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Abstract| A maximum-likelihood estimation pro-

cedure for computing the average power consump-

tion of VLSI circuits is proposed. The method can

handle data that has a mixture-density with multiple

components unlike most of the previous approaches.

An iterative computational procedure based on the

expectation-maximization principle is also discussed.

This can be used to estimate the parameters of an

arbitrary (but �nite) number of components of the

probability distribution of the simulated power data.

Experimental results for ISCAS '85 benchmark cir-

cuits and a large industrial circuit are given in order

to validate the eÆciency and practicality of the algo-

rithm. Comparisons show that the proposed method

estimates the multiple components (even those with a

low probability of occurrence) while the Monte Carlo

estimate captures only the most probable component.

I. Introduction

The increasing demand for personal computing devices

and wireless communication equipment with real time ap-

plications has resulted in the need for designing circuits

with low power consumption. Until recently, designers

were mainly concerned with area and throughput as the

important design parameters. The addition of power as

a third parameter to the design search space has con-

sequently lead to the exploration of the tradeo� between

area, delay and power. Low power designs can be realized

at various levels of the design cycle. Therefore, accurate

estimation of power consumption at each level is neces-

sary for the synthesis of these designs. However, power

dissipation is an input dependent phenomenon and would

require exhaustive simulation to get an accurate estimate.

This becomes intractable for circuits with large number

of inputs. Apart from dependence on the input pattern

applied, accurate estimation of power dissipation is dif-

�cult due to its dependence on the the delay model and

the circuit structure. Hence, two approaches for power

estimation have been investigated in the literature: non-

simulative (probabilistic) and simulative.

The non-simulative techniques use probabilities to de-

scribe the set of logic signals. These logic signals are mod-

eled as stochastic processes having signal and transition

probabilities associated with them. The signal probability

is de�ned as the probability of having a logic one and the

transition probability represents the proportion of transi-

tions on that signal. But this approach has the drawback

that it is not very accurate since the correlations (tem-

poral, spatial and spatio-temporal) at the inputs and the

internal nodes have to be accurately modeled. This is

further complicated by the fact that real delay models

should be used to get an accurate estimate. This is very

expensive and hence these approaches trade o� accuracy

for speed.

The simulative or statistical methods take care of the

input dependence by proper choice of the input vectors.

Most of the previous work in the literature has focussed

on developing a power estimation methodology which con-

sists of the following three parts: input vector generation,

a power estimator and stopping criterion. The input pat-

tern generator captures the spatial and temporal correla-

tions of the environment that the circuit is placed in, and

generates the required inputs. The power estimation or

simulation engine computes the power of the circuit under

consideration. The stopping criterion determines when to

stop the simulation when a desired accuracy is obtained

with a speci�c con�dence level. One of the earliest works

that proposes such a power estimation engine is described

in [1] which is based onMonte Carlo Simulation. The idea

is to use simulation and compute the average power con-

sumption of the circuit repeatedly. Then an adaptive up-

date rule is used to estimate a �nal average power value.

A stopping criterion determines when to stop the itera-

tive estimation. In [1], the power estimation problem is

reduced to that of mean estimation. In other words, the

power is estimated as the mean of several PT (where PT
is the average power observed for a time interval of length

T) values. The stopping criterion for the interval estima-

tor is derived assuming that PT is normally distributed.

This gives the total average power but not the individual

gate power. The work in [2] provides the node densities

along with total power. The stopping criterion is based

on the absolute error bound on the low activity nodes in



the circuit. These nodes may take a long time to con-

verge but their contribution to overall power is very less

since they are low activity nodes. The main drawback of

this approach is that it may take a lot of time for large

circuits.

Two techniques recently investigated are population

pruning and strati�ed random sampling [3, 4]. Popula-

tion pruning removes the area of that interval which is not

in the quantile interval of interest. In population prun-

ing, given a con�dence interval, samples whose probability

of belonging to that family of observations are small are

removed. Strati�ed sampling [3] uses ideas from survey

sampling. The simulated samples are partitioned such

that each partition is more homogeneous. This way, the

sample distributions have a good chance of being nor-

mal distributed. Once normality is achieved the estima-

tion problem becomes easier. A non-parametric sampling

method has been proposed in [5] to achieve a trade o�

between accuracy and computational eÆciency. Order

statistics are used to handle a circuit with any power dis-

tribution. But this technique may lead to over-sampling.

