SystemC Standard

Dr. Guido Arnout

President and CEO
CoWare, Inc.
Santa Clara, CA 95051
Tel : 408-748-2929
Fax : 408-748-2939
e-mail : guido@coware.com

Abstract - The emergence and great popularity of system-on-
chip (SoC) designs has brought with it a variety of suggestions
for a single language that can describe all of the functional
requirements for those highly complex designs. This paper
takes a look at the requirements for system-level design
languages and evaluates what it will take for any of these
languages to be successful.

I. INTRODUCTION

The hardware design world standardized on two
languages for hardware design: VHDL and Verilog. Lately,
there has been a growing effort to find a language that can
describe the hardware at a much higher level. Also, as
software has become a much more important part of all
electronic systems, sometimes as much as 90% of the design
is software, efforts have been made to find a system-level
design language that can work for both hardware and
software high-level descriptions.

The driving forces behind the urge towards a system-level
design language are the simultaneous increase in design
complexity, with multi-million gate designs, and increase in
pressure to get designs out faster with first-time design
success. System-level design is required to get new designs
to market fast and to manage design complexity.

Because this is a new market, there are a number of
suggestions for system-level design languages. This paper
takes a serious look at system-level design languages and
what it will take for a language to succeed in this fast-
growing market.

Il. THE NEED FOR A SYSTEM-LEVEL DESIGN
LANGUAGE

There are four major reasons why a system-level design
language is now necessary. First, SoC designs combine
hardware and software, not just hardware only as in
traditional ASIC design. As a matter of fact, there is more
software than hardware in most designs (see Fig. 1).
Therefore, there is a need for a language that describes the

functionality of both the software and hardware. Hardware
description languages only describe the hardware. In
addition, major design elements can move from hardware to
software and back to hardware in successive generations,
particularly as standards are established or changed.
Therefore, it is essential that the system be defined first, and
the exact implementation (hardware or software) be
established later in the design process.

Software

22%

Re-

66% Use

Memory

[670 Glue |
6% New

Hardware

Figure 1. System content is dominated by
software

Second, SoC designs are increasingly incorporating
hardware and software intellectual property (IP) from
various sources. All of these sources need to use a common
system-level design language so the entire system can be
modeled. Currently, with a variety of non-standard system-
level design languages, IP vendors must choose the
language(s) they want to support. Pitty the poor designer
faced with integrating IP described in different and
incompatible modeling languages.

Third, even hardware-only designs are becoming too
complex to simulate in RTL. Simulating the entire design at
a higher level provides much faster simulation times and lets
the designer test the behavior of the entire chip before it is
produced.

Fourth but definitely not the least important, system-level

design is no longer a luxury — it’s a necessity. There’s no
way a multimillion-gate design can be successfully
implemented the first time without careful system-level
planning. System-level design is also required to develop a
virtual prototype of the hardware that the software designers
can use to begin software development. The old model of
waiting until the hardware is finished to begin software
development is totally out of date. Time-to-market is too
important.

Integrated Circuit Engineering (ICE), a market research
company based in Scottsdale, Arizona USA, claims that by
2004, 70% of all ASICs will be a system on a chip, and 85%
of all ASICs will contain some form of licensed IP[1].
Therefore, there will be increasing pressure on the
semiconductor vendors, ASIC suppliers, IP providers, and
EDA tool vendors to standardize on a common language that
can be used with tools and IP for system-level design.

I1l. WHAT IS A SYSTEM-LEVEL DESIGN
LANGUAGE?

Before the various proposals for system-level design
languages can be evaluated, it is important to clarify what
exactly is a system-level design language. Fundamentally, a
system-level design language is a notation that embodies
semantics for describing a system prior to mapping it onto
an architecture[2]. Components must be able to be described
without making assumptions about the implementation.
Take, for example, a microprocessor-based system. The
system-level design language must have a way to describe
the behavior of the components in the system irrespective of
whether they will be mapped to software running on a
microprocessor, or mapped to application-specific hardware.
Equally, it should be possible to use the language to
construct a performance model. Such a model allows
exploration of the architecture of the system without
specifying exactly what microprocessor or bus specification
will be used in the implementation, or without specifying the
functional behavior in full. That decision can be made later
after the entire system is described and simulated at a very
high level. Then the best microprocessor and bus
architecture for that particular application can be selected
and implemented. It should further be possible to add either
performance detail to the behavioral model, or behavioral
detail to the performance model, to achieve a mapping of
function onto architecture.

The language should support notions of structure and
hierarchy that allow hugely complex systems to be broken
down into manageable blocks. Multiple levels of abstraction
are also clearly necessary, to be able to start at a more
abstract level and add implementation detail in a process of
step-wise refinement. This applies both to the content of
each of the blocks and the communication signals, data-
types and protocols between them.

