
Superlog, a Unified Design Language for System-on-chip

Abstract - The design of systems consisting of custom software
controlling custom digital hardware is easier if a single
language can be used for system specification, software
development, hardware design and hardware verification.
Superlog takes features of existing languages for software
development and hardware design, adds features for system
specification and hardware verification, and blends them into a
single, coherent language .

 I. Introduction

Currently we have system specification languages such as
SDL [1], we have hardware description languages such as
Verilog [2] and VHDL [3], we have testbench languages
such as Vera [4] and we have programming languages such
as C. This mixture means that the design intent is often re-
coded in different languages, making verification and
maintenance difficult and introducing bugs.

A single language for all four purposes would reduce this
re-coding and make it easier to re-use code from one part of
the design flow in another part. This would speed up the
design process and reduce the number of bugs.

There has been much talk about specifying hardware in C.
If it were easy to describe hardware in C, hardware
description languages would not have become popular. It is
common to code testbenches in C, yet testbench languages
are selling. Many system architects write C models of their
system, yet there is also a market for more specialized
languages.

 II. Related Work

There is a long history of adapting imperative
programming languages to describe hardware. Nowadays
the favorite programming languages are C, C++ and Java
[5]. Derivatives of C include Hardware C [6], Handel C [7],
Spec C+ [8] from UC Irvine, and Esterel C [9]. C++ has the
advantage that a class library can almost create a new
language by changing the meaning of operators, but this can

make it hard to understand. The Scenic [10] environment,
which has developed into SystemC from Synopsys, is an
example.

In spite of the attempts to adapt programming languages
to hardware description, most hardware design is done using
hardware description languages, which are dedicated to the
purpose. In the 1970s DDL and ISP [11] were just academic
languages. In the early 1980s, gate arrays created the need
for logic simulation, and the simulators usually had four
languages (or formats) - netlist, stimulus, modeling and
simulator control. Hardware description languages initially
combined the netlist and modeling languages but kept
different stimulus and control languages e.g. HILO [12].
VHDL combined the netlist, modeling and stimulus
languages, and Verilog included the simulator control
language as well.

With the advent of synthesis there were attempts to move
back to languages which only described hardware and hence
were synthesizable, e.g. ELLA, UDL/I. This approach was
overtaken by the synthesizable subset of a simulation-based
language, and now Verilog or VHDL are used for the
majority of large designs.

The complexity of designs, and hence testbenches, has
increased. Now specialized testbench languages have
appeared with 'software-like' features. Indeed many people
use the programming language interface (PLI) to Verilog
simulators to write testbenches in C or PERL, sometimes
with the help of a threads package.

There are hardware verification languages such as Vera
from Synopsys and 'e' from Verisity. These are currently
proprietary but Vera's reported features include dynamic
process creation and sequence checking.

This is partially because Verilog is poor as a general-
purpose programming language. It has no dynamic memory
allocation (not even a stack let alone a heap), poor built-in

Peter L. Flake and Simon J. Davidmann

Co-Design Automation, Inc.
San Jose, CA 95113-1295

Tel : 408-718-1678
Fax : 408-273-6025

e-mail : flake@co-design.com,
simond@co-design.com

input, and text processing is extremely difficult.

VHDL has more programming functionality than Verilog,
but it is hampered by three problems: the strict and complex
data type system, the limited inter-process communication
and the fixed number of processes. Some of these problems
are being tackled by proposals to extend VHDL, but they
tend to complicate an already complex language.

There are also system design languages. Some of these
are standards in particular industries, such as SDL in
telecom. Some are proprietary, often hidden behind
graphical interfaces. Most are not suitable for designing
hardware or for writing general embedded software.

 III. Requirements

A new language should cover system specification,
software development, hardware design, and hardware
verification. In the embedded software development field, C
is the most widely used language, although there is some use
of C++, Ada and Java, and still some use of assembly code.
In the hardware design field Verilog and VHDL are both
popular. Looking at the language styles, the natural pairings
are C with Verilog and Ada with VHDL. In the system
specification and hardware verification fields, there are
various languages in particular market segments, but no
overall dominance greater than C.

