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Abstract
In this paper we use a segmented Chebyshev orthongonal poly-
nomial expansion approach to approximate amplitude and phase
response for RLC interconnect simulation. This method has been
shown to be efficient in reducing frequency sampling point num-
ber or expansion order. Experiments also show that the number
of sampling points is not necessarily dependent on the intercon-
nect circuit size, which makes possible large network simulation.
Additionally, because of the smoothing-effect of theatan function
in evaluation, the phase response, which has major impact on the
transient edge of output response, can be easily approximated.
Experiments show the proposed simulation approach achieves
30-50 times speed-up over spice3f4.

                            1. Introduction
With deep sub-micron technology and clock frequencies in
the GHz range, signal integrity problems have a significant
adverse effect on the proper functioning and performance of
VLSI systems. Besides conventional timing analysis such as
delay estimation, more detailed signal waveform simulation
becomes increasingly important to verify a circuit’s or sys-
tem’s performance. However, due to the overwhelming size of
interconnect circuits, approximations have to be purposely
introduced with relaxed accuracy to achieve simulation speed.

In recent years, moment matching[1-3] and Krylov space

projection based model order reduction techniques[4-8] were
introduced for interconnect circuit analysis or simulation.
These techniques use a reduced set of poles to approximate an
original system while preserving the system’s controllability

and observability[9]. To achieve satisfactory speed-up, the
reduced order model should be small enough to avoid the
overhead in pole extraction and solving a reduced order dense
system. If a system has a few well-separated dominant poles,
the above methods would be quite efficient. However, for the
system with continuously distributed or clustered poles the
pole extraction procedures may converge very slowly or con-

verge to spurious poles[10]. For multipoint moment matching
or model order reduction approach, the error is strongly relied
on the selection of expansion points. Moreover, it is still an
unsolved problem on how to determine a suitable reduce
order without a prior knowledge.

Recently, amplitude and phase response was shown to be

efficient in RLC interconnect delay estimation[11]. Here, we
extend it into waveform simulation. In a complex frequency

This work was supported in part by grants from the NSF Project
MIP-9529077 and the California MICRO program.

domain s, transfer function is a singular function whens
approaches poles. Therefore, poles have to be extracted
serve as the bridge between time and frequency doma
However, in Fourier transform domain, Amplitude and Pha
response (AP response) are continuous functions since
pole exists in the imaginary axis for a lossy stable syste
Consequently, it is possible to approximate AP respon
directly without pole extraction. Although SPICE can provid
accurate information about AP response, it can not be used
large network simulation because of its complexity.

In this paper we present an efficient AP response appro
mation method for RLC interconnect simulation using a Ch
byshev polynomial expansion method, which converg
quickly and can achieve near optimal approximation und
the MinMax criteria (minimize the maximal error). The pro
posed approach can automatically select the expansion po
and also the expansion order to meet a predefined freque
domain error tolerance.

The paper is organized as follows: in section 2 the Cheb
shev orthongonal polynomial expansion based AP respo
approximation method will be discussed. In section 3 expe
mental results are presented followed by the contribution a
conclusions of this paper.

2. Amplitude and Phase response approximation using
segmented Chebyshev orthogonal polynomial expansion

2.1 Background of AP Response

First we give some basic formulas to make the further discu

sion clear. The transfer function  is defined as[12]:

(2.1)

For analytical convenience, is usually separated in

amplitude response and phase response , which
actually the superimposed result of poles and zeros.

(2.2)

(2.3)

(2.4)

Given , and a normalized step function as a
input excitation, the output response of an aggressor ne
evaluated by:

(2.5)

For a victim net:
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If an input signal is not a step function, it can be easily
counted into  and  by

where are the amplitude and phase of an input

signal respectively.

