwrite
invalidation .

4 Case Study

In this section, we first give an example of the interdependency
between cache configuration and system behavior. Then, we give
experimental results showing the effects of interdependency in two
practical systems.

4.1 An Illustrative Example
Figure 2 (a) illustrates an example of system representation with
two IP cores,IP1 andIP2 which are modeled with two concurrent

2A victim block is the cache block to be replaced by cache conflict.

FSM’s. Circles and edges represent states and transitions, respec-
tively. Each transition is labeled by “guard/action”. Consider the
two IP cores communicate with each other (via caches and shared
memory) on the communication architecture shown in Figure 1.
Figure 2 (b) and (c) are assumed to represent snapshots of execu-
tion traces of two IP cores whenIP1 has a data cache with sizes
of 1KB and 2KB. In the figures, each vertical line segment corre-
sponds to an action related with a transition.

Let us assume the following scenario of the system execution.
IP1 is in stateS1 andIP2 in stateS3 in Figure 2 (a). BothIP1 and
IP2 make transitionst1&f=1 and t3, respectively. In state transi-
tion t1&f=1, IP1 sets a shared variablef to 1 (assumingf is initially
0). In the case that the cache size ofIP1 is 1KB, due to frequent
cache misses, the state transition ofIP1, t1&f=1 runs slow and fin-
ishes later thant3 of IP2 as shown in Figure 2 (b). In this case,
whenIP2 finishes transitiont3, the variablef is still 0. Thus,IP2

makes transitiont5 as shown in Figure 2 (b). However, in the case
that the size ofIP1 cache is 2KB, as shown in Figure 2 (c), transi-
tion t1&f=1 runs faster (by reduced cache misses assuming that the
larger cache yields more hits) and finishes earlier than transitiont3.
Thus, when transitiont3 finishes, the shared variablef is 1. In this
case,IP2 makes transitiont4. Figure 2 (b) and (c) show that there
can be two different execution traces ofIP2 for two different cache
configurations ofIP1.

As illustrated in the example of Figure 2, in multiple-cache sys-
tems, the execution trace, i.e. the address trace of the system can
change depending on cache configurations. In general, the interde-
pendency problem between cache configuration and system behav-
ior belongs to the interdependency problem between timing and
behavior. In this paper, we limit the problem to the interdepen-
dency between cache configuration and system behavior, i.e. ad-
dress traces in multiple-cache IP-based systems.

4.2 E�ects of the Interdependency

4.2.1 Case Examples
For the case study, we used a CDMA modem system [8][9] and a
CD2DAT system from Ptolemy demo examples. The CDMA mo-
dem system is the transmitter of IS-95 CDMA mobile phone [18].
It consists of three IP cores:IP1, IP2 andIP3. IP1 performs CRC
(cyclic redundancy code) generation, convolutional encoding, and
symbol repetition.IP2 is a block interleaver.IP3 performs 64-ary
orthogonal modulation, data randomization, long code generation,
PN (pseudo-noise) code generation, and QPSK modulation. The
CD2DAT system consists of four IP cores each of which performs
a specific FIR operation. For the experiment, IP cores were written
in SystemC [19] at the cycle-accurate behavioral level. The code
sizes are 938 lines (CDMA) and 1,047 lines (CD2DAT).

Figure 3 shows the architectural view of CD2DAT system. Type
information (CORD, WR, INV, or CORD INV) is also carried on
the address bus. The cycle-accurate behavioral model of cache, a
bus arbiter, and shared memory were written in SystemC and their
total code size is 1,549 lines.

4.2.2 Experiments
In our experiments, each cache has the following design parame-
ters: number of blocksb, block sizes, and associativitya. The
ranges of three parameters are (1, 2, 4, 8, 16, 32, 64, 128, or 256)
for parameterb, (1, 2, 4, 8, 16, or 32) for parameters, and (1, 2,
4, or 8) for parametera. We generated 100 static traces for each
system3 and for each static trace, we generated 100 random cache
configurations. Thus, for each of 100*100 = 10,000 cache config-
urations, we ran cycle-accurate behavioral simulation of the sys-

3To generate a static trace, we choose a random cache configuration and run cycle-
accurate simulation of the system. During the cycle-accurate simulation, assuming
perfect caches and no bus conflict, we extract address accesses as the static trace.