Power estimation for sequential circuits is complicated

due to the presence of feedbacks. Some of the works that

discuss this problem can be found in [6]-[9]. These show

that the proper choice of initial states and the length of

the warm-up period of Monte Carlo method give accu-

rate estimates. An overview of the various state-of-the-art

power estimation techniques can be found in [9].
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Fig. 1. A normal mixture density with three components

Most of the methods discussed so far assume normality

for the probability distribution of the power consumption

of the circuits. It is justi�ed to a large extent by the

central limit theorem and a excessive simulation of var-

ious kinds of circuits. Unfortunately, this may not be

the case in many practical scenarios. The probability dis-

tribution may be bi-modal or even multi-modal, called,

mixture density models as shown in Fig. 1. The reasons

for this behavior could be

� Structure of the circuit and/or inputs

� Limited sampling due to cost

� The conditions for central limit theorem to hold may

not be valid for the given data

For example, a circuit may be enabled or disabled by

means of a signal and based on the activity on that signal,

the circuit can show very di�erent power consumptions.

Hence, such power distributions need to be captured for

accurate power estimation and optimization. In general,

the power estimation techniques based on simulation and

Monte Carlo methods produce estimates that correspond

to most probable component of the mixture density. This

is because, the stopping criterion does not re
ect the fact

that there could be more than component in the data dis-

tribution. Hence, when the estimator observes suÆcient

number of samples from the most probable component

the stopping criterion is reached and the estimation pro-

cedure stops.

The aim of this paper is to develop and discuss an al-

gorithm that accounts for, and estimates the parameters

of the multiple components (if any) in the distribution of

the power samples. The estimate is maximum likelihood.

This means, the estimate that the algorithm produces is

the most probable given the observed samples. In Section

II we discuss the idea behind mixture density followed by

maximum likelihood estimation. A general procedure for

parameter estimation called expectation-maximization is

discussed for an arbitrary mixture density in Section III.

This is followed by the derivation of iterative parameter

estimation algorithm for normal mixture densities based

on expectation-maximization. Some properties of this al-

gorithm are also discussed. This is followed by validat-

ing the algorithm's predicted performance by experiments

in Section IV. Two kinds of experiments are performed.

First, the performance for ISCAS '85 benchmark circuits

is discussed. This is done so that comparison of other

algorithms with the proposed one is justi�ed. We com-

pare and discuss our results with the Monte Carlo based

approach. This is followed by experiments with a large

industrial circuit to demonstrate the practicality of the

algorithm. The paper is summarized along with brief con-

clusions in Section V.

II. ML Estimation for Mixtures

In this section we brie
y describe the mathematical

ideas and concepts behind mixture distributions of a ran-



dom variable followed by the maximum-likelihood esti-

mation procedure. Suppose a random variable, P , takes
values in a sample space, P , and admits a probability

density function (pdf). Let the pdf be of the form

f(p) = �1f1(p) + �2f2(p) + : : :+ pkfk(p) (p 2 P); (1)

where �j > 0, j = 1; 2; : : : ; k;
P

j �j = 1 and fj(:) � 0,R
P

fj(p)dp = 1. We then say that P has a �nite mix-

ture distribution and that f(p) in Eq. (1) is a �nite

mixture density function. The parameters �1; �2; : : : ; �k
are called the mixing weights and f1(:); f2(:); : : : ; fk(:)
the component densities of the mixture. Frequently,

f1(:); f2(:); : : : ; fk(:) will have parametric forms, param-

eterized respectively by the elements of the set � =

f�1; �2; : : : ; �kg. Then from Eq. (1) we have

f(p) = �1f1(pj�1) + �2f2(pj�2) + : : :+ �kfk(pj�k) (2)

Let the complete collection of all the parameters in the

mixture model be 	 = f�1; �2; : : : ; �k; �1; �2; : : : ; �kg.
The �nite mixture density then takes the form

f(pj	) =

kX
j=1

�j ~f(pj�j) (3)

where, each of �1; �2; : : : ; �k belongs to the same parame-

ter space, � (say) and ~f(:j�) denotes a generic density

function. Then, � = (�1; �2; : : : ; �k) may be thought

of as de�ning a probability distribution over �, where

�j = Pr(� = �j), j = 1; 2; : : : ; k. If we denote the proba-
bility measure de�ned by � over � by G�(:) then Eq. (3)

may be written in general as

f(pj	) =

Z
�

~f(pj�)dG�(�) (4)

Let the observed values of the power consumption for

various inputs be fp1; p2; : : : ; png. Each of these is de-

scribed by a parametric pdf of the form given in Eq. (3).

