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Abstract

We propose a radix-4 modular multiplication algorithm
based on Montgomery’s algorithm, and a radix-4 cellular-
array modular multiplier based on Booth’s multiplication
algorithm. The radix-4 modular multiplier can be used to
implement fast RSA cryptosystem. Due to reduced num-
ber of iterations and pipelining, our modular multiplier is
four times faster than the cellular-array modular multiplier
based on the original Montgomery’s algorithm. The time
to calculate a modular exponentiation is aboutn2 clock
cycles, wheren is the word length, and the clock cycle
is roughly equal to the delay time of a full adder. The
utilization of the multiplier is 100% by interleaving con-
secutive exponentiations. Locality, regularity, and mod-
ularity make the proposed architecture suitable for VLSI
implementation.

Keywords: cellular array, Montgomery algorithm, mod-
ular multiplication, high radix modular multiplier, public-
key cryptography, RSA.

1 Introduction

With the increasing popularity of electronic communi-
cation, data security is becoming more and more impor-
tant. In 1976, Diffie and Hellman invented a new concept
of public-key cryptography [1]. Later, in 1978, Rivest,
Shamir, and Adleman proposed the RSA public-key cryp-
tosystem which is relatively secure and easy to imple-
ment [2]. In the RSA cryptosystem, both the encryption
and decryption are modular exponentiation, which can be
done by a sequence of modular multiplications. There-
fore, fast modular multiplication becomes the key to real-
time encryption and decryption in such a scheme.

Various algorithms for modular multiplication have
been proposed in the past, and some of them have been

realized [3–6]. One of the most attractive modular mul-
tiplication algorithms was proposed by Montgomery [7].
Montgomery’s algorithm needsn iterations in each mod-
ular multiplication and two additions per iteration, where
n is the word length. Cellular arrays based on Mont-
gomery’s algorithm can be found in [8–10].

A modified Montgomery’s algorithm was first reported
in [11], where the multiplication and modular reduction
steps in Montgomery’s algorithm are separated such that
only one addition is required in each iteration. However,
the number of iterations in the modified algorithm is two
times that of Montgomery’s, hence the overall computa-
tion time is not reduced. In [12, 13], the algorithm was
further modified to reduce the number of iterations, dou-
bling the speed of modular multiplication.

In this paper, we reduce the number of partial products
by using radix-4 Booth’s algorithm, and propose a radix-
4 modular exponentiation algorithm. The proposed algo-
rithm can be implemented using a linear cellular array.
For a word length ofn, the array has aboutn cells, and
each cell contains two full adders and some logic gates.
The two full adders in the cell are pipelined. The num-
ber of iterations in the multiplication process isdn+3

2 e as
compared with 2n in the original multiplier. Therefore,
the speed of the proposed modular multiplier is quadru-
pled. The time to calculate a modular exponentiation is
n2τ, whereτ is the delay time of a full adder.

To improve the utilization for radix-r modular multipli-
cation without interleaving, we can merge logr cells into
one processing element (PE), resulting in a digit-level ar-
ray.



2 Modular Multiplication Algorithm

In RSA, to encrypt a message using the encryption key
(E, N), we first partition the message (a string of bits) into
a sequence of blocks and consider each blockM as an in-
teger between 0 andN�1. Then, we encrypt the message
by raising each block to theEth power moduloN, i.e.,
C = ME (modN), for each message blockM. Similarly,
to decrypt the ciphertext using the decryption key (D, N),
we raise each ciphertext block to the powerD moduloN,
i.e.,M =CE (modN), for each ciphertext blockC.

Exponentiation is performed by repeated (iterated)
squaring and multiplication operations. Let the binary
representation of the exponentE been�1en�2 � � �e1e0, then
ME = M2n�1�en�1 � � �M22�e2 �M2�e1 �Me0. A simple way to
perform modular exponentiation is to repeat the modular
squaring (M2

i ) and modular multiplication (Mi �Pi) oper-
ations from the least-significant bit (LSB) ofE. This is
called the L-algorithm. In the L-algorithm,n iterations
are needed and each iteration needs two modular multi-
plications. However, the modular multiplicationsM2

i and
Mi �Pi can be done in parallel. To reduce the time com-
plexity, we have developed a radix-4 modular multiplica-
tion algorithm and designed a radix-4 modular multiplier
based on Montgomery’s modular arithmetic.