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

IP1 IP2 IP3 IP4

ad
dr

es
s

m
re

q rw
da

ta
m

ih

ad
dr

es
s

m
re

q

da
ta

bg
ra

nt
bh

ol
d

m
ih

m
sh

br
eq

bh
ol

d
bg

ra
nt

rw br
eq

ad
dr

es
s

m
re

q

da
ta

bg
ra

nt
bh

ol
d

m
ih

m
sh

rw br
eq

ad
dr

es
s

m
re

q

da
ta

bg
ra

nt
bh

ol
d

m
ih

m
sh

rw br
eq

ad
dr

es
s

m
re

q

da
ta

bg
ra

nt
bh

ol
d

m
ih

m
sh

rw br
eq

cache cache cache cache

bus arbiter shared memory

Figure 3: A detailed representation of multiple-cache communica-
tion architecture for the CD2DAT system.

Table 1: Comparison of estimation accuracy.
cache configurations. performance (clock cycles)

(b,s,a)’s CA static error

CDMA modem
(2,16,4) (4,16,1) (128,16,4) 147,848 105,577 -28.59%
(32,16,4) (64,16,2) (16,16,4) 104,043 141,013 35.53%

(2,8,4) (1,8,2) (32,8,4) 150,602 113,698 -24.50%
(64,8,4) (128,8,2) (1,8,4) 104,279 132,706 27.26%

CD2DAT
(2,16,1) (8,16,2) (4,16,1) (8,16,2) 931,667 282,439 -69.68%
(32,1,4) (128,1,1) (128,1,4) (8,1,2) 221,102 476,494 115.51%

(2,2,4) (8,2,2) (2,2,4) (32,2,1) 942,366 451,405 -52.10%
(64,8,4) (1,8,1) (128,8,2) (4,8,1) 594,876 330,133 -44.50%

tem and trace-driven cache simulation.4 The average numbers of
memory accesses in static traces are 89,558 (CDMA) and 811,238
(CD2DAT).

Table 1 shows some cache configurations of the two systems
where static traces yield large error in the estimation of system per-
formance. In the first column, cache configurations of three (four)
caches of CDMA modem system (CD2DAT system) are shown.
In the column headings,CA represents the cycle-accurate simula-
tion andstatic represents trace-driven cache simulation with static
traces. As shown in the table, static traces give large error (up to
115%), especially when some of cache parameters have minimum
values, i.e. at the boundary of the parameter space,

To visualize the variation of estimation error, we obtained the
estimation error varying two arbitrarily selected parameters of cache
configurations while the other parameters are fixed. Figure 4 shows
the performance estimation error. In Figure 4 (a) and (b), we vary
the numbers of blocks of two caches (in the figure, b(IP1) and
b(IP2) for CDMA modem and b(IP1) and b(IP4) for CD2DAT) in
each system. In Figure 4 (c) and (d), we vary the number of blocks
of one cache and the degree of associativity of another cache (in
the figure, b(IP1) and a(IP2) for CDMA modem and b(IP1) and
a(IP4) for CD2DAT) in each system. The other fixed cache param-
eters are shown in the corresponding figures.

In our experiments, we observed that in the cases of multiple-
cache systems, there may be no universal trace to give accurate
performance estimation over all the possible cache configurations.
Thus, trace-driven cache simulation with static traces can give sig-
nificant error in performance estimation. Since such an error is due
to the interdependency between cache configuration and system
behavior, for accurate estimation of system performance, simula-

4We use our own trace-driven cache simulator for multiple-cache systems.

\ \

]]

_ _

c c

\ \
a a

^̂
]]

a a
_ _

\ \
]]
c c

]]
`̀
a a

\\

]]

__

cc

[[

`̀

\\[[

\\`̀

]][[

]]`̀

^̂[[

^̂`̀

Error
(%)

(c) CDMA : (*,16,4) (4,16,*) (128,16,4)

b(IP1) a(IP2)

(d) CD2DAT : (*,16,1) (8,16,2) (4,16,1) (8,16,*)

b(IP1) a(IP4)

Error
(%)

\ \

_ _

\ \
a a

a a
_ _

]]
`̀
a a

\\

__

\\aa

aa__

]]`̀aa
[[

`̀

\\[[

\\`̀

]][[

]]`̀

^̂[[

^̂`̀

Error
(%)

(a) CDMA : (*,16,4) (*,16,1) (128,16,4)

b(IP1) b(IP2) b(IP1) b(IP4)

(b) CD2DAT : (*,16,1) (8,16,2) (4,16,1) (*,16,2)

Error
(%)

\ \

_ _

\
a
\
a

a
_
a
_

]
`
]
`
a a

\\

__

\a\a

a_a_

]`]`aa

XXcc[[

XXbb[[

XXaa[[

XX`̀[[

XX__[[

XX^̂[[

XX]][[

XX\\[[

[[

\ \

]]

_ _

c c

\
a
\
a

^
]
^
]

a
_
a
_

\
]
c

\
]
c

]
`
a

]
`
a

\\

]]

__

cc

XXc[c[

XXb[b[

XXa[a[

XX`[`[

XX_[_[

XX^[^[

XX][][

XX\[\[

[[

Figure 4: Performance estimation error of trace-driven cache sim-
ulation.