The language must include the ability to incorporate the
description of constraints, such as event ordering, timing,
dependencies and concurrency, with granularity and

scheduling mechanisms. This introduces another area of
complication. Particular mechanisms are often suited not just
to a certain level of abstraction, but also to a certain
application domain.

SDL[3], Esterel[4] and Lotos[5] are examples of
languages, mainly for describing software, at a high level of
abstraction in relatively narrow application domains.
UML[6] shows signs of emerging as a more general level
above C++ for software.

IV. DEVELOPING AN ENTIRELY NEW
LANGUAGE

The fact that there was no one language that already
existed that was perfect for system-level design was
recognized years ago, but the pain of designing huge SoC
designs made this very apparent by the mid-1990s. Over the
past five years, there have been a number of attempts to
define an entirely new language that would meet all of the
requirements for system-level design.

A. Rosetta: The Search for an Ideal Language

In the fall of 1996, a language development effort was
kicked off by the EDA Industry Council Project Technical
Advisory Board (PTAB). This has evolved into the SLDL
Initiative currently sponsored by VHDL International. The
work being done on this can be seen from their web site at
pwww.inmet.com/SLDL)

The SLDL Initiative quickly realized that it was not
possible to meet all the criteria for a system-level design
language, for all levels of abstraction in all application
domains, with a single language. In 1999, this group
proposed a new framework called Rosetta. The plans for
Rosetta include the integration of multiple domain theories
into a common semantic framework that supports the ability
to budget and decompose system-wide capabilities and
enable early estimation, co-synthesis and formal verification
by EDA tools[7]. A preliminary and incomplete Rosetta
semantic definition is available at that web site. It will take a
few more years to flush out the specs for the language
because of the complexity of this project.

Once Rosetta is finalized, it still will have to stand the test
of being adopted by the hardware, software and architectural
design communities. Design tools, including simulators, will
need to be developed specifically for this language. Getting
engineers to adopt a new language has proven, over the
years, to be a very challenging and time-consuming process.

B. SuperLog to the Rescue?

One EDA company, Co-Design Automation, is suggesting
that its SuperLog language is the ideal solution for future
design. Twelve other EDA companies have announced their
intention to bring out new tools to support SuperLog[8].
According to the Co-Design Automation web site at
www.co-design.com, SuperLog provides the simplicity of

http://www.inmet.com/SLDL

Verilog with the power of the C programming language. Yet
it is clear that it does not meet all the criteria for a system-
level design language and is clearly HDL-centric.

Again, there are significant challenges to be overcome to
get designers to move to a new language. Time will tell if
any system design companies will sign up to adopt this
language in their organizations.

C. New Languages — Many Challenges

The fact that efforts exist to develop entirely new
languages shows that the system-level design market is
emergent in nature and a single solution is not yet apparent.
All of the efforts discussed above should be applauded for
their initiative and idealism. However, if the past is any
indication of the future, it will be difficult to get the market
to adopt any one of these languages.

V. EXTENDING VHDL OR VERILOG

If VHDL and Verilog lack the ability to describe hardware
at a systems level, some have suggested that the best
approach is to add those system capabilities to those
languages. There are several efforts underway to do this.

A. OVI’s Plans for Verilog

In November 1999, Open Verilog International (OVI)
announced its plans for system-level design. A semantic
reference manual (SRM) is being drafted, with a goal of
standardization on semantics by June 2000. The SRM is also
expected to define levels of abstraction, describe how
hierarchy is expressed, talk about data objects and data
types, scheduling mechanisms and protocol abstractions[9].

It is expected that OVI’s effort will be much more focused
on hardware design. According to OVI’s Chairman Dennis
Brophy, the work “is firmly rooted to enhance the
productivity of the Verilog HDL user as a first step[10].”

B. Plans for VSPEC

Developed under the direction of Professor Perry
Alexander at the University of Cincinnati and funded by an
Arpa RASSP contract, VSPEC is a VHDL-based interface
language that can represent both hardware and software as
well as formal properties and constraints by adding
annotation to VHDL entities[11]. According to the VSPEC
web site at http://www.ececs.uc.edu/~kbse/projects/vspec/
#VSPEC, the latest release of the VSPEC parser, which is
still under development, was done in June 1999.

C. Other Plans

Over the past five years, there have been several other
suggestions for extensions to VHDL and Verilog. Many of
these suggestions have been noted in the press, but little
follow-up action has been recorded. Some of these efforts

have been abandoned. None have been finalized or accepted
by customers.

D. The Challenge of Extending HDLs

It is now well accepted in the industry that existing HDLs
cannot effectively be expanded to cover the full range of
required system-level design capabilities for a variety of
reasons. Probably the biggest reason, and the reason that
much of this work has been abandoned, is that systems are
mostly software. Why use a hardware description language
to describe a system that is mostly software?