2.1 Review of Montgomery’s Algorithm

SupposeN = (nn�1; : : : ;n1;n0) is ann-bit odd integer.
Let A = (an�1; : : : ;a1;a0) and B = (bn�1; : : : ;b1;b0) be
two n-bit integers, where 0� A;B < N. Montgomery’s
modular multiplication is shown below, which generates
a series of numbers,S[0];S[1]; : : : ;S[n] as outputs.

MG(A;B;N)
f

S[0] = 0;
for(i = 0; i < n; i++) f

qi = (S[i]+aiB) (mod 2);
S[i +1] = (S[i]+aiB+qiN)=2;

g

returnS[n];
g

In each iteration of the above procedure we need to ac-
cumulate threen-bit integers and divide the result by 2.
This can be done by using twon-bit adders and right shift-
ing by one bit the adder output. Therefore, each cell is
composed of two full adders. Futhermore, by induction,
the value ofS[n] falls in the range(0;2N) instead of the

initial range(0;N). Therefore, post adjustment is required
before the next modular multiplication is performed.

2.2 Radix-4 Modular Multiplication

We present the radix-4 Montgomery algorithm. By us-
ing radix-4 numbers for multiplication and modular re-
duction, the number of iterations can be reduced by half.
The number isn in Montgomery’s algorithm, which is
equivalent to the number of partial products. To reduce the
number of iterations (and the number of partial products
to be accumulated) we propose a radix-4 Montgomery al-
gorithm which requires onlydn+3

2 e iterations. The radix-
4 Montgomery algorithm can be implemented by Booth’s
multiplier.

LetA be (n+3)-bit andB be (n+1)-bit 2’s-complement
numbers andN = (nn�1; : : : ;n1;n0) be an n-bit odd
integer, where�N � A;B < N. Also, let PPi =

(ppi(n+1); : : : ; ppi1; ppi0) represent the radix-4 Booth par-
tial product of iterationi. Since the radix-4 Booth recod-
ing is considered, we havePPd n+1

2 e = 0 and�2N�PPi <

2N, where 0� i < dn+1
2 e. SupposeTi = S[i] +PPi, then

the two LSBs ofTi (i.e., ti1 andti0) can be used to deter-
mine the modular reduction value (i.e.,Ni , whereNi = 2N,
�N, or 0). The proposed radix-4 Montgomery algorithm
is shown below.

R4MG(A;B;N)
f

S[0] = 0;
for (i = 0; i < dn+3

2 e; i++) f
(ti1; ti0) = (S[i]+PPi) (mod 4);
if ( ti0 = 0) f

if ( ti1 = 0)
S[i +1] = (S[i]+PPi)=4;

else
S[i +1] = (S[i]+PPi +2N)=4;

g

elsef
if ( ti1 = n1)

S[i +1] = (S[i]+PPi�N)=4;
else

S[i +1] = (S[i]+PPi +N)=4;
g

g

returnS[dn+3
2 e];

g



Procedure R4MG() has aboutn
2 iterations, while previ-

ous algorithms requiren or 2n iterations [7, 11]. In each
iteration, two additions are required, which is the same
as MG(). Therefore, it is faster than Procedures MG().
By induction, the value ofS[dn+3

2 e] falls in the range
(�N;N), which is the same as the initial range. There-
fore, no post adjustment is required during the entire ex-
ponentiation process.

2.3 Radix-4 Modular Exponentiation

Our modular exponentiation algorithm is based on the
L-algorithm. LetR= 4d n+3

2 e andC = R2 (mod N), then
the proposed exponentiation procedure is as shown below,
where the final valuePn is equal toME (modN). Also, as
discussed above, the range for the intermediate numbers
(Mi ’s andPi ’s) will not grow since we use R4MG().

R4ME(M;E;N)
f

M0 = R4MG(M;C;N);
P0 = 1;
for (i = 0; i < n; i++) f

Mi+1 = R4MG(Mi ;Mi ;N);
if (ej = 1)

Pi+1 = R4MG(Mi ;Pi ;N);
else

Pi+1 = Pi;
g

if (Pn < 0)
Pn = Pn+N;

returnPn;
g

Table 1: Intermediate values of Procedure R4ME().

i 0 1 2 3 � � � n
Mi M �R M2

�R M4
�R M8

�R � � � �

Pi 1 Me0 M2e1+e0 M4e2+2e1+e0
� � � ME

Note that we keep intermediate resultsMi andPi in the
range(�N;N) during the entire exponentiation process
and convert only the final resultPn to the range(0;N) by
addingN to Pn if Pn < 0. The intermediate values are
shown in Table 1. We can perform the exponentiation for
one message block concurrently when we read the next
message block and write the previously processed cipher
block (with post adjustment).