IP1

read miss!

IP1
IP2

read miss
penalty
cycles

bus conflict
delay

write miss
penalty
cycles

(a)

(b)

func_A() func_A()

func_B()

T2

T0 T0

T3

T1

IP2

T1

write miss!

Figure 5: Illustration of scheduling IP core simulation and memory
accesses.

tion of the system behavior at the behavioral level seems to be in-
evitably performed with the efficient simulation of multiple caches
and communication architecture.

5 Proposed Performance Estimation Method

In this section, we present a method that estimates system perfor-
mance accurately by simulating IP cores at the behavioral level
with annotated delays and by simulating the multiple-cache com-
munication architecture with an extended shared memory model.
We assume that the abstraction-levels of behavioral models of IP
cores are selected by designers considering the trade-off between
simulation speed and estimation accuracy in terms of behavioral IP
simulation. In this paper, we focus on fast and accurate simulation
of multiple-cache communication architecture. In our work, we
model memory accesses from IP cores to caches (and related mem-
ory accesses among caches and shared memory) as anextended
shared memory model. The extended shared memory model
is an integration of cache simulation (with timing information)
and communication architecture simulation. It controls the sim-
ulation order of IP core simulation and memory accesses to itself.
In the next subsection, we give an example of the control. In section
5.2, we explain the extended shared memory model in detail.

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

ad
dr

es
s

m
re

q
rw da

ta
gr

an
t

IP1 IP2 IP3 IP4

Extended shared memory model

Figure 6: An architecture of IP cores and the extended shared mem-
ory model.

5.1 Scheduling IP Core Simulation and Memory Accesses
The extended shared memory model controls the simulation order
of IP core simulation and memory accesses to itself by scheduling
itself, memory accesses, and simulation events going to the simu-
lation models of IP cores. Figure 5 illustrates a case of the schedul-
ing. Assume that two IP coresIP1 andIP2 are running and com-
municating with each other via caches and shared memory. First,
simulation of two IP cores run independently until each IP core
performs a memory access. Figure 5 (a) shows thatIP1 performs a
read access at timeT0 andIP2 starts to perform three consecutive
memory write accesses at timeT1 (T0 < T1). Assume thatIP1 ’s
read access yields a read miss and the state of victim cache block is
invalid . Since there is no cache occupying the bus at timeT0, the
cache ofIP1 can start to read a cache block from the other cache
or shared memory at that time. In this case, the memory read ac-
cess is delayed (by the extended shared memory model) until time
T2 by the read miss penalty cycles. At timeT2, the read access is
performed, then simulation ofIP1 resumes.

Assume that the memory access ofIP2 yields a write miss and
the state of victim block isvalid. Since the bus is occupied by the
cache ofIP1 at timeT1, the memory access ofIP2 is delayed (by
the extended shared memory model) until timeT2 when the bus
is released. At timeT2, it is delayed again until timeT3 by the
write miss penalty cycles, i.e. the sum of write-back delay and read
delay for CORD INV type. At timeT3, three consecutive mem-
ory write accesses start to be performed. The scheduling continues
in this way. The extended shared memory model implements the
scheduling.

Each IP core is assumed to initiate a memory access by mak-
ing events on its address bus,addressand memory request signals,
mreq and rw . When granted bygrant signal, it reads/writes a
data item from/to the extended shared memory model via its data
bus, data. Figure 6 shows the architecture consisting of four IP
cores of CD2DAT system and the extended shared memory model.
Compared with the one in Figure 3, the dashed box in Figure 3 is
replaced by the extended shared memory model in Figure 6. Sim-
ulation of the whole system consisting of simulation models of IP
cores and the extended shared memory model can be performed in
event-driven simulation. In our implementation, we use the Sys-
temC simulation environment as the event-driven simulator.