Another major contributing reason is that today’s multi-
million gate designs cannot effectively be simulated in
HDLs because HDLs provide a much too low-level view of
the hardware. By the time a designer is using an HDL, the
system specification is already determined and the
architecture is established. If HDL simulators are choking on
big designs today, they will choke to death on the big system
designs of tomorrow!

Additionally, HDLs don’t provide for effective design re-
use. Once something is designed in Verilog or VHDL, it
becomes too implementation-specific to work in another
design.

There seems to be little current interest in extending HDLs
to the system level. Even VHDL International, the group
chartered with the life of the VHDL language, is looking
into new system-level design languages and abandoning
efforts to extend VHDL.

VI. PROPOSALS BASED ON C/C++

While some have tried to develop totally new languages,
others have taken a more pragmatic approach. Since
between 60 and 90 percent of a system is software (this will
continue to increase), and most software designers already
use the C language, why not just do whatever is necessary to
make the C language work for hardware designers?

The biggest benefit to using C/C++ is that many hardware
designers already know how to use the language. It is
commonly taught in colleges and universities. “The good
news from a retraining standpoint is that the C++ design
environment can be made quite familiar to a Verilog or
VHDL designer[12].”

Before these C-based approaches are discussed, it is
important to understand why the standard C/C++ language
doesn’t work for hardware design. The biggest problem with
using C or C++ to describe hardware is that neither have a
natural way to represent constrained data types, concurrency,
and clocks.

All of the proposals based on C/C++ have some way of
adding in the representations for hardware at a systems level.
The disagreement in the industry is over how those
representations should be made.

A. C-based Solutions

Some companies are suggesting using C. Most notable
among these is the suggestion from C-Level Design with
their C2Verilog product that takes the C-language models
often used for system design and compiles them into
synthesizable, register-transfer-level Verilog code[13]. The
challenge with using C rather than C++ is that C requires
proprietary extensions, such as compiler pragmas or
keywords, to represent concurrency, clocks and other
hardware design concepts. These proprietary extensions
require the use of proprietary C compilers — ANSI standard
compilers won’t recognize these extensions.

B. CynApps’s Effort

Also under development is a solution called CynLib from
CynApps (Www.cynapps.com). CynLib uses the class
capability in C++ to add in hardware capabilities. A number
of EDA companies have announced plans to develop tools
based on CynL.ib’s extensions to C in the future.

CynApps has announced the CynApps Suite of tools,
including the Cynthesizer, which translates C++ into
synthesizable \erilog, Cynchronizer, a \erilog-to-C++
translator, Cyn++, a Verilog-like macro language that works
with CynLib, and Cyntax, a C++ lint tool that detects a
variety of syntax errors[14].

The major limitation to CynL.ib is that the CynApps suite
is specifically aimed at hardware design. System-level
design plans are a “likely future direction[15].”

Time will tell if CynLib, like other proposals, will be
adopted by a significant number of customers.

C. The SystemC Standardization Effort

In September of 1999, over 55 system, semiconductor, IP,
embedded software and EDA companies came together to
endorse the Open SystemC Initiative to enable, promote and
accelerate system-level IP model exchange and co-design
using a common C++ modeling platform. Available through
an Open Community Licensing model, designers can create,
validate and share models with other companies using
SystemC and a standard ANSI C++ compiler. More
information is available atwww.systemc.org]

The goal of SystemC is to define a modeling platform
using C++ class libraries and a simulation kernel, which
provides greater interoperability, portability and readability.
Before SystemC was proposed, there was no commonly
accepted C++ style available in the industry, forcing
companies to maintain multiple C++ models in order to
exchange and re-use system-level models.

The benefit of using a C++ class library is that it lets
designers express such hardware-oriented concepts as
concurrency, parallelism, ports, wires and reactivity.
“Agreeing on a standard library will allow IP providers and
system designers to use one dialect of C++, thus allowing
interoperability, and will provide a common platform on
which to build synthesis, hardware/software co-design and

verification tools[16].”

One area in which SystemC distinguishes itself from other
C/C++ variants, particularly those that aim to simply replace
Verilog, is in its communications abstractions. These
constructs, proven over recent years in real SoC designs in
the CoWare N2C design system[17], form a major part of
CoWare's technical contribution to the Open SystemC
Initiative. The communication abstractions enable designers
to model communication between different system hardware
components without having to design in specific low-level
details such as bus protocols.

SystemC is the result of technical collaboration between
Synopsys, CoWare and Frontier Design. Synopsys and
CoWare had been developing similar C-based modeling
solutions over recent years. Frontier Design and Synopsys
collaborated on the fixed-point data types necessary for
applications in digital communications, digital audio and
digital video. Additionally, the pioneering research in C-
based design at IMEC, MIT, Stanford and UClrvine is the
foundation of SystemC.

