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Abstract

In this paper we use a segmented Chebyshev orthongonal poly-
nomial expansion approach to approximate amplitude and phase
response for RLC interconnect simulation. This method has been
shown to be efficient in reducing frequency sampling point num-
ber or expansion order. Experiments also show that the number
of sampling points is not necessarily dependent on the intercon-
nect circuit size, which makes possible large network simulation.
Additionally, because of the smoothing-effect of thatan function

in evaluation, the phase response, which has major impact on the
transient edge of output response, can be easily approximated.
Experiments show the proposed simulation approach achieves
30-50 times speed-up over spice3f4.

1. Introduction
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domain s, transfer function is a singular function when
approaches poles. Therefore, poles have to be extracted to
serve as the bridge between time and frequency domain.
However, in Fourier transform domain, Amplitude and Phase
response (AP response) are continuous functions since no
pole exists in the imaginary axis for a lossy stable system.
Consequently, it is possible to approximate AP response
directly without pole extraction. Although SPICE can provide
accurate information about AP response, it can not be used for
large network simulation because of its complexity.

In this paper we present an efficient AP response approxi-
mation method for RLC interconnect simulation using a Che-
byshev polynomial expansion method, which converges
quickly and can achieve near optimal approximation under

With deep sub-micron technology and clock frequencies irthe MinMax criteria (minimize the maximal error). The pro-
the GHz range, signal integrity problems have a significanposed approach can automatically select the expansion points
adverse effect on the proper functioning and performance adind also the expansion order to meet a predefined frequency
VLSI systems. Besides conventional timing analysis such adomain error tolerance.

delay estimation, more detailed signal waveform simulation The paper is organized as follows: in section 2 the Cheby-
becomes increasingly important to verify a circuit's or sys-shev orthongonal polynomial expansion based AP response
tem’s performance. However, due to the overwhelming size oapproximation method will be discussed. In section 3 experi-
interconnect circuits, approximations have to be purposelynental results are presented followed by the contribution and
introduced with relaxed accuracy to achieve simulation speed.conclusions of this paper.

In recent years, moment matchng3] and Krylov space

projection based model order reduction technidﬁ'@%were
introduced for interconnect circuit analysis or simulation.
These techniques use a reduced set of poles to approximate 24 Background of AP Response

original system while preserving the system’s controllability First we give some basic formulas to make the further discus-

and observability]. To achieve satisfactory speed-up, thesion clear. The transfer functiga(jw) s defined4s
reduced order model should be small enough to avoid the . i

= = _JWI
overhead in pole extraction and solving a reduced order dense HOw) = H(S)l, jw ﬁwh(t)e o
system. If a system has a few well-separated dominant poles, For analytical conveniencél(jw) is usually separated into
the above methods would be quite efficient. However, for theymplitude responsgw) and phase respares , which are

system with continuously distributed or clustered poles theactually the superimposed result of poles and zeros.
pole extraction procedures may converge very slowly or con- jo(w)

2. Amplitude and Phase response approximation using
segmented Chebyshev orthogonal polynomial expansion

2.1)

verge to spurious poI@Q]. For multipoint moment matching H(W) = R(w + 1) = A(we (22)
or model order reduction approach, the error is strongly relied A(w) = JR(W)2+1(w)2 = [H(jw)| (2.3)
on the selection of expansion points. Moreover, it is still an B | (W) _ )

unsolved problem on how to determine a suitable reduce ®(w) = ata R(w)O ~ OH (jw) (2.4)

order without a prio_r knowledge. Given A(w) ®(w) and a normalized step function as an
Recently, amplitude and phase response was shown to put excitation, the output response of an aggressor net is

efficient in RLC interconnect delay estimatibH. Here, we  evaluated by:

extend it into waveform simulation. In a complex frequency V(1) = %Jr %JgA(W)Sin(Wt+ D(w))dw

" (2.5)
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1 o A(W) . order should better be determined incrementally. We found
Vo(t) = F[r;%sm(w“ ®(w))dw (2.6) the following formula is more suitable without de};rimenting
If an input signal is not a step function, it can be easilyany approximation quality, where extrema are used as sam-
counted intoA(w) anab(w) by pling points instead of zeroes:
Af(w) = A(w) DA, (W), DT(w) = (W) + D, (w) 2.7 N-—