5.2 An Extended Shared Memory Model
Figure 7 shows the pseudo code of extended shared memory model.
We assume that each IP core has its own cache and caches are con-
nected by a single shared bus.5 When an IP core initiates a mem-
ory access by events on its address bus and control signals (mreq
and rw), a structure called MA (abbreviation of memory access) is
constructed (line 1). The MA is represented with a tuple<IP, ad-
dress, rw , victim block state, delay, ts> whereIP, address, and
rw represent the IP core that initiates the memory access, the ac-
cessed address, and the direction of memory access (read or write).

5Considering some IP cores that have not caches is straightforward in our model
since all the memory accesses by them have only to be considered to be misses to
virtual caches with no data storage. Considering extended shared memory models for
partitioned or hierarchical bus architectures with caches can be our future work.

1 if IP[i].addr.event(), then insert(QueueMA, new MA(IP[i], IP[i].addr, IP[i].rw));
2 if IP[i].data.event(), then MEM[IP[i].addr] = IP[i].data;
3 while(1) {
4 CurrMA = GetHighestPriority(QueueMA); // dequeue CurrMA
5 if CurrMA.ts > CurrTime, then { schedule(itself, CurrMA.ts); return; }
6 switch (check_hit(CurrMA)) {
7 case read_hit || write_hit && CurrMA.block_state == Exclusive :
8 schedule(CurrMA.IP.grant, ‘1’, CurrTime + CurrMA.delay);
9 if read_hit, then
10 schedule(CurrMA.IP.data, MEM[CurrMA.addr], CurrTime + CurrMA.delay);
11 case other_write_hit :
12 if CurrMA.ts >= NextBusFreeTime, then
13 schedule(CurrMA.IP.grant, ‘1’, CurrTime + INVDelay + CurrMA.delay);
14 NextBusFreeTime = CurrTime + INVDelay;
15 else, CurrMA.ts = NextBusFreeTime; insert(QueueMA, CurrMA);
16 case read_miss:
17 if CurrMA.ts >= NextBusFreeTime, then
18 if CurrMA.victim_block_state == Modified, then
19 schedule(CurrMA.IP.grant, ‘1’, CurrMA.IP.data, MEM[CurrMA.addr],
20 CurrTime + WBDelay + CO_RDDelay + CurrMA.delay);
21 NextBusFreeTime = CurrTime + WBDelay + CO_RDDelay;
22 else
23 schedule(CurrMA.IP.grant, ‘1’, CurrMA.IP.data, MEM[CurrMA.addr],
24 CurrTime + CO_RDDelay + CurrMA.delay);
25 NextBusFreeTime = CurrTime + CO_RDDelay;
26 else, CurrMA.ts = NextBusFreeTime; insert(QueueMA, CurrMA);
27 case write_miss :
28 if CurrMA.ts >= NextBusFreeTime, then
29 if CurrMA.victim_block_state == Modified, then
30 schedule(CurrMA.IP.grant, ‘1’, CurrTime + WBDelay +
31 CO_RD_INVDelay + CurrMA.delay);
32 NextBusFreeTime = CurrTime + WBDelay + CO_RD_INVDelay;
33 else
34 schedule(CurrMA.IP.grant, ‘1’, CurrTime + CO_RD_INVDelay +
35 CurrMA.delay);
36 NextBusFreeTime = CurrTime + CO_RD_INVDelay;
37 else, CurrMA.ts = NextBusFreeTime; insert(QueueMA, CurrMA);
38 }
39 UpdateMemoryBlockInformation(CurrMA);
40 }

Figure 7: Pseudo code of the extended shared memory model.

Victim block stateis the state of victim cache block to be replaced
by the memory access.Delay is the delay of memory access if there
are no read/write miss and no write invalidation associated with it.
Ts is a timestamp and is set to CurrTime (the current simulated time
of the system) when the MA is constructed. After constructed, the
new MA is inserted into a queue QueueMA. MA’s in the queue are
sorted in the increasing order of timestamp.

In line 4, GetHighestPriority() returns the MA having the high-
est bus access priority among the earliest MA’s. A bus access pri-
ority is assigned (by the designer) to each cache attached to an IP
core and, correspondingly, to the memory accesses by the cache. In
line 5, if the timestamp of the earliest MA is later than CurrTime,
the extended memory model schedules itself at the timestamp. In
line 6, the current memory access is tested if it gives cache hit or
miss. For the test, the information of address block (flagsthat indi-
cate which cache has the copy of the block andstatesof the block
in the caches) are managed. From line 7 to the end of the pseudo
code, for each case of the test results, events (ongrant anddata)
to be sent to the IP core (CurrMA.IP) are scheduled or currMA is
scheduled again at a future time in the case that the memory ac-
cess cannot be executed due to bus conflict. To check to see if the
bus is available, a variable NextBusFreeTime is compared with the
timestamp of CurrMA.