The minimum new language, therefore, should contain
Verilog and C functionality. However, these languages have
limitations in system and testbench modeling, which is why
testbench languages have appeared. The following features
are examples:

(a) Create and destroy processes like an operating system
(b) Check that changes occur in a particular sequence.
(c) Apply behavioral code to various I/O ports

In addition, there are some general hardware design
features that would be useful in Verilog, some of which are
being considered by the Verilog 2000 committee:

(d) A 'generate' statement like in VHDL
(e) Avoiding the repetition of ports in hierarchical designs

There are also improvements that could be made to C for
general programming purposes as well as for system
modeling:

(f) Dynamic arrays, support for queues
(g) String handling

Thus, a single language that can meet all these
requirements should give a substantial improvement in
productivity.

 IV. Overview

As its name implies, at first sight Superlog looks like
Verilog, as shown in Fig. 1. Braces '{}' are used for data but

not for code. The 'begin end' or 'fork join' from
Verilog is used to emphasize the sequential or concurrent
execution of statements.

Fig. 1 Superlog code fragment

Superlog is not a strict superset of Verilog. Some little-
used features such as quasi-continuous assignments have
been removed, as have the switch level features.

Superlog assumes an event-driven model. The basic data
communication mechanism between processes is the shared
variable, like a Verilog 'reg', but resolution functions can be
used to model wire behavior.

 V. Data Types and Declarations

Superlog contains both C and Verilog built-in data types.
Like Java, it has a byte data type, which is guaranteed to be
8 bits, whereas char is not, and a long data type, which is 64
bits. Like VHDL it has a bit data type which is 0 or 1, as

// A tree search routine showing software
features

typedef struct {string s;
ref node left, right;} node;

// global data
ref node n, root;// pointers to nodes
int visited = 0;//number of nodes visited

function ref node find(
string str, ref node parent);

if (parent == null) return null;
visited++;
if (str == parent->s) return parent;
if (str < parent->s) return find(
str, parent->left);

else return find(str, parent->right);
endfunction

// state machine showing new hardware
features

module FSM4(input logic serial, clock,
reset);

state {S0, S1, S2} currentState;

always_ff @(posedge clock iff !reset)
transition (currentState)
S0:if (serial == 1) ->>S2;
S2:if (serial == 0) ->> S1;
else ->> S0;

S1: ->> S0 n = find("a", root);
endtransition

endmodule

distinct from the logic data type which is 0, 1, X or Z as in
Verilog. These are called 'unmasked' and 'masked' data
types respectively.

Like C and VHDL, Superlog has user-defined data types,
which can be enumerations, structures, pointers or arrays.
Like C, it also has unions. User-defined data types are
introduced by 'typedef' as shown in Fig. 1.

Data declarations follow the C syntax of qualifier, type
and instances with optional initializers, as shown in Fig. 1

Arrays are of five types: packed, unpacked (fixed and
variable length), sparse and associative. Packed arrays are
like Verilog registers and can be written or read in a single
action. Slices (part selects) can also be written or read.
Variable length arrays are useful for modeling queues.

A new kind of 'state' declaration is provided for defining
state machines, as shown in Fig. 1. This is more than just an
enumerated type, because the state names have variable
values.

 VI. Operators and Expressions

These essentially follow the rules of Verilog and C, which
are similar in most cases. In both languages, the type and
size of the operands are fixed, and hence the operator is of a
fixed type and size. This allows efficient code generation,
and Superlog supports it.

Unlike VHDL, Superlog allows data types to be easily
converted. When a masked value is converted to an
unmasked value, the X or Z is converted to 0. An operator
that has a masked input is a masked operator.

 VII. Procedural Statements and Control Flow

Superlog has the C and Verilog control constructs. A new
'transition' construct is provided for synchronous state
machines, to facilitate their recognition by synthesis and
verification tools. This is like a Verilog 'case' statement but
the cases are limited to state names belonging to the state
machine identified in the transition statement. The
transitions to a new state are indicated by '->>', as shown in
Fig. 1.

The example also shows a conditional event expression,
with the 'iff' keyword, which in this simple case provides
shorthand for:

do @(posedge clock); while (reset);

Conditional event expressions can be combined with 'or' to
provide complex event control.

In addition, Superlog has an assertion that an expression
is true like in VHDL. It also has a construct to check a

sequence. This enables a simulator to automatically trap an
illegal sequence error, and enables a stimulus generation tool
to keep within the constraints of a protocol.

 VIII. Functions and Tasks

The Verilog distinction between functions, which cannot
take simulation time, and tasks, which can, is preserved in
Superlog. Note that VHDL has a similar distinction, which
allows expressions to be guaranteed instantaneous
evaluation. Because of its inclusion of C data types, it is
easy for Superlog to call C functions.