The �rst issue is to decide the optimum number of compo-

nents, k, in the mixture. We do not address this problem

explicitly. However, we note that a good estimate of k can
be obtained by methods such as histogram segmentation,

hypothesis testing [11], or strati�ed sampling [3]. We treat

k as a parameter for the problem under study. Given n
statistically independent observations from the mixture

their joint probability density function is the product of

the individual densities. Therefore the likelihood function

is given by

L(	) =

nY
i=1

2
4 kX
j=1

�j ~f(pij�j)

3
5 (5)

The maximum likelihood estimate (MLE) of 	, say, 	�

is then de�ned as

	� = max
	

L( ) (6)

Usually, for computational simplicity the log-likelihood,

L(	) = logeL(	) is maximized to obtain the MLE. MLE

is a popular estimation technique due to the following

reasons : (a) well studied asymptotic theory, (b) estimates

can be computed easily, (c) can be combined with the

likelihood-based statistical inference methods.

III. Expectation-Maximization Algorithm

The EM algorithm for MLE was �rst proposed in [12].

It produces the maximum likelihood estimate of the un-

known parameters iteratively. Two steps { expectation

and maximization (EM) are iterated until some conver-

gence condition is met. It does not depend on gradient

computations like the stochastic approximation methods.

Note that the maximization of L numerically is diÆcult

because it contains terms involving the log of a sum. If

we know the component of the mixture from which an

observed data point is generated then the problem would

be simpler. Since this information is not known when the

data is observed the observations are termed as incom-

plete. The idea is to maximize L using the incomplete

data. De�ne the complete data to be the fully categorized

data, i.e., fyi = 1; 2; : : : ; ng = f(pi; zi); i = 1; 2; : : : ; ng
where each zi = (zij ; j = 1; 2; : : : ; k) is an indicator vec-

tor of length k with 1 in the position corresponding to

the mixture component to which pi belongs. Now, the

likelihood for the complete data can be written as

g(y1; y2; : : : ; ynj	) =

nY
i=1

kY
j=1

�
zij
j [fj(pij�j)]

zij (7)

which, with the logarithm becomes

L0 =

nX
i=1

kX
j=1

zij loge (�jfj(pij�j))

=

nX
i=1

z
T
i V (�) +

nX
i=1

z
T
i Ui(�) (8)

where V (�) has loge�j as its jth component and Ui(�)
has the jth component logfj(pij�j)

1. We now note that

each sample is associated with its component density. The

maximization of this new likelihood can be decoupled into

a set of simpler maximizations. Maximization for each of

the densities in the mixture model can be performed sep-

arately. The data observations from each of the densities

can be used to estimate its parameters. However, we do

not know the value of zij a priori making the data incom-

plete. To overcome this diÆculty the expected value of

the log-likelihood, L0, can be maximized instead. In [12]

it is shown that if a certain value of the parameter � in-
creases the expected value of the log-likelihood (Eq. (8))

then the log-likelihood also increases. Our intention is to

1T denotes the transpose of a vector



compute 	� = max	 L(	) for the incomplete data. Let

y denote a complete version of p and Y(p) the set of all
possible such y. Clearly, the cardinality of Y(x) is equal
to kn. Then, starting from some initial value, 	(0), a

sequence of estimates, f	(m)g is obtained. Each iteration

of the EM algorithm consists of the following two steps :

Iteration count, m = m+ 1

E Step:

Evaluate

Q(	;	(m)) = E[log g(yj	)jp;	(m)]

=

nX
i=1

wi(	
(m))TV (�) +

nX
i=1

wi(	
(m))Ui(�)(9)

where wi(	
(m)) = E[zijpi;	

(m)] and wij = [wi(	
(m))]j =

�
(m)

j fj(pij�
(m)

j )=f(pij	
(m)) for each i; j. These are the

weights correspond to the probabilities of the ith obser-

vation generated from j component conditional on pi and
	(m).