In the case of readhit or write hit to the block with stateexclu-
sive(line 7), since there is no bus access required by the cache, Cur-
rMA.IP is granted after CurrMA.delay. In case of memory read ac-
cess, the contents of the memory location (MEM[CurrMA.address])
is scheduled to be placed on the data bus of the IP core after Cur-
rMA.delay. To schedule the event in the event queue of the event-

Table 2: Runtime comparison.
cache configurations. simulation runtime (second)

(b,s,a)’s CA proposed speedup

CDMA modem
(2,16,4) (4,16,1) (128,16,4) 15.0 0.46 32.6
(32,16,4) (64,16,2) (16,16,4) 10.5 0.29 36.2

(2,8,4) (1,8,2) (32,8,4) 14.6 0.47 31.1
(64,8,4) (128,8,2) (1,8,4) 9.9 0.27 36.7

CD2DAT
(2,16,1) (8,16,2) (4,16,1) (8,16,2) 32.0 3.48 9.2
(32,1,4) (128,1,1) (128,1,4) (8,1,2) 5.8 0.64 9.0

(2,2,4) (8,2,2) (2,2,4) (32,2,1) 30.7 3.64 8.4
(64,8,4) (1,8,1) (128,8,2) (4,8,1) 17.4 2.51 6.9

driven simulator, functionschedule()is used (line 10). Note that,
in the extended shared memory model, memory contents have only
to exist only in a single memory array (in the pseudo cose, MEM[]),
without managing the memory contents of individual caches.

In line 11,other write hit case represents write hit to a cache
block with statemodified. If the bus is available (line 12), then
grant signal is scheduled after INVDelay (write invalidation delay)
and CurrMA.delay (line 13). In line 14, NextBusFreeTime is in-
cremented by INVDelay.6 Note that the cache holds the shared
bus only for the time interval of INVDelay (not “INVDelay + Cur-
rMA.delay”) and the actual operation that the IP core writes (reads)
a data item to (from) the cache (i.e. the extended shared memory
model) is done at the boundary between the IP core and the cache
without occupying the shared bus. When the IP core is granted,
it writes a data item to the data bus. The event on the data bus is
detected and the contents at the memory location is updated in line
2. In line 15, if the shared bus is not available, then CurrMA is
scheduled again at NextBusFreeTime.

In line 18, if the state of victim block ismodified, the ac-
cessed data is scheduled to be placed on the data bus of IP core
after WBDelay (write-back delay) + CORD Delay (delay of new
line read) + CurrMA.delay (line 19 and 20). If the state is not
modified (i.e. clean or invalid), then WBDelay is not included
in the delay calculation (line 23 and 24). In the case ofwrite miss
(from line 27 to line 37), the difference between readmiss case is
CO RD INVDelay (delay of new line read with CORD INV type
message) is used instead of CORD Delay. After a memory access
is performed, the information of accessed memory block (e.g. flags
and states) is updated in line 39.

5.3 Experiments
Since the specification of an invalidation-based cache coherency
protocol [17] has been modeled in the extended shared memory
model, it gives accurate cycle counts. Thus, we compare the run-
times of two types of simulation : (1) simulation of behavioral
models of IP cores (with annotated delay) and the cycle-accurate
communication modules and (2) simulation of behavioral models
of IP cores (with annotated delay) and the extended shared mem-
ory model. Table 2 compares runtimes for several cache configura-
tions used in Table 1 and shows the speedup of using the extended
shared memory model compared to the case that the cycle-accurate
communication modules are simulated. In the two examples, we
performed more experiments whose details are not shown in this
paper due to the page limit and obtained simulation speedup, 25�

45 times (CDMA) and 7� 9 times (CD2DAT).
The speedup comes from simulating the multiple-cache shared-

bus communication architecture at a higher abstraction level with
the extended shared memory model. For instance, the extended
shared memory model eliminates data movement and transfer of

6Delay values (in our case, INVDelay, WBDelay, CORDDelay, and
CO RD INVDelay) associated with the cache coherency protocol can be easily char-
acterized by the protocol and implementation specification.

four types of messages between caches, which are frequent in the
operation of multiple-cache systems. It also eliminates snoopying
(for cache coherency check) that requires time-consuming opera-
tions such as comparison of address tags. The speedup depends
on the relative simulation workload required by IP cores and the
extended shared memory model.

