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Abstract - Krylov subspace techniques in harmonic balance
simulations become increasingly ineffective when applied to
strongly nonlinear circuits. This limitation is particularly
important in the simulation if the circu it has components being
operated in a very nonlinear region. Ev en if the circuit contains
only a few very nonlinear components, Krylov methods using
standard preconditioners can become ineffective. To overcome
this problem, we present two adaptive preconditioners that
dynamically exploit the properties of the harmonic balance
Jacobian. With these techniques we have been able to retain the
advantages of Krylov methods even for strongly nonlinear cir-
cuits. Some numerical experiments illustrating the techniques
are presented.

I. INTRODUCTION
Harmonic balance (HB) [1-3] is a widely used method

for steady-state analysis of nonlinear circuits in the fre-
quency domain. Krylov subspace iterative methods have
greatly increased the usefulness of harmonic balance [3-5].
The main advantage of applying Krylov subspace techniques
in HB is due to the use of matrix implicit operations for eval-
uating of matrix-vector products [3]. Unfortunately, the con-
vergence and therefore efficiency of Krylov subspace
techniques critically depends on the proper choice of a pre-
conditioner [6]. 

The simplest preconditioner applied in HB method uses
the block-diagonal portion of the harmonic Jacobian. This
block-diagonal (BD) preconditioner is an effective and effi-
cient choice for large number of weakly nonlinear problems
arising in practice [3,5]. However, it becomes insufficient
for strongly nonlinear problems. This can be explained that
BD preconditioner becomes poor approximation of har-
monic Jacobian.

The computational efforts of harmonic balance with Kry-
lov subspace techniques and preconditioners are determined
by two factors: the number of linear iterations of iterative
algorithm and the cost of preconditioner. More complex
nondiagonal preconditioner reduces the number of linear
iterations. Therefore depending on the relation between the
cost of linear iterations and the cost of preconditioner we can
expect the reduction of computational efforts in strong non-
linear problems which require many linear iterations.

In this paper we present two techniques for constructing
the adaptive preconditioner at every Newton iteration. The
first technique dynamically exploits the properties of the har-
monic Jacobian at every Newton iteration. The second tech-
nique essentially exploits the estimate of circuit nonlinearity

at every Newton iteration. We have proposed this estimation
and the approach that allows to determine the number of har-
monics for all variables at every Newton iteration in [7]. In
this paper we apply this approach for constructing an adap-
tive preconditioner.

.II. PRECONDITIONING IN HB PROBLEMS
Applying Newton method to solve the nonlinear circuit

equation formed in the frequency domain leads to the fol-
lowing linear system

           (1)
to be solved at every Newton iteration [1].
Here J is harmonic Jacobian, b is right hand side (RHS)

vector and x is Newton’s update.
The harmonic Jacobi matrix in the frequency domain has

block structure: each block defined by numbers k, l (block
row and block column) contains N by N matrix where N is
the number of circuit variables. The diagonal block and the
non-diagonal block has the following form [1]:

        (2)

              (3)

respectively. Here G, C, Y are matrices of harmonics of
conductances, capacitances and admittances of linear ele-
ments respectively.

The linear system (1) is large and therefore the iterative
methods are applied to solve (1). To provide acceptable con-
vergence property of iterative methods some preconditioning
schemes are used [6]. Applying the right preconditioner P
transforms the original system (1) into the preconditioned
system

              (4)

where          (5)
Preconditioner P is an approximation of Jacobi matrix J

that can be easily invertible. The natural block-diagonal pre-
conditioner applied allows to solve the equivalent linear
problem with respect to vector y:

              (6)

where          (7)
The block-diagonal preconditioner has been shown to be

very effective for large number of weakly nonlinear prob-
lems. However, it becomes increasingly ineffective for
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strongly nonlinear problems because BD preconditioner
becomes poor approximation of harmonic Jacobian.

Therefore we can expect that more complex preconditioner
reduces the resulting computational efforts due to essential
decreasing of linear iterations with slightly increased efforts of
factoring the preconditioner. In fact we expect reduction of
efforts due to the redistribution of computational efforts
between linear iterations and factoring the preconditioner. For
this reason constructing an adaptive preconditioner that dynami-
cally exploits the properties of the harmonic Jacobian at every
Newton iteration allows to increase computational efficiency of
solving of strongly nonlinear HB problems.

Note that to construct an adaptive preconditioner we exploit
a matrix implicit form of Jacobian, i. e. only G, C, Y compo-
nents of Jacobian are stored in the memory.

III. CONSTRUCTING THE ADAPTIVE PRECONDITIONERS

A. Adaptively Pruning the Harmonic Jacobian (AP1)
We form the preconditioner by neglecting the small harmon-

ics of conductances and capacitances. This process corresponds
to retaining, in addition to the block-diagonal entries, only the
most essential nondiagonal entries of Jacobian. 

To perform forming we determine the indexes of threshold
harmonics for conductances and capacitances separately. At
every Newton iterate, the threshold harmonics of conductance

 and capacitance  are obtained from the follow-

ing conditions [8]: 

                (8)

(9)

Here  the fundamental frequency, K is the maximal speci-
fied number of harmonics, Gmn and Cmn are defined as follows.

                   (10)

                   (11)

By such a way the conductance  or capacitance  is

rejected for  and  respectively. As a

result rejecting unimportant Jacobian entries is performed.

The parameter  impacts on the threshold value. The limit-

ing cases  and  correspond to the BD precondi-
tioner and full harmonic Jacobian respectively.

Numerical experiments show that it is expedient to choose
the value of  from the interval [10-5, 10-3].