M Step:

Compute 	(m+1) = argmax	Q(	;	
(m)). When � and �

are distinct it can be shown that the M step for � is

�
(m+1)

j =
1

n

nX
i=1

wij(	
(m)); j = 1; 2; : : : ; k (10)

The iterations are stopped when j�
(m+1)

j � �
(m)

j j < �,
j = 1; 2; : : : ; k for an arbitrary � > 0. Note that the M

step is problem dependent. Using Jensen's inequality we

see that L(	(m+1)) � L(	(m)), m = 0; 1; 2; : : :This shows
that the likelihoods of the incomplete data are monotonic.

Further theoretical properties of the EM procedure for

mixture density estimation are not discussed here due to

space limitations.

A. EM for Gaussian Mixture Density

In this section we explicitly derive the EM steps for

the d-dimensional Gaussian mixture density. The d-
dimensional Gaussian mixture density is given by

f(p) =

kX
j=1

�j

((2�)dj�j j)1=2
exp

�
�
1

2
(p� ��j)�

�1
j (p� ��j)

T

�

where ��j , �j , j = 1; 2; : : : ; k contain parameters of the

component densities and �j , j = 1; 2; : : : ; k are the un-

known probability of occurrence of each component in

the mixture. �j is a positive de�nite symmetric matrix.

Let fpig
n
i=1 denote n, d-dimensional Gaussian random

vectors. Assume that each Gaussian component has a co-

variance matrix �j = �2j I. Then the parameters to be

estimated are �j = (��j ; �j), and �j , j = 1; 2; : : : ; k. In

our notation, 	 = (�j ; ��j ; �j ; j = 1; 2; : : : ; k). We can

then show that

E Step:

wij = E[zij jpi;	(m)]

=
��dj expf�jjpi � ��j(m)jj2=2�2j (m)gPk

l=1 �
�d
j (m)expf�jjpi � ��l(m)jj2=2�2l (m)g

(11)

M Step:

�j(m+ 1) =
1

n

nX
i=1

wij (12)

��j(m+ 1) =

Pn
i=1 wijpiPn
i=1 wij

(13)

�j(m+ 1) =

Pn
i=1 wij jjpi � ��j(m+ 1)jj2Pn

i=1 wij

(14)
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Fig. 2. Histogram of average power consumption for C2670

The algorithm is summarized in the pseudo-code below.

f

E-Step:

1. Compute the number of components k by histogram

(of the simulated average power values) segmentation.

2. Compute initial estimates for �j , �j , and �j ,
j = 1; 2; : : : ; k by the k-means algorithm and start

the E-Step iteration.

3. Given the parameter estimates at iteration m and

the simulated data, compute the new weights wij using

Eq. (11).

M-Step:



TABLE I

Comparison of EM power estimates (in �W) for a two

component mixture model and Monte Carlo (MC) approach

Circuit (�1; �2) (�1; �2) (�1; �2) MC estimate

C880 (0.896,0.104) (1353.3,1453.4) (59.3,14.12) 1367.08

C2670 (0.263,0.73) (5497.9,5690.0) (144,195.6) 5621.37

C1355 (0.028,0.972) (3245.5,3007.8) (16.87,88.32) 3017.57

C1908 (0.013,0.987) (6025.2,5192.4) (4.35,284.2) 5194.05

C499 (0.083,0.917) (1219.0,1216.4) (4.9,33.47) 1212.50

C432 (0.018,0.982) (1069.4,888.35) (5.03,60.79) 883.47
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Fig. 3. Histogram of power consumption for an industrial circuit

1. Use the weight estimate from E-Step to compute the

component probabilities at m+ 1 iteration, �j(m+ 1),

j = 1; 2; : : : ; k using Eq. (12).

2. Compute the component means at iteration m+ 1,

�j(m+ 1), j = 1; 2; : : : ; k using Eq. (13) and the

current weights.