6 Conclusion

We have presented a case study to show the effects of interde-
pendency between cache configuration and system behavior. We
also presented an extended shared memory model for fast and ac-
curate performance estimation of multiple-cache IP-based system.
The method gives accurate performance estimation and yields sig-
nificant performance improvement in terms of simulation runtime
compared with the cases that the cycle-accurate models of commu-
nication modules are simulated.

References

[1] K. Lahiri, A. Raghunathan, and S. Dey, “Fast Performance Analysis of Bus-
Based System-On-Chip Communication Architectures”,Proc. Int. Conf. on
Computer Aided Design, Nov. 1999.

[2] K. Lahiri, A. Raghunathan, and S. Dey, “Performance Analysis of Systems
with Multi-Channel Communication Architectures”,Proc. Int’l Conf. on VLSI
Design, Jan. 2000.

[3] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Communica-
tion Architecture Tuners: A Methodology for the Design of High-Performance
Communication Architectures for System-on-Chips”,Proc. Design Automation
Conf., June 2000.

[4] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches”,IEEE
Transactions on Computers, pp. 1612–1630, Dec. 1989.

[5] W. Wang and J. Baer, “Efficient Trace-driven Simulation Methods for Cache
Performance Analysis”,Proc. 1990 ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, pp. 27–36, May 1990.

[6] A. J. Smith, “Two Methods for the Efficient Analysis of Memory Address Trace
Data”, IEEE Transactions on Software Engineering, pp. 94–101, Jan. 1977.

[7] A. Agarwal and M. Huffman, “Blocking: Exploiting Spatial Locality for Trace
Compaction”,Proc. 1990 ACM SIGMETRICS Conf. on Measurement and Mod-
eling of Computer Systems, pp. 48–57, May 1990.

[8] Qualcomm, Inc., “CDMA System Engineering Training Handbook”, 1993.

[9] S. Yoo, J. Lee, J. Jung, K. Rha, Y. Cho, and K. Choi, “Fast Prototyping of an
IS-95 CDMA Cellular Phone : a Case Study”,Proc. the 6th Conference of Asia
Pacific Chip Design Languages, pp. 61–66, Oct. 1999.

[10] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing Energy
Dissipation of Embedded HW/SW Systems”,Proc. Design Automation Conf.,
pp. 188–193, June 1998.

[11] M. Lajolo, L. Lavagno, and A. Sangiovanni-Vincentelli, “Fast Instruction Cache
Simulation Strategies in a Hardware/Software Co-Design Environment”,Proc.
Asia South Pacific Design Automation Conference, Jan. 1999.

[12] Z. Wu and W. Wolf, “Iterative Cache Simulation of Embedded CPUs with Trace
Stripping”, Proc. Int. Workshop on Hardware-Software Codesign, pp. 95–99,
May 1999.

[13] T. D. Givargis, F. Vahid, and J. Henkel, “Interface and Cache Power Exploration
for Core-Based Embedded System Design”,Proc. Int. Conf. on Computer Aided
Design, Nov. 1999.

[14] R. L. Lysecky, F. Vahid, T. D. Givargis, and R. Patel, “Pre-fetching for Improved
Core Interfacing”,Proc. Int. Symposium on System Synthesis, Nov. 1999.

[15] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno, “Efficient Power Co-
Estimation Techniques for System-on-chip Design”,Proc. Design Automation
and Test in Europe, Mar. 2000.

[16] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-
Vincentelli, “Modeling Shared Memory Access Effects during Performance
Analysis of HW/SW Systems”, Proc. Int. Workshop on Hardware-Software
Codesign, Mar. 1998.

[17] B. Catanzaro,Multiprocessor System Architecture, A Technical Survey of Mul-
tiprocessor/Multithreaded Systems using SPARC, Multi-level Bus Architectures
and solaris (SunOS), Sun Microsystems, 1994.

[18] TIA/EIA-95A, “Mobile Station-Base Station Compatibility Standard for Dual-
Mode Wideband Spread Spectrum Cellular Systems”, 1995.

[19] Synopsys, Inc., “SystemC Reference Manual, Release 0.9”, available at
http://www.systemc.org/.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