3 Modular Multipliers

3.1 Montgomery’s Modular Multiplier

We implement Montgomery’s algorithm using a cellu-
lar array circuit. The dependence graph (DG) and signal
flow graph (SFG) [14] of the modular multiplication al-
gorithm are shown in Fig. 1. In the figure, the projec-
tion direction vector~d = (0;1), and the schedule vector
~s= (1;2)T . The utilization ratio of the cells is 50%. The
resulting modular multiplier is shown in Fig. 2, where the
signalqi is generated by XORing the LSB ofS[i] andaiB.
We use twon-bit adders to addS[i], aiB, andqiN. The
pipeline technique is applied to the design to reduce the
clock period. We divide a cell into three subcells which
belong to different pipeline stages. As shown in Fig. 2,
the D flip-flops (FFs) are inserted where the dashed lines
cross the signals. The clock period is about the delay time
of a full adder.

FA

FA

FA

2 2 2

2 2 2

2 2 2

2

2

2

2a

s0s1s2s3s4

1a

a3

FA

0

2222

n3 01 nnn2b3 b0b1b2

X

Y

ds

2a1a a3

n3 01 nnn2b3 b0b1b2

s0s1s2s3s4

Y XYY a0FA

DDDDD

s

d

 a  b.i isi

oC [0] si  a  b.i i+

o

o

a  =  a
b  =  b

i

i

in  = no

bono

oC [0]

s

aX i

q
a o
o

in bi
i

oq =

o o. i{       , s } = q   n  + 

o

o

a  =  a
b  =  b

i

i
.i

.i

oC [0]

s

2

in

no

C [1:0]iC [1:0]o

so

so

Y

Y

X

X

Y

Y

Y

Y

Y XYY

Y X

0

Y

0

Y

0

a0

0

:  Projection direction

:  Schedule vector (1,2)

(0,1)

Hyperplane

T2

T0

T1

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

q  = q
n  = no i

o i

C [0]

C [1]

i

ii

i{       , t } = a   b  + s  +

C [1]o o

i

{       , s } = q   n  + t  +ij

ij

Y

i

b

oa
qo q

a
i

i

ib

2

o

= 0

Figure 1: The DG and SFG of a 4-bit modular multiplier.

3.2 Radix-4 Modular Multiplier

The recoding rules for the radix-4 Booth algorithm are
shown in Table 2 [15]. The signals Code[2:0] are used to
select�B,�2B, or 0 as the partial product.

The DG and SFG of the radix-4 modular multiplication
algorithm are shown in Fig. 3. We let the projection direc-
tion vector~d = (0;1) and the schedule vector~s= (1;3)T .
Note that the utilization ratio of the cells is 33%. The
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Figure 2: A 4-bit Montgomery modular multiplier.

Table 2: Radix-4 Booth’s recoding rules.

ai ai�1 ai�2 Booth code Action Code[2:0]
0 0 0 0 0 +0 000
0 1 0 0 1 +B 001
1 0 0 1 0 �2B 110
1 1 0 0 1 �B 101
0 0 1 0 1 +B 001
0 1 1 1 0 +2B 010
1 0 1 0 1 �B 101
1 1 1 0 0 +0 000

utilization can be improved by interleaving as shown in
Fig. 4, where inputs(a;b) are interleaved with the in-
puts(a0;b0). Interleaving two modular multiplications in-
creases the utilization to 67%. As described in R4MG(),
we must determine the modular reduction valueNi , where
Ni =(ni(n+1); : : : ;ni1;ni0). Three control signals q[2:0] are
used to select 2N, �N, or 0 as the reduction value, where
q[0] = ti0, q[1] = ti1, andq[2] = ti1

L
ni1. Note that sub-

tractingN is easier than adding 3N, so we subtractN when
ti0 = 1 andti1 = n1. Therefore, a 20s-complement modular
multiplier is required. In 20s-complement multiplication,
sign extension is needed when we accumulate the partial
products. This can be done by using signalsctr1 andctr2
and theppi4 XNOR gate as shown in Fig. 4.