2.2 Segmented Chebyshev Orthongonal Polynomial Expansion
Lemma 1 Among the same degree of polynomials, minmax
approximation achieves the smallest maximum deviation

from the original function f(x).[13]

With minmax polynomial approximation the maximum
error is minimized and the error is uniformly distributed
throughout the approximation interval. However, in general,
it is very difficult to find a minmax polynomial. It is

shown[13] that the Chebyshev orthogonal polynomial expan-
sion is almost identical to the minmax approximation while
it is easy to compute. Thenth order Chebyshev orthogonal
polynomial is defined as:

, (2.8)

It can be expressed in a recursive form:
(2.9)

(2.10)

(2.11)

Thenth order Chebyshev polynomial hasn zeroes and

n+1 extrema (maxima and minima) in the interval [-1,1]:

, k=1,2....n (2.12)

, k=0,1,2...n (2.13)

(2.14)

Using the orthogonal property of Chebyshev polynomials, a

continuous functionf(x) can be approximated as[13]:

(2.15)

where N is the expansion order or the number of sampling
points. The Chebyshev polynomial coefficientCj is calcu-
lated using zeroes as the sampling points:

j=0,1,....N-1

(2.16)

Under the minmax criteria, this expansion can achieve near
optimal approximation among all the polynomials with a
order of N. However, the drawback of(2.16) is that all the
sampling points will be totally different if the order is
changed. Consequently, all the sampling points used in a
previous order can not be reused anymore. Since we can not
determine an appropriate expansion order in advance, the

order should better be determined incrementally. We fou
the following formula is more suitable without detrimenting
any approximation quality, where extrema are used as sa
pling points instead of zeroes:

j=1,2....N-1. (2.17)

This formula is known as Clenshaw-Curtis Quadrature[13]. It
is easy to see that if the orderN is doubled, all the present
sampling points can be reused in the next step.

The side-effect of(2.17) is that during the iteration the
order may increase quickly and the sampling points w
aggregate at the two ends of an approximation interval. Co
sequently, the error may be large in the middle part. To ove
come this problem and reduce the expansion order,
divide the whole frequency range into several segmen
Since the variation in each sub-interval becomes smaller,
expansion orders can be reduced to small numbers. The s
pling point aggregation problem is also avoided. Anoth
advantage of a segmented Chebyshev expansion is tha
becomes more flexible to choose an expansion order for d
ferent frequency range. For example, the sampling order a
error tolerance can be relaxed in high frequency range
reduce the computation cost since the higher frequen
response is usually less important than lower frequency.

Before using Chebyshev expansion to approximate

and , the approximation frequency range[wa,wb] is
mapped into[-1,1] using a linear transformation. The sam
pling frequency is determined by

, k=0,1...N-1 (2.18)

Given an input signal and a sampling frequencywk, the node
voltageV(jwk) can be evaluated efficiently with the metho
to be introduced in section 2.3. Amplitude and phas
response are computed by(2.3) and(2.4). Since in(2.4) the

phase response is wrapped into , it should b

unwrapped first before an expansion. Once the Chebys
polynomial coefficients are computed using(2.17) the
approximated AP response can be evaluated easily by(2.15).
Usually, the variation of phase response over the frequen
range is much smaller than amplitude response because
the smoothing-effect of theatan function in(2.4). This prop-
erty makes it easier to approximate the transient edge ac
rately. The reason is that a phase response has a m
impact on transient edges, while an amplitude response ha
major impact on the waveform around origin and final state

2.3 Frequency Sampling Point Evaluation
In Chebyshev polynomial expansion, the complexity in eva
uating the node voltage at Chebyshev frequency sampl
points determines the efficiency of the whole procedure.
this section we present an efficient numerical method f
solving a linear system. In this paper, the circuit structure
restricted to RLC tree structure with capacitive couplin
inside, in which resistance and inductance are connected
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series and capacitances are shunted to ground or connected
as the coupling links.

Assume no mutual inductance existing inside the cir-
cuit, the conventional nodal analysis can be used directly for
analysis. In this formulation, the matrix size is one half of
the MNA formulation.