; 1
-y, 2 B ok rk(j-1) 1]
Cj= ==l Ay S f (o

where A, (w), ®,(w) are the amplitude and phase of an input . N +Nk§1E %OSENHEE TN T%H

signal respectively. j=1,2...N-1. (2.17)

. . This formula is known as Clenshaw-Curtis Quadrdfielt
2.2 Segmented Chebyshev Orthongonal Polynomial Expansion . .
g yShev 9 ynomial Expans! is easy to see that if the ordsris doubled, all the present

Lemma 1 Among the same degree of polynomials, minmax ; ; ;
L . ) ._.._sampling points can be reused in the next step.
approximation achieves the smallest maximum deviation . . . ! .
o } 3 The side-effect 0f2.17) is that during the iteration the

from the original function f(?‘[)l- o _ order may increase quickly and the sampling points will

With minmax polynomial approximation the maximum aqqregate at the two ends of an approximation interval. Con-
error is minimized anq th_e error is uniformly d'lstrlbuted sequently, the error may be large in the middle part. To over-
throughout the approximation interval. However, in generalgome this problem and reduce the expansion order, we
it is very difficult to find a minmax polynomial. It is gjvide the whole frequency range into several segments.
showrt!3! that the Chebyshev orthogonal polynomial expan-Since the variation in each sub-interval becomes smaller, the
sion is almost identical to the minmax approximation while expansion orders can be reduced to small numbers. The sam-
it is easy to compute. Theth order Chebyshev orthogonal pling point aggregation problem is also avoided. Another
polynomial is defined as: advantage of a segmented Chebyshev expansion is that it

Tn(x) = cos(n (Lo (x)), xO[-1, 1] 2.8) becomes more flexible to choose an expansion_order for dif-

ferent frequency range. For example, the sampling order and

It can be expressed in a recursive form: S
error tolerance can be relaxed in high frequency range to

Tol) =1 (2.9) reduce the computation cost since the higher frequency
Ti(x) = x (2.10)  response is usually less important than lower frequency.
Toe1(X) = 2xT (}) =T,_1(X) n>1 (2.11) Before using Chebyshev expansion to approxinfets)

Thenth order Chebyshev polynomial, (x) hageroes and @nd @(w) , the approximation frequency ranfyeawtj is
mapped intg-1,1] using a linear transformation. The sam-

pling frequency is determined by
Wik = %%O%Tﬁﬂ(wb—wa) +(wa+wbf, k=0,1.N-1 (2.18)

Xextrema™ COSEL‘("%' k=0,1,2..n (2.13)  Given an input signal and a sampling frequengythe node
voltageV(jw,) can be evaluated efficiently with the method

. Tn(Xextremd = *1 (2'14) to be introduced in section 2.3. Amplitude and phase
Using the orthogonal property of Chebyshev polynomials, aresponse are computed k®:3) and (2.4). Since in(2.4) the

continuous functiori(x) can be approximated!&3:

n+1 extrema (maxima and minima) in the interval [-1,1]:

X 610 = €O [(%—Q—Sz]’[%, k=1,2....n (2.12)

N1 phase response is wrapped in{gg,g] , it should be
f(x):}CO+ Y CT (2.15) unwrapped first before an expansion. Once the Chebyshev
2 =t . polynomial coefficients are computed using.17) the
where N is the expansion order or the number of samplindPProximated AP response can be evaluated easig. bg)
points. The Chebyshev polynomial coefficieqtis calcu- sually, the variation of phase response over the frequency

range is much smaller than amplitude response because of
N the smoothing-effect of thatan function in(2.4). This prop-

ci = ﬁ z F(XT; (%) i=0,1,...N-1 erty makes it easier _to approximate the transient edge accu-

=l rately. The reason is that a phase response has a major

N impact on transient edges, while an amplitude response has a

_2 O -0.5 j(k—=0.5) iori igi i

=2 Z Ef HCOSEKT"%&"SST"HE (2.16)  mMajor impact on the waveform around origin and final state.