As shown in Fig. 5, we need to add at most three D FFs
in each cell. However, the utilization ratio is reduced to
25% due to pipelining. Fortunately, in RSA, a message
to be encrypted is divided into a sequence of blocks, and
each block is raised to theEth power moduloN indepen-
dently, so the modular exponentiations of the successive
message blocks can be done in parallel by interleaving.
Furthermore, in a modular exponentiation, the computa-
tion of M2

i andMi �Pi can also be interleaved. Our design
thus can execute four modular multiplications at the same
time by thisdouble interleaving. The utilization is then
increased to 100%. Since the number of partial products
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Figure 3: The DG and SFG of a radix-4 modular multi-
plier.
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is reduced in half, the number of iterations is so reduced.
Compared with [12,13], we have two times the speed and
1.5 times the hardware cost. The extra 50% hardware cost
is due to the interleaving control circuit and the pipeline
registers.
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Figure 5: The pipeline radix-4 modular multiplier.

The time to compute four interleaved modular multi-
plications is about 2n clock cycles, and the time to com-
pute a modular exponentiation is aboutn2 clock cycles.
Table 3 compares the hardware and time complexity of
several linear-array RSA systems. In the table,α andτ
are roughly the area and delay of a full adder cell, respec-
tively. We normalize the clock period to the delay time
τ. From the table, our architecture has the lowest com-
putation time as compared with other works. When the
size of the message block and encryption key are 512 bits,
the encryption throughput rate is about 300K bps using a
150MHz clock.

Table 3: Comparison of linear-array RSA systems.

Approach Time Area
[8] 4n2τ 4nα
[9] 4n2τ 2nα
[11] 4n2τ 2nα
[12] 2n2τ 2nα
[13] 2n2τ 2nα
Ours n2τ 3nα

4 Digit-Level Modular Multiplier

For a radix-r system, the number of iterations is
dn+(logr+1)

logr e. However, the utilization is reduced to
1

logr+1. To increase the utilization of a radix-r modular
multiplier without interleaving, we can merge logr cells
into one processing element (PE) and form a digit-level
array multiplier. For example, in Fig. 6 two cells are
merged into one PE, so the utilization is increased from

1=3 to 1=2. In a radix-4 digit-level cellular array, each PE
contains two 2-bit adders. The critical path is equal to the
delay of three full adders. Therefore, the clock period is
roughly 3τ.
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Figure 6: The DG and SFG of a radix-4 digit-level multi-
plier.

Though the number of iterations is reduced, the hard-
ware complexity and the clock period increase. As Fig. 7
shows, each PE of a radix-16 multiplier contains anN-
Selector circuit, aB-Selector circuit, and two 4-bit adders.
Forn-bit modular multiplication, the number of iterations
is dn+5

4 e, but the clock period is roughly 5τ (i.e., logr+1).
Because the utilization is 50%, we need roughlyn

2 clock
cycles to compute two interleaved modular multiplica-
tions. We can reduce the clock period by using a fast 4-bit
adder (such as the carry look-ahead adder), but this is ba-
sically a tradeoff between computation time and silicon
area. Another possibility is that the signed digit number
system can be used to avoid carry propagation in the PE
and hence increase the speed of the high-radix modular
multiplier.

5 Conclusions

We have presented radix-4 modular multiplication and
modular exponentiation algorithms. In the algorithms,
we are able to keep the intermediate results in the range
(�N;N), so no post adjustment is required for each mul-
tiplication during the modular exponentiation process. A
cellular-array modular multiplier based on the algorithm
and Booth’s multiplication has been presented, which is
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Figure 7: A radix-16 digit-level modular multiplier.

efficient especially for RSA cryptosystem where modu-
lar multiplications are performed iteratively. Compared
with previous designs, the number of clock cycles of our
pipelined radix-4 modular multiplier for a modular ex-
ponentiation is aboutn2τ, whereτ is roughly the delay
of a full-adder. The proposed multiplier is four times
faster than those based on the original Montgomery al-
gorithm, and is two times faster than those reported in
[12, 13]. A high-radix digit-level modular multiplier was
also discussed. Extending the design for a larger moduli
is straightforward.
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