(2.19)

where the admittance matrixY(jw) is:

(2.20)

R,L,Care all diagonal matrices.Arl is the incidence matrix
of resistance or inductance.Ac is the incidence matrix for
capacitance. The matrix inverse in(2.20) is trivial sinceR
andL are all diagonal matrices.

The basic method for solving a linear equation is Gaus-
sian elimination or LU decomposition. For large sparse sys-
tem, this procedure will cause a lot of fill-in elements and
consequently increase computation cost and storage. In gen-
eral, the complexity isO(N3). In this section we present two
efficient numerical methods which will not cause any fill-in
elements in the whole computation process. It has the
advantage in both computation and storage.

i) Single net RLC tree with grounded capacitance

Theorem 1: For a single-net RLC tree with grounded
capacitance, the nodal analysis equation of (2.19) can be
solved in O(N) operations, where N is the number of nodes.
The LU decomposition can be processed without any fill-in
elements.
Proof: Without loss of generality, we take the circuit ofFig.
2.1 as an example to visualize the proof.

1) Number the node of an RLC tree in a reversed Depth-
First-Search (DFS) or Breadth-First-Search (BFS) order.

By numbering the nodes in a reversed DFS order, the
structure of the admittance matrixY is shown in Fig. 2.2.
2)  Partition matrix Y recursively as shown in Fig. 2.2.

(2.21)

(2.22)

In each partition,A is an upleft-most tridiagonal matrix. The
sub-blocks ofA correspond to disjointed branches in an
RLC tree with consecutive node numbers. A parent branch
and child branches can not co-exist in a same block matrix
A. In Fig. 2.2, the elements inside a circle are called connec-
tion-elements, which connect the child-branches with their
parent branch. The elements inside a square are called junc-
tion elements, which correspond to the junction node such
as node 7,16, 19.
3) (2.23)

Only 3NA operations are needed for this LU decompos

tion[14]. NA is the size of A. No extra storage is needed sinc
L11 andU11 are all two-diagonal matrices and all the diago
nal elements ofL11 are equal to 1.

4) , (2.24)

Lemma 2: U12=B (2.25)

Lemma 3: Only Nc operations are needed to compute L21,

where Nc is the number of connection elements in C. L21 has

the same structure as C.

5) (2.26)
D has the same structural characteristics asY because of the
node number ordering and partition method.

Lemma 4: has the same structure as D since i
a diagonal matrix and only has Nj non-zero diagonal ele-

ments, where Nj is the number of junction elements in D

related to the coupling elements in block matrix C or B.

6) Repeat the procedures of2)-5) for  until it is empty.
Therefore, the LU decomposition of the whole matrix ca

be processed recursively without any fill-in elements. Th
total operations is3N +NC+2NJ-1. N is the number of nodes
in the circuit.NC is the number of branches in a RLC tree
NJ is the number of junction nodes. The whole procedure
a in-place operation. Therefore, for single net RLC tree t
evaluation at each frequency point can be processed inO(N)
operations and without any extra storage.❐

ii) Multi-net RLC trees with capacitive coupling
Because of the capacitive coupling between trees

branches, a lot of new elements would appear in the adm
tance matrix structure, which are named as coupling-e
ments. Their number is usually far larger than othe
elements. With conventional LU decomposition metho
these coupling-elements will cause huge number of fill-
elements during the process and damage the sparsity.
Theorem 2.The nodal analysis equation of (2.19) for multi
RLC-tree with capacitive coupling can be processed
O(Nnz) operations. Nnz is the number of non-zero element

of an admittance matrix.
Proof: Similar to a single net tree, we first number the nod
of each RLC-tree in a reversed BFS or DFS order. Th
admittance matrixYis split into real and imaginary parts.