k=1

lated using zeroes as the sampling points:

Under the minmax criteria, this expansion can achieve neal%'?’c':r:egue?]cy San|1pllng l?(allnt Evaluation o ity I
optimal approximation among all the polynomials with a '" Chebyshev polynomial expansion, the complexity in eval-

order of N. However, the drawback ¢1.16) s that all the Ualing the node voltage at Chebyshev frequency sampling
sampling points will be totally different if the order is points determines the efficiency of the whole procedure. In

changed. Consequently, all the sampling points used in Hﬂs .sectio.n we present an gfficient nume.rica.I method fqr
previous order can not be reused anymore. Since we can ng?lvmg a linear system. In this paper, the circuit structure is

determine an appropriate expansion order in advance, tl{gsf[”Ct?d tO_RLC t'ree structurg with capacitive couplmg'
Inside, in which resistance and inductance are connected in



series and capacitances are shunted to ground or connectedOnly 3N, operations are needed for this LU decomposi-

as the coupling links. tion4]. N, is the size of A. No extra storage is needed since

Assume no mutual inductance existing inside the cir—L andU-+ are all two-diaconal matrices and all the diago-
cuit, the conventional nodal analysis can be used directly for11 1 9 9

analysis. In this formulation, the matrix size is one half of 1@l €lements of4; are equal to 1.

the MNA formulation. 4) B=Lu1U12,C = L2alU1n1 (2.24)
Y(jw) DV(jw) = Is(jw) (2.19) Lemma2: U,=B (2.25)
where the admittance matjw) is: Lemma 3: Only N, operations are needed to computg,L

Y(jw) = Al OR+ jwL)2CAnT + jwAcOCOAE  (2.20)  Wwhere N is the number of connection elements il g, has
R,L,Care all diagonal matriceg\l is the incidence matrix the same structure as C

of resistance or inductancéc is the incidence matrix for 5y YO = L22[U22= D-L21[U12 (2.26)
capacitance. The matrix inverse (R.20) is trivial sinceR  p has the same structural characteristic¥ dgcause of the
andL are all diagonal matrices. node number ordering and partition method.

The basic method for solving a linear equation is Gaus'Lemma 4: yOhas the same structure as D since U1z is

sian elimination or LU decomposition. For large sparse sys:,JI diaconal matrix and onlv has Mon-zero diagonal ele
tem, this procedure will cause a lot of fill-in elements and 9 y J 9

consequently increase computation cost and storage. In gefents, where Nis the number of junction elements in D

eral, the complexity i©(N3). In this section we present two related to the coupling elements in block matrix C or B.
efficient numerical methods which will not cause any fill-in 6) Repeat the procedures2)fs) for YO until it is empty.
elements in the whole computation process. It has the Therefore, the LU decomposition of the whole matrix can
advantage in both computation and storage. be processed recursively without any fill-in elements. The
total operations iSN +Nc+2N;-1. N is the number of nodes

in the circuit.N¢ is the number of branches in a RLC tree.

Theorgm 1. For a smgle—net_RLC trge with grounded N; is the number of junction nodes. The whole procedure is
capacitance, the nodal analysis equation of (2.19) can be ) .
solved in O(N) operations, where N is the number of node<® in-place operation. Therefore, for single net RLC tree the

The LU decomposition can be processed without any fiII—ineW’“uat'On at each frequency point can be processeq

operations and without any extra stordge.

i) Single net RLC tree with grounded capacitance

elements.
Proof: Without loss of generality, we take the circuitkif. To. 1
2.1as an example to visualize the proof. e |®/v connection element 1
127q 11t 10t i :b: : junction element 7
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Fig. 2.1 An RLC tree numbered in reversed DFS order 1) | o Lt ._(%E_ =
1) Number the node of an RLC tree in a reversed Depth- il ! ! eE
First-Search (DFS) or Breadth-First-Search (BFS) order. 202 4 5 8 10 :Gi‘z 14 16 18 20 2
By numbering the nodes in a reversed_ DES order, the Fig. 2.2 Single net RLC tree admittance
structure of the admittance matixs shown in Fig. 2.2. matrix structure of the circuit in Fig. 2.1
2) Partition matrix Y recursively as shown in Fig. 2.2. ii) Multi-net RLC trees with capacitive coupling
v [ag g2t o] Junus 221) Because of the capacitive coupling betwgen trees or
= = = : branches, a lot of new elements would appear in the admit-
CD L21 L22 0 U2z