The goal of the steering committee for the Open SystemC
Initiative is to finalize the specification (now available at a
0.9-level for industry review) in 2000. The committee feels
it is very important that the industry review and comment on
this specification to make sure everyone’s feedback is
considered.

VII. JUMPING TO JAVA

One last proposal that deserves a brief discussion is to use
Java instead of C for system-level design. The problem is
that Java just can’t compete with C/C++ on simulation speed
—Java currently is just too slow. C/C++ compiler technology
is more mature, resulting in faster executables and therefore
simulation time. Additionally, because Java prevents direct
access to hardware, it is not suitable for writing initialization
code and device drivers. Also, C/C++ enables easier re-use
of legacy software developed for implementing and
simulating current embedded systems.

VIIl. CONCLUSION

This is an interesting time for system-level design.
Certainly, system-level design is a critical issue as time-to-
market can drive the success or failure of a product. In the
consumer electronics product markets that are driving
system-on-a-chip, a system-level design methodology is no
longer something that can wait. HDL-based design flows
have already run out of steam. Additionally, system-level
design is the only way to go to develop products such as
cellular phones that have constantly evolving standards.
Designing at the system level makes it much easier to
incorporate new features and standards and rush derivative
products to market. CoWare’s customers have proven, in
numerous instances, that by using C++-based system design,
overall design time can be cut in half.

In 1999 the industry made major steps in attempts at
standardization. This year, 2000, will be critical as these

http://www.cynapps.com/
http://www.systemc.org/

standards are finalized and brought to market. C/C++ is the
only practical solution now. Designing in C/C++ represents
a major raise in abstraction level for the hardware side. It is
recognized that often C/C++ is the implementation level on
the software side, since still higher levels of abstraction exist
for design entry. However, these higher solutions are
fragmented and domain-specific. Furthermore, the portion of
the system designed with those solutions is invariably
integrated with the rest of the system in C/C++.

The reality is that C/C++ is the only viable candidate for
system-level design for the time being. How long is "the
time being?” Acceptance of a new language will take six
years according to Dataquest's Gary Smith[18]. Meanwhile,
a C++ solution such as SystemC has the most promise. It is
backed by the largest number of companies in a variety of
industries. And the steering committee is really trying to
gather input from all of these companies to make sure the
libraries will work well for the industry.

Time will tell if any of the totally new system-level design
languages will make it to market, let alone be adopted
widely. Meanwhile, companies have huge systems to design.
Certainly one solution will become a de facto standard.

REFERENCES

[1] Integrated Circuit Engineering, “ASIC — System on a
Chip,” 1999.

[2] Steven E. Schultz, “The New System-Level Design
Language,” Integrated System Design, July 1998.

[3]

[4] www-sop.inria.fr/meije/esterel/esterel-eng.html

[5] ISO/IEC 8807

[6] www.omg.org/uml

[7] Steven E. Schultz, “Rosetta Could Set Direction for
HDL,” Electronic Engineering Times, November 1, 1999.
[8] Peter Clarke, “Superlog Language Gains a Dozen
Backers,” Electronic Engineering Times, November 22,
1999.

[9] Richard Goering, “Foundation Laid for Next-Generation
Languages,” Electronic Engineering Times, December 3,
1999.

[10] Richard Goering, “Foundation Laid for Next-
Generation Languages,” Electronic Engineering Times,
December 3, 1999.

[11] Richard Goering, “Systems-on-Silicon Designs Talk in
New Languages,” Electronic Engineering Times, June 9,
1997.

[12] John Sanguinetti, “higher-Level Design Sees Plusses of
C++,” Electronic Engineering Times, November 1, 1999.

[13] Richard Goering, “C Level Design tackles C-to-HDL,”
Electronic Engineering Times, December 14, 1998.

[14] Richard Goering, “CynApps Leads Charge into C++
Hardware Design,” Electronic Engineering Times,
September 20, 1999.

[15] Richard Goering, “CynApps Leads Charge into C++
Hardware Design,” Electronic Engineering Times,
September 20, 1999.

[16] Richard Goering, “Synopsys Leads C++ Initiative to
Transform Hardware Design,” Electronic Engineering
Times, September 27, 1999.

[17] Bolsens, De Man, Lin, Van Rompaey, Vercauteren and
Verkest, "Hardware/Software Co-Design of Digital
Telecommunication Systems, IEEE Proceedings, Vol. 85,
No. 3, March 1997

[18] Gary Smith, Dataquest Software QuickTakes, Issue 34,
October 11, 1999.

http://www.itu.int/

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