Y jw( ) V jw( )⋅ Is jw( )=

Y jw( ) Arl R jwL+( ) 1– Arl T jwAc C AcT⋅ ⋅+⋅ ⋅=

123

6

789

11 1012

14 1315

161718

192021

a

b
c

f

g

e

d

5 4

Fig. 2.1 An RLC tree numbered in reversed DFS order
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Fig. 2.2 Single net RLC tree admittance
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            matrix structure of the circuit in Fig. 2.1
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is the conjugate matrix of Y. YR is a symmetric positive
definite and diagonal dominant matrix. It has the same matrix
structure as several trees without coupling components
inside. FromTheorem 1, we have the following lemma:
Lemma 5 The LU decomposition of YR can be processed in

O(N) operations, N is the size of YR.

To preserve the matrix sparsity in solving the linear equa-

tion, a Conjugate Gradient method[14] is applied by usingYR

as a precondition matrix. It is a good preconditioner since in
some senseYR is a good approximation ofY. Besides, YR is
very easy to solve because of the property presented in
Lemma 5. The procedure of Precondition Conjugate Gradient
method is shown below:

V=PCG(Y,Is)

1. Set initial solution V0;  Set Error_tolerance;  Error= ;

2. ; k=0;
 3.while Error > Error_tolerance

            { ; ;

if  k=0 ;

else ;

; ;

; ;

; ; ,

             }
It can be proven that the above procedure can find the exact
solution in N steps at most. Particularly, if all the eigenvalues

of YR
-1Y are equal, it converges in one step. Experiments

show that the convergence speed is very fast due to the pre-
condition. By using previous frequency points as initial solu-
tion, the speed can be accelerated further. In the low
frequency range, usually1-2 iterations can achieve a fairly
accurate result. On average4-5 iterations are needed to meet
the error requirement. Thus we empirically assume that the
converge speed does not rely on N. In each iteration only one
matrix-vector multiplication is needed, which dominates the
total complexity. By using sparse matrix techniques, the
complexity is O(Nnz). Nnz is the number of nonzero elements
of Y. Therefore, for multi-net RLC trees with capacitive cou-
pling the nodal analysis equation(2.19) can be solved with
O(Nnz) operations without destroying any sparsity.❐

2.4 Session summary
The amplitude and phase response is approximated in the

range of [wa,wb]. wa is set as0. wb is determined by
[15]. As a summary of section 2.2 and

2.3, the whole procedure is shown below:
Input: Interconnect Circuit Netlist
Output: Chebyshev Coefficients of each node
1. Parse circuit;Renumber the node of each tree in a reversed BFS
      order or DFS order;Sparse matrix storage of R, L, C, Arl, Ac;

 2. ;

 3. Partition frequency range: [wa[1:Ns],wb[1:Ns]];
      Set error_tolerance and initial sampling order N[1:Ns];
4. for k=1:Ns
      {  V=0; C[k,:]=0; End_Flag=False; I=1;

w[1:N[k]]=SamplingFrequencyMapping(wa[k],wb[k],N[k]);
   while End_Flag=False

          { for i=1:N[k]
                { Initial_Solution(V);

; ;

;
        V=OptimizedComplexPCG(Y,YR,Is);

 [A,P]= ;
                }

[C[k,:],error] =ChebEvaluation( ,N[k],I,C[k,:]);
 if error >error_tolerance
[A,P,w[1:N[k]]]=IncrementalUpdating(wa[k],wb[k],N[k],A,P );

, I++;
               else
                  End_Flag=True
           } }
OptimizedLU(): LU decomposition without fill-in elements.
OptimizedComplexPCG(): a modified PCG procedure, in
which some computation strategies are used to reduce
number of complex operations. For example, since most
the elements in Y only have imaginary parts, the operation
complex multiplications can be reduced greatly.
AP(): amplitude and phase response computation from
solution of node voltage.
IncrementalUpdating():increasing the expansion order, savin
the solved AP response.
ChebEvaluation(): Chebyshev polynomial coefficient compu
tation, AP response approximation by Chebyshev polyn
mial expansion and error evaluation.