tance matrix structure, which are named as coupling-ele-

B=cC' (2.22)  ments. Their number is usually far larger than other
In each partitionA is an upleft-most tridiagonal matrix. The elements. With conventional LU decomposition method
sub-blocks ofA correspond to disjointed branches in anthese coupling-elements will cause huge number of fill-in
RLC tree with consecutive node numbers. A parent branclelements during the process and damage the sparsity.
and child branches can not co-exist in a same block matriXheorem 2.The nodal analysis equation of (2.19) for multi-
A. In Fig. 2.2, the elements inside a circle are called connecRLC-tree with capacitive coupling can be processed in
tion-elements, which connect the child-branches with theilO(N,,,) operations. I, is the number of non-zero elements
parent branch. The elements inside a square are called jungf an admittance matrix.
tion elements, which correspond to the junction node suclproof: Similar to a single net tree, we first number the node
as node 7,16, 19. of each RLC-tree in a reversed BFS or DFS order. The
3) A= LunJu (2.23)  admittance matri¥Xis splitinto real and imaginary parts.



3. Partition frequency range: [wa[1:Ns],wb[1:Ns]];
(2.27) Set error_tolerance and initial sampling order N[1:Ns];

Y" isth njugate matrix of YYR i mmetri itive 4 for k=LNs
s the conjugate matrix of.¥YR IS a Symmetric positive { V=0; C[k,:]=0; End_Flag=False; I=1,

definite and diagonal dominant matrix. It has_the same matrix W[L:N[K]]=SamplingFrequencyMapping(wa[k],wb[K], N[K]):
structure as several trees without coupling components while End_Flag=False

Y = R+YI = ____.(Y+2YH)+_—__—_(Y_2YH)

H

inside. Fronirheorem 1, we have the following lemma: { fori=1:N[K]

Lemma5 The LU decomposition ofpxcan be processed in { Initial_Solution(V);

O(N) operations, N is the size gf.Y vri = A (R+ jwilL)AnT; Y = Yo + jwiYc;
To preserve the matrix sparsity in solving the linear equa- YR = OptimizedLU W):

tion, a Conjugate Gradient metHdd is applied by using/s V=OptimizedComplexPCG(Y,YR,Is):

as a precondition matrix. It is a good preconditioner since in [AP]I=AP(V);

some sens&gris a good approximation of. Besides, % is }

very easy to solve because of the property presented in [C[k,:].error] =ChebEvaluation, P ,N[K],|,C[k,:]);

Lemma 5. The procedure of Precondition Conjugate Gradient if error >error_tolerance

method is shown below: [A,P,w[1:N[K]]]=IncrementalUpdating(wa[k],wb[k],N[K],A,P );
V=PCG(Y,ls) N[K = 2 TIN[K, 14
1. Setinitial solution ¥; Set Error_tolerance; Error0 ; else

2. r =lIs=Y Vo, k=0; End_Flag=True

3.while Error > Error_tolerance
{z=z,Ygk=r1;

1}
OptimizedLU() LU decomposition without fill-in elements.

OptimizedComplexPCGY() a modified PCG procedure, in

if k=0 B =0; which some computation strategies are used to reduce the
else B = (r,2) . number of co_mplex operatiqns. Eor example, since mpst of
(ro, z0)’ the elements in Y only have imaginary parts, the operation of
P=z+BPo; Po=P; complex multiplications can be reduced greatly.
L) oy . _ AP(): amplitude and phase response computation from the
Sy VT VoratPiVo=V solution of node voltage.
Ivi-vo,, IncrementalUpdating():increasing the expansion order, saving
ro=rir=ro—alrtp; Eror = —gg—, the solved AP response.
} ChebEvaluation() Chebyshev polynomial coefficient compu-

It can be proven that the above procedure can find the exatation, AP response approximation by Chebyshev polyno-
solution in N steps at most. Particularly, if all the eigenvaluesmial expansion and error evaluation.

of Yr1Y are equal, it converges in one step. Experiments  With the AP response represented by Chebyshev coeffi-
show that the convergence speed is very fast due to the pr&i€nts, the time domain waveform can be evaluated using
condition. By using previous frequency points as initial solu-NVerse Fourier transform integration or inverse FFT.

tion, the speed can be accelerated further. In the low
frequency range, usually-2 iterations can achieve a fairly
accurate result. On averagé iterations are needed to meet The above proposed simulation method is implemented in C
the error requirement. Thus we empirically assume that thédnguage on unix. Several industrial interconnect circuits are
converge speed does not rely on N. In each iteration only onésed for the experimental test. The runtime is tested on a Sun
matrix-vector multiplication is needed, which dominates theSParcs workstation. _

total complexity. By using sparse matrix techniques, the Table 1: Experimental Result

complexity is ONy,,). Ny, is the number of nonzero elements ;i [ re | 18 | c# CPU Time(s) | CPU Time(s)

of Y. Therefore, for multi-net RLC trees with capacitive cou- @P) (spice3f)

pling the nodal analysis equati@@.19) can be solved with

3. Experimental Results

. . . RLC1 | 100 | 90 413 0.62 19.98
O(Nj,» operations without destroying any sparsity.

RLC2 | 180 | 162 | 1394 1.40 59.75
2.4 Session summary

RC1 | 100| © 413 0.15 3.87

The amplitude and phase response is approximated in the
range of [wawd. wa is set as0. wb is determined by RC2 180 0 1394 0.27 12.18
wo = 2mtOfknee = X113 As a summary of section 2.2 and
2.3, the whole procedure is shown below:

Input: Interconnect Circuit Netlist
Output: Chebyshev Coefficients of each node

1. Parse circuit;Renumber the node of each tree in a reversed BFS
order or DFS orde8parse matrix storage of R, L, C, Arl, Ac;

2.Yc= AcOcOAl

RC1 and RC2 are generated by setting inductance value in
RLC1 and RLC2 as zero. In testing runtime, all RLC circuits
and RC circuits are tested with expansion ortlen6 and
N=8 respectively. The input signal’s rise times&ps

Fig.3.1 and Fig.3.2 show the calculated amplitude and
phase response for RLC2 and RC2, which are excited with
the same input pattern. In the RLC2 case, there are some



spikes existing around the frequency junction point for the

4., Conclusions and future work

amplitude response. It is because the expansion in different seg-
ments may not be continuous at the junction pointsl Thesé& new efficient time domain waveform evaluation approach for
spikes may cause small errors in time domain evlaution. AfRRLC interconnect circuits simulation was proposed by using
extra procedure could be used to smooth the curve around theg@plitude and phase response approximation. Using a seg-
points. The phase response, as we mentioned before, is easiefgnted Chebyshev orthogonal polynomial expansion over a
approximate. Therefore the transient edge can be approximatéiedefined frequency range, AP response can be approximated
more accurately than origin and final state. Fig. 3.3 and Fig. 3.&fficiently, especially for the phase response which has more
show the node voltage comparison between SPICE and préhpact on transient edges. Efficient numerical methods for
posed simulation method for RLC2 and RC2 respectively. Th&olving a linear system are also developed to implement above
errors are very small especially for the transient edges. In RLCRrocedures. In experiments the proposed method can achieve
case, the 50% delay is about 109.8ps, while it is 63.8ps for RC20~50 times speed-up over SPICE3f4 with negligible errors.
case. Clearly, if inductance is ignored, large erros may occur. The number of sampling points is not necessarily dependent on
Fig. 3.5 and Fig. 3.6 are the crosstalk voltage comparison foihe circuit size, which makes possible large circuit simulation.
the victim net. From the simulation results, we can clearly seé\s our future work, we will try to extend our current algorithm
the significant effect of inductance on the peak value and th& more general circuit topology and also consider the effect of
pulse width of crosstalk voltage.
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