In Verilog, tasks cannot have event expressions
containing arguments, nor can they write directly to
arguments during execution. Superlog overcomes these
limitations, allowing arguments of mode 'port'.

To communicate with foreign languages such as C, there
are 'import' and 'export' statements for functions and tasks.

 IX. Processes

Superlog provides specialization of the 'always' construct
to indicate processes that are synthesizable to combinatorial
logic, sequential logic with latches, or sequential logic with
flip-flops. The Verilog fork-join construct allows the
structured creation and destruction of processes, but this is
inadequate for modeling an operating system, or even a
hardware pipeline. Superlog therefore allows unstructured
creation and destruction of processes.

 X. Modules and Interfaces

Superlog provides enhanced hierarchical structures
compared with Verilog. Module declarations can be nested,
providing better control of name space. To encapsulate
connectivity and communications, a new entity called an
interface can connect module instances. The simplest
example of an interface is a bundle of wires. Interfaces can
also contain variables, functions and tasks to model a bus at
a more abstract level.

Data, functions and tasks can also be defined outside
modules and interfaces, which makes them global in scope.

For Verilog compatibility and performance, there are
built-in module types (gates) and built-in interface types
(wires).

 XI. File Structure

Superlog follows the Verilog file structure, where all
source files are concatenated and compiler directives persist
across file boundaries. The usual directives are supported,
including macros with parameters.

 XII. Concluding Remarks

The Superlog language contains the functionality of:
Verilog for hardware design
C for software
Direct calling of C for libraries and third party software

And new constructs:
Interfaces to encapsulate communication
Sequence checking for protocols
State machines for designing control logic
Dynamic processes for modeling real time software

Thus Superlog contains much more functionality than
VHDL, but with a simpler type system to simplify the
language overall.

The mixture of languages currently used (Verilog, C,
VHDL, etc) makes the design of complex systems on a chip
much more painful than it need be. Superlog streamlines the
design flow by providing one unified language that can
specify systems, hardware, testbenches and software. The
benefit is higher productivity and quality due to more re-use
of code through the various stages of the design flow.

Acknowledgements

The authors wish to thanks the members of Co-Design's
Technical Advisory Board, Phil Moorby, Don Thomas and
Mike McNamara, for their comments during the
development of Superlog, and the other members of the
company who have contributed to its specification and
implementation.

References

[1]A. Olsen et al., Systems Engineering using SDL-92, Elsevier
1994.
[2] IEEE Std 1394 - Hardware Description Language Based on the
Verilog Hardware Description Language, IEEE 1996.
[3] IEEE Std 1076 - 1993 IEEE Standard VHDL Language
Reference Manual, IEEE 1994.
[4] S. Al-Ashari, "System Verification from the Ground Up"
Integrated Systems Design, January 1999.
[5] R. Helaihel, K. Olukotun, "Java as a Specification Language
for Hardware-Software Systems", Proc. IEEE/ACM ICCAD, Santa
Clara, 1997.
[6] Hardware C - A Language for Hardware Design CSL
Technical Report CSL-TR-90-419, Stanford University, April
1990.
[7] M. Aubrury and M. Sauer, Hardware/Software Co-simulation
for a Rapid Prototyping Environment, Hardware Compilation
Group, Oxford University Computing Laboratory, UK, August
1997.
[8] J. Zhu, R. Domer, D. D. Gajski, Syntax and Semantics of the
Spec C+ Language, Technical Report ICS-97-16, Dept of
Information and Computer Science, UC Irvine, April 1997.
[9] L. Lavagno, E. Sentovich “ECL: A Specification Environment
for System-Level Design”, Proc. ACM/IEEE DAC, New Orleans,
LA, 1999.

[10] S. Liao, S. Tjang, Rajesh Gupta, "An Efficient Implementation
of Reactivity for Modeling Hardware in the Scenic Design
Environment" Proc. ACM/IEEE DAC, Anaheim, CA, 1997
[11] S. J. Davidmann, Multi Level Simulation in Digital System
Design, MSc Dissertation, 1980, University of Essex, UK
[12] P. L. Flake, P. R. Moorby, G. Musgrave, "HILO Mark 2
Hardware Description Language" Proc. ACM/IEEE CHDL,
Kaiserslautern, Germany, 1981.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