With the AP response represented by Chebyshev coe
cients, the time domain waveform can be evaluated us
inverse Fourier transform integration or inverse FFT.

                       3. Experimental Results

The above proposed simulation method is implemented in
language on unix. Several industrial interconnect circuits a
used for the experimental test. The runtime is tested on a S
Sparc5 workstation.

RC1 and RC2 are generated by setting inductance value
RLC1 and RLC2 as zero. In testing runtime, all RLC circui
and RC circuits are tested with expansion orderN=16 and
N=8 respectively. The input signal’s rise time is65ps.

Fig.3.1 and Fig.3.2 show the calculated amplitude a
phase response for RLC2 and RC2, which are excited w
the same input pattern. In the RLC2 case, there are so

Y YR YI+
Y Y

H
+( )
2

-----------------------
Y Y

H
–( )
2

----------------------+= =

Y
H

∞
r Is Y V0⋅–=

z0 z= YR z⋅ r=

β 0=

β r z,( )
r 0 z0,( )

------------------=

P z β P0⋅+= P0 P=

α r z,( )
Y P P,⋅( )

-----------------------= V V0 α P⋅+= V0 V=

r 0 r= r r 0 α Y P⋅ ⋅–= Error
V1 V0– ∞

V0 ∞
------------------------------=

wb 2π fknee⋅ π
tr
----= =

Yc Ac C Ac
T⋅ ⋅=

Yrl Arl R jw i[ ]L+( ) 1– Arl
T= Y Yrl jw i[ ]Yc+=

YR OptimizedLU YR( )=

AP V( )

A P,

N k[ ] 2
I 1–

N k[ ]=

Table 1: Experimental Result

Circuit R# L# C# CPU Time(s)
     (AP)

CPU Time(s)
   (spice3f4)

RLC1 100 90 413 0.62 19.98

RLC2 180 162 1394 1.40 59.75

RC1 100 0 413 0.15 3.87

RC2 180 0 1394 0.27 12.18
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spikes existing around the frequency junction point for the
amplitude response. It is because the expansion in different seg-
ments may not be continuous at the junction points. These
spikes may cause small errors in time domain evlaution. An
extra procedure could be used to smooth the curve around these
points. The phase response, as we mentioned before, is easier to
approximate. Therefore the transient edge can be approximated
more accurately than origin and final state. Fig. 3.3 and Fig. 3.4
show the node voltage comparison between SPICE and pro-
posed simulation method for RLC2 and RC2 respectively. The
errors are very small especially for the transient edges. In RLC2
case, the 50% delay is about 109.8ps, while it is 63.8ps for RC2
case. Clearly, if inductance is ignored, large erros may occur.

Fig. 3.5 and Fig. 3.6 are the crosstalk voltage comparison for
the victim net. From the simulation results, we can clearly see
the significant effect of inductance on the peak value and the
pulse width of crosstalk voltage.

4. Conclusions and future work

A new efficient time domain waveform evaluation approach f
RLC interconnect circuits simulation was proposed by usi
amplitude and phase response approximation. Using a s
mented Chebyshev orthogonal polynomial expansion ove
predefined frequency range, AP response can be approxim
efficiently, especially for the phase response which has m
impact on transient edges. Efficient numerical methods
solving a linear system are also developed to implement ab
procedures. In experiments the proposed method can ach
30~50 times speed-up over SPICE3f4 with negligible error
The number of sampling points is not necessarily dependent
the circuit size, which makes possible large circuit simulatio
As our future work, we will try to extend our current algorithm
to more general circuit topology and also consider the effect
mutual inductance.
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    Fig. 3.3  RLC2 output response
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  Fig. 3.4   RC2 output response
                  N=4, N=8
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  Fig. 3.2 Phase approximation
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Fig. 3.6  RC2 Crosstalk
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