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Abstract: The use of the column-rank of the sensitivity
matrix as a testability measure for parametric faults in
linear analog circuits was pioneered by Saeks in 1970s,
and later re-discovered by several others.  Its practical
use has been, however, limited by how it can be
calculated.  Numerical algorithms suffer from
inevitable round-off errors, while classical symbolic
techniques can only handle very small circuits. In this
paper , an innovative and efficient graph based
symbolic analysis approach, called Determinant
Decision Diagrams, is applied to testability
measurement and selection for optimum test vectors.
The new approach is promising in testability analysis
of much larger analog circuits.

I. INTRODUCTION

       Testing large analog and mixed-signal circuits
efficiently with an optimal set of test points or test vectors
has become very critical with the fast development of
technology. Especially when large mixed-signal systems
containing millions of transistors are integrated on a
single chip, IC testing is even more difficult and the
challenge becomes finding a way to reduce the testing
cost.
       Testability of a circuit provides the network element
solvability information, which allows us to know how
many internal system parameters can be uniquely
determined or isolated by measuring certain I/O relations
of the system. This information is very useful for both
design and test engineers. This paper presents a very
efficient symbolic analysis approach for quantitative
testability measurement for large linear analog circuits.

Testability measurement of a circuit, defined as a
measure of the solvability of fault diagnosis equations,
usually involves the calculation of network transfer
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functions and the sensitivity matrix [1][7][8]. Symbolic
analysis approach offers great advantages over a
numerical method in this application, where the
unavoidable truncation errors introduced by the latter one
renders the obtained testability only an estimate [9].
Symbolic analysis derives network transfer functions in
terms of symbolic parameters. With the circuit behavior
represented in a closed analytic form, symbolic analysis
not only eliminates the problem of round off errors but
also provides insight into the circuit behavior.
Unfortunately with the conventional symbolic methods,
the manipulation and evaluation of symbolic expressions
are computationally hard because the number of product
terms in the symbolic expression “blow up” exponentially
with the size of a circuit. Any evaluation will have both
the time and space complexities exponential to the size of
the circuit, which limits the applicability of symbolic
analysis in the design and testing areas for large analog
and mixed-signal circuits.

In this paper, a new symbolic analysis approach
based on Determinant Decision Diagrams (DDDs) [3] is
applied to testability analysis of linear analog systems.
Using DDDs, exact network transfer functions, as well as
the sensitivity matrix, can be constructed in a compact
and canonical way. Since DDDs-based symbolic analysis
has the time complexity proportional to the size of a
DDD, and for a practical circuit, the number of DDD
vertices is usually orders of magnitude less than the
number of product terms, the new method offers a
significant improvement over existing methods for
testability analysis.

II. TESTABILITY MEASUREMENT AND A
REFORMULATION

       In this section, the theoretical background for
testability analysis will be discussed briefly. The most
useful definition for testability was introduced by Saeks
et. al.[1][2], which provides a well-defined quantitative
index of element value solvability for linear analog
systems. For a linear analog circuit, the network transfer



function can be written in the following non-normalized
form:
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where t
kpppp ],...,,[ 21=  is the vector of the unknown

circuit parameters or potentially faulty parameters, and ai ,
bj represent, respectively, the coefficients for different
power of s in the numerator and the denominator. The
sensitivity matrix Φ(s) as shown in (2) is a Jacobian
matrix of partial derivatives of the transfer functions with
respect to the faulty parameters for different test points.
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The testability T of the system is equal to the maximum
number of linearly independent columns or equivalently
the column-rank of the sensitivity matrix Φ(s), with the
circuit parameters around the nominal values.

)]([ srankcolumnT φ−=

Furthermore, it is proven that if the network transfer
functions are rational in circuit parameters p, the column-
rank of Φ(s) is constant “almost everywhere” [1]. In other
words, the testability of the system is almost independent
of the circuit parameter values and can be evaluated by
simply assigning arbitrary integer values to the circuit
parameters.

Based on this testability definition, a simple
procedure for circuit testability evaluation has been
developed recently [5][6][8]. It is proven that the column-
rank of the network sensitivity matrix Φ(s) coincides with
the rank of a matrix cB , where cB  is defined as in (3) for

one transfer function. In multiple inputs and outputs case,

cB should include the same entries for each transfer

function.
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By using this new method, the computation of the
derivatives of the transfer functions, which is much more
difficult, is avoided. In addition, since the testability value
is almost independent of the parameter values, the rank of

cB  can be easily calculated by using the traditional

triangularization method by assigning arbitrary integer
value for each unknown circuit parameter. It should be
pointed out that this approach is only valid for parametric
faults, which are defined as the deviation of the system
parameters from their normal values, the catastrophic
faults such as opens and shorts, which change the circuit
topology, are not considered here.

In the rest of this paper, we will use a simple
example to illustrate how Determinant-Decision-
Diagrams based symbolic analysis approach can be
applied to analog testability analysis. The example circuit
is shown in Fig. 1. We assume three possible test points,
which are, 21,vv  and 3v , and that six components are all

potentially faulty.

I

1

R1 C1 C2 C3

R2 R3

Fig. 1. An example circuit.

III. DDDS-BASED TRANSFER FUNCTION
REPRESENTATION

First, we introduce the concept of Determinant
Decision Diagrams (DDDs). Formally, a Determinant
Decision Diagram (DDD) is a signed rooted directed
acyclic graph with two terminal vertices, called the
0-terminal vertex and the 1-terminal vertex. Each non-
terminal vertex D, labeled as a symbol D.label, has a sign
denoted as D.sign, which is either positive or negative.
Each vertex originates two outgoing edges, namely
1-edge and 0-edge, pointing respectively to its two
children vertices denoted as D.left and D.right. D is called
the parent vertex. For each vertex, there is also an integer
number denoted as D.index associated with it. This index
number indicates the ordering of the set of vertices in the
DDD graph. One basic rule is that the index number for
the parent vertex is always larger than that of its two
children vertices. A DDD graph with the root vertex D
represents a symbolic expression D.expr defined
recursively as follows:

1. if D is the 1-terminal vertex, then D.expr = 1,
2. if D is the 0-terminal vertex, then D.expr = 0,
3. if D is a non-terminal vertex, then
D.expr = D.sign*D.label*(D.left).expr+(D.right).expr

Furthermore, a path from the vertex to the 1-terminal is
called as a 1-path. Each 1-path in the DDD graph
represents one product term, which is defined as a product



of symbols and signs of those vertices that originate all
the 1-edge along the path. The summation of all 1-paths is
exactly the symbolic expression the root vertex
represents. This new graph-based data structure enables
compact representation for large symbolic expressions. It
exploits the sharing of the equivalent sub-graphs. The
manipulation and evaluation of DDD graph have time
complexities proportional to the size of the graph - the
number of DDD vertices, which is usually orders of
magnitude less than the number of product terms in the
expression. Symbolic analysis can be performed by
efficient graph-based algorithm.

Now we illustrate how to apply DDDs to the
problem of testability analysis for the example circuit in
Fig. 1. Based on the nodal formulation, the system
equations of the circuit can be written as:
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,,, 321 ClChCc === represent the unknown or potentially

faulty circuit parameters. According to Cramer’s rule, the
network transfer functions at three test points of the
circuit can be written as shown in (4), where p  is the

unknown parameters, 11a , 12a , and 13a  are the entries in

circuit matrix, )det(A  represents the determinant of

circuit matrix A.
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Based on the definition of DDD, a DDD graph can be
constructed to represent the transfer functions in a very
compact form. Since the time complexity of DDDs-based
symbolic analysis is proportional to the size of the DDDs,
an efficient vertex-ordering heuristic has been developed
to label entries in the circuit matrix so that the resulting
DDDs has as few vertices as possible [3]. For this
example, the computed vertex ordering is a+b+cs, e, d,
f+g+hs, j, i,and k+ls. The recursive procedure for
expanding the circuit matrix to construct DDDs is shown

in Fig. 2. The resulting DDDs representing the
determinant and cofactors of the circuit matrix A required
by the three transfer functions is shown in Fig. 3. Since
the complex frequency variable s is implicitly contained
in some DDD labels, we refer to it as complex DDDs.
Observe that each 1-path in the graph corresponds exactly
to one complex product term in the transfer function
expressions.
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Fig. 2. Graphical representation of matrix expansion.
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Fig. 3. Complex DDDs for network transfer functions.

IV. S-EXPANDED TRANSFER FUNCTIONS IN DDDS

In order to analyze the testability of the circuit, we
need to construct testability matrix cB , which is made of

the coefficients and the derivatives of each coefficient of
the transfer functions with respect to the unknown
parameters. Therefore, it is necessary to derive the
s-expanded polynomial expressions for the network
transfer functions. It turns out that by using DDD and the
related graph-based operations, the exact polynomial
symbolic expressions can be represented by the multi-root
s-expanded Determinant Decision Diagrams (s-expanded
DDDs). A very efficient algorithm [4] has been developed
to recursively construct s-expanded DDDs from the
complex DDDs. It has the time complexity proportional
to the size of the complex DDDs and the highest power of
s in the s-expanded expression. The resulting multi-root
s-expanded DDDs for the transfer functions are shown in



Fig. 4. Each DDD root vertex represents the symbolic
expression for the coefficient of a particular power of s in

the transfer functions, for example, 1
0a  represents the

coefficient 0a  in the numerator for the transfer function

H1 and b represents the coefficients in the denominator.
We refer to it as coefficient DDDs. Note that coefficient
DDDs exploits the sharing among various coefficients of
s polynomials in the numerators and the denominators of
transfer functions.
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Fig. 4.  S-expanded coefficient DDDs for network transfer
functions.

V. CIRCUIT TESTABILITY MATRIX IN DDDS

To complete the construction of testability
matrix cB , it is necessary to calculate the partial

derivatives of the coefficients with respect to circuit
parameters. Fig. 5 describes an algorithm called
DERIVATIVE_DDD_CONSTRUCTION for computing all the
partial derivatives. We assume that the total number of
coefficients in the denominator and numerator of the
transfer function is n, and Qi, i=1, …, n, represent the n
coefficient DDD vertices that represent these n
coefficients.  We assume that unknown parameters are
p1~pk where each pj is the label of a DDD vertex that
represents a faulty circuit parameter. For simplicity, a
DDD label is implemented as an integer index in such a
way that the index of a parent vertex is greater than that of
its children vertices. DERIV[i][j]  stores the resulting
derivative DDD representing the partial derivative of the
ith coefficient with respect to parameter pj. The core
operation is COFACTOR(Qi, pj) which calculates the
derivative of a DDD vertex with respect to parameter pj

[3]. In Fig. 6, GET_VERTEX (sign, symbol, D0, D1) returns a
DDD vertex with sign as its sign, symbol as its label, and
the 0-edge pointing to D0, and the 1-edge pointing to D1.
The resulting derivative DDDs are cached. If the
derivative of Qi with respect to some specific parameter is
needed again, no construction will be performed.

Clearly, the time complexity of algorithm
DERIVATIVE_DDD_CONSTRUCTION is O(n|DDD|), where
|DDD| is the number of vertices in the coefficient DDDs.

DERIVATIVE_DDD_CONSTRUCTION {

                  for (i = 0; i< n; i++){
     for ( j = 0; j < k; j++)

DERIV[i][j] = COFACTOR(Qi, pj);
}

}

Fig. 5. Derivative DDD construction algorithm.

COFACTOR (Q, pj) {
If ( Q.index < pj)

return 0;
If ( Q.index = = pj)

return Q.left;
If (Q.index > pj)

derivative = GET_VERTEX (Q.sign,
Q.label, COFACTOR (Q.left, pj ),
COFACTOR ( Q.right, pj) );

       return derivative;

      }
Fig. 6. COFACTOR operation.

For the example circuit shown in Fig. 1, circuit
parameters are ,, 21 cpap == ,,,,, 43 hpfbedp =−−=

,,,,5 jikgp −−= lp =6 . Fig.7 shows the multi-root

derivative DDDs for coefficient 0b  with respect to

different faulty parameters. Observe that the sharing
among derivative DDDs and coefficient DDDs is obvious.
It is this inherent sharing property of DDDs that enables
very efficient and compact representation for the
testability matrix.
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VI. TESTABILITY EVALUATION AND TEST-POINT
SELECTION

As discussed in section II, the testability of a circuit
is almost independent of the component values.

Therefore, a numerical matrix ′
cB  as shown in (5) is

constructed from the testability matrix cB  by simply

assigning arbitrary integer value to each parameter.  The

rank of ′
cB is equal to the testability value T. In this case,

T = rank [ ′
cB ] = 6, which indicates that all six parameters

in the example circuit can be uniquely determined with
the measurements at those three test points.
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A set of circuits including the example circuit rc, a
RLC network rlctest, a two-stage miller compensated
MOS opamp miller [10] shown in Fig. 8 and the
Tow-Thomas active RC filter ttfilter [7] shown in Fig. 9,
have been tested using the proposed algorithm. All the
parameters in the circuits are considered potentially
faulty. The experimental results are reported in Table 1.

In Table 1, column 1 lists, for each circuit, the
number of circuit nodes #node and the number of circuit

parameters #para. Column 2 gives three possible test
point combinations for each circuit. Column 3 ~ column 5
list the statistics for complex DDDs, coefficient DDDs
and derivative DDDs respectively, where #node is the
number of DDD vertices and #path is the number of
1-paths in the graph. Total |DDD| column shows the total
number of vertices in the coefficient DDDs and derivative
DDDs representing the testability matrix. T column lists
the testability value obtained from evaluating the rank of
the testability matrix. The last column reports the total
CPU time in seconds on a 450MHz Intel Pentium-II
workstation for testability analysis for each circuit.

We observe from Table 1 that fully expanded
coefficient DDDs and the derivative DDDs of the
coefficients are able to represent huge symbolic
expressions with a relatively small number of vertices.
Especially for large circuits, the size of the DDDs could
be several orders of magnitude smaller than the numbers
of product terms, which makes DDD-based symbolic
analysis especially suitable for testability analysis of large
analog circuits. Looking into the total number of DDD
vertices Total |DDD|, it’s less than the sum of coefficient
DDDs #node and derivative DDDs #node, which
indicates the sharing property of the graph-based data
structure.

The testability information of different test points
for each circuit provides quantitative criteria for optimum
test point selection. For example, for circuit rc, to ensure
the maximum testability value 6, that is, we want to
determine all six parameters, the test points should be
chosen as v1, v2 and v3. This information is very
important to designers who must know which nodes to
make accessible for testing, and to test engineers who
must plan tests and know how many components can be
uniquely isolated by these tests [5].

Table 1. Experimental results

complex |DDD| coefficent   |DDD| derivative         |DDD| Total
|DDD|circuit Test points

#
node

#
path

#
node

#
path

#
node

#
path

#
node

T CPU
(s)

v3 9 4 25 24 49 71 52 4 0.01
v3,v2 10 5 27 26 50 75 54 5 0.02

rc
#node: 8
#para: 6 v3,v2,v1 10 5 27 33 50 89 54 6 0.02
rlctest v9 135 656 344 83760 3970 670080 3856 6 0.33

#node: 10 v3,v7,v10 179 784 439 98320 5263 786560 5115 11 0.45
#para: 21 v2,v4,v6, v8 127 704 318 167200 4079 1.337e+6 3977 8 0.53
ttfilter v7 44 54 163 17638 1120 100164 1107 5 0.1

#node: 8 v3,v5,v7 56 64 208 19052 1398 108408 1379 7 0.14
#para: 8 v2,v3,v5, v7 57 72 211 21216 1432 121152 1415 7 0.16
miller v5 10 9 47 84 90 252 105 5 0.02

#node: 5 v5,v4 12 10 57 96 100 288 119 8 0.03
#para: 14 v5,v4,v3 13 13 63 124 111 372 135 12 0.04
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VII. CONCLUSIONS

In this paper, efficient graph-based
representations (DDDs) for symbolic expressions are
applied to testability analysis for linear analog circuits. By
exploiting sharing and sparsity in a canonical manner,
s-expanded symbolic network transfer functions and
testability matrix are constructed and manipulated very
efficiently. Testability evaluation can be performed in
time complexity proportional to the number of DDD
vertices.
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