B. Adaptively Estimating the Nonlinearity Degree (AP2)
It is easy to show that the substitution 

                 (12) 
transfer the (6) into the following equation

            (13)
This equation is useful for estimating harmonics of variables

because components of rhs vector (13) corresponding to linear
variables will be zero, and the solution of system (13) contains
zeroes for all harmonics of linear variables. It is also expected
that for weakly nonlinear variables rhs vector (13) will contain
smaller number of essential harmonics in comparison with vec-
tor b. 

Now apply a preconditioner P to the linear system (13). We
obtain

 (14)
or 

                        (15)
where

                                     (16)

                     (17)
Therefore we would like to solve by iterative solver the lin-

ear problem (15) with respect to the vector z and with the pre-
conditioner P applied.

We will construct the preconditioner P as an approach to the
product JD-1, i. e.

                                  (18)
In order to obtain approximation we first estimate the num-

ber of harmonics of variables and then take into account only
those members of product (18) which satisfy the predefined
condition. 

To determine the number of harmonics of variables we find

the minimal total number of harmonics  (Ki, number of

harmonics for node i) that satisfies to the following inequality
[7]:

,               (19)

where tol is the given relative tolerance and  is the reduced
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RHS vector. The procedure of determination sequentially finds
and drops the harmonic with minimal contribution to RHS vec-
tor until condition (19) is true. Finally the procedure gives num-
bers Ki, i=1,..,N where N number of variables.

Then when we form the block of preconditioner defined by
numbers k, l we put into P only those entries (i,j) of correspond-
ing block of product (18) for which :

k < Ki
l< Kj
Therefore this technique allows to construct the precondi-

tioner in the form of approximation (18) presented as block
matrix with varying sparseness. Since the RHS (14) gives the
estimate of nonlinearity of a circuit [7] then the sparseness of a
preconditioner depends on nonlinearity of a circuit. Note that
parameter tol will control the sparseness of preconditioner: the
case tol=0 corresponds to the dense matrix and the case tol=1
corresponds to the most sparse matrix.

IV. EXPERIMENTAL RESULTS
The computational efficiency of the first proposed adaptive

preconditioner AP1 is demonstrated in comparison with the
block-diagonal (BD) preconditioner. The typical dependencies
of CPU time (sec) on input signal amplitudes (Volt/Ampere) are
shown for Fifth pole filter (Fig.1), rectifier circuit (Fig.2) and
amplifier class “C” (Fig.3). 

The presented cost curves are obtained by HB analysis using
two types of preconditioners: BD and proposed AP1 with

. The significant difference of slopes can be seen
from these figures. If for weakly nonlinear regimes the cost
curves are close (or for weakly nonlinear example in Fig.3 AP1-
curve is even higher than BD-curve for small amplitudes) then
for large input signal the efficiency of AP1 is essentially
increased and its advantages become clear.

The advantages of the second proposed adaptive precondi-
tioner AP2 are demonstrated on two examples of strongly non-
linear circuits: rectifier circuit and OpAmp ua741

We characterize the computational efforts of iterative solver
by the number of linear iterations of iterative algorithm. The
cost of factoring the preconditioner is described by the average
number of nonzero elements of preconditioner.

The experimental dependence of number of nonzero ele-
ments in preconditioner on parameter tol for the rectifier circuit
is shown in the Fig. 4. This dependence is monotone and the
number of nonzero decreases from 168100 to 4100. The experi-
mental dependence of number of linear iterations is shown in
the Fig. 5. For example calculation with tol=0.01 takes 674 lin-
ear iterations and number of nonzero is 77731 or less than 50%
of dense matrix. Note that block-diagonal preconditioner
(tol=1) takes 4390 linear iterations and the number of nonzero is
4100.

The experimental dependencies of number of nonzero ele-

ments in preconditioner and number of linear iterations on
parameter tol for the OpAmp ua741 circuit are shown in the Fig.
6 and Fig. 7 respectively. The calculation with tol=0.01 takes
311 linear iterations and number of nonzero is 341750 or less
than 11% of dense matrix. Note that block-diagonal precondi-
tioner (tol=1) takes 1616 linear iterations and number of non-
zero is 51301. Therefore the calculation with tol=0.01
demonstrates five times reduction of number of linear iterations.

The numerical efficiency is obtained for strong nonlinear
circuits where the cost of linear iterations is essential due to
large number of iterations. The speed up 2.2 and 1.51 is
obtained for rectifier circuit and OpAmp ua741 respectively.

V. CONCLUSION
The opportunity to redistribute computational efforts

between preconditioner forming and linear iterations opens
additional flexibility to reduce overall simulation time. In many
cases little additional complication of the preconditioner allows
substantial reduction of the number of linear iterations.

The proposed approach generates an adaptive preconditioner
whose density is determined by the degree of nonlinearity of a
circuit. In particular the best numerical efficiency is obtained if
the large circuit contains a few extremely nonlinear compo-
nents.

The proposed adaptive preconditioners allow iterative meth-
ods to reestablish good convergence properties for such strong
nonlinear problems where previously direct methods had advan-
tages compared with iterative. 
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Fig.1 The dependence of run time on input signal (filter)

Fig.2 The dependence of run time on input signal (rectifier)

Fig.3 The dependence of run time on input signal (amplifier)

Fig.4 The dependence of number of nonzero elements on
parameter tol

Fig.5 The dependence of number of linear iterations on
parameter tol

Fig.6 The dependence of number of nonzero elements on
parameter tol

Fig.7 The dependence of number of linear iterations on
parameter tol
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