3. Compute the component variances at iteration

m+ 1, �j(m+ 1), j = 1; 2; : : : ; k using Eq. (14)

4. If absolute value of the (current estimate of

�j - previous estimate of �j <)�, j = 1; 2; : : : ; k
for a given � > 0 then stop.

If not go to E Step and iterate again.

g

IV. Experimental Results

To test the proposed algorithm, we performed two ex-

periments. In the �rst experiment, ISCAS '85 bench-

marks were used. The circuits were mapped and sim-

ulated in SIS [10]. The circuits were mapped to the

TABLE II

EM power estimate for an industrial circuit

Component No. Prob. Mean

1 0.128774 102.000000

2 0.061386 109.003657

3 0.071737 111.999419

4 0.269919 115.000597

5 0.400315 117.999408

6 0.067869 128.000000

lib2.genlib library and power was estimated using simu-

lation. We used a small sample size of 150. There are two

reasons for this. First, it is known that for small sam-

ple sizes the central limit theorem may not hold. This

is because the rate of convergence of the distribution of

the samples to the Gaussian distribution is a�ected by the

sample size and other factors. Also, in may circumstances

obtaining a large number of samples could be costly. So,

our aim is to study the performance of our estimator al-

gorithm for small number of observations and compare it

with a popular existing estimator. The histogram of the

power consumption of each circuit is segmented to get an

estimate for the number of components, k, in the mixture

density. Fig. 2 is the histogram for the power consump-

tion of the C2670 benchmark circuit. We can see that a

two component mixture model would be a good starting

point. After the initial estimate for the number of compo-

nents, we then used the k-means clustering algorithm [13]

to get an initial estimate for the prior probabilities of each

mixture component, means and variances of the mixture

density. This estimate is then used by the EM algorithm

as initial values along with the training set of power obser-

vations to produce the �nal parameter estimates. Table I

shows the comparison of the estimated power for vari-

ous benchmark circuits using the EM algorithm and the

Monte Carlo estimator. Clearly, the proposed estimate

is more general in nature. Even the small probability

components are captured in the approach. However, the

Monte Carlo method produces an estimate of only the

most probable component{a well-known disadvantage of

this approach.

In the second experiment, an industrial circuit was

used. The circuit is very large and was synthesized and

mapped using commercial tools. The circuit was de-

scribed in Verilog and synthesized using Design Compiler

from Synopsys. Technology mapping was performed using

the HP 0.25 micron CMOS libraries. The gate level netlist

with all delays annotated was then simulated using Ver-

ilog and the power estimates were obtained using Sente's

WattWatcher tool. The circuit was simulated extensively

to obtain 500 samples of the consumed average power.



The histogram of the simulated power is shown in Fig 3.

As can be seen from the �gure, the power distribution

is a mixture of six components. The multi-modal power

distribution is due to the fact that the circuit is large and

consists of many feedback (or sequential) elements along

with a RAM. Hence, many parts of the circuit have dif-

ferent power dissipation under di�erent input conditions.

For each simulation run enough vectors were given for the

circuit to be in a steady state before applying the vectors

for which the power was measured. Some clock gating is

also used in the circuit; this further causes the power dis-

sipation 
uctuation based on the activity of the control

signal. The estimates of all six components as seen in the

histogram is summarized in Table II. The table shows the

probability of occurrence of the various components along

with the value of their means. We also note that k is a

free parameter in the algorithm. The user can choose the

value of k. If a component has a very small probability

of occurrence, it can be merged with its neighboring com-

ponent. This analysis with a real large design using the

state of the art CAD tools validates the practicality of the

proposed algorithm. In deep sub-micron regimes, power

consumption can be a�ected by many secondary factors

which contribute to bi-modal or multi-modal power dis-

tribution. The proposed algorithm estimates these multi-

ple components (or modes) thereby giving a better power

distribution estimate which will be very useful in power

optimization procedures.

V. Summary and Conclusions

A maximum-likelihood power estimation procedure is

proposed and discussed for simulated power data with a

normal mixture density. Unlike most of the previous ap-

proaches, this method can be used to estimate the average

power consumption with an arbitrary (but �nite) number

of components in a mixture density. An eÆcient iterative

computational procedure based on the EM algorithm is

given. Estimates based on simulations for the ISCAS '85

benchmark circuit and a large industrial circuit are given.

From these experiments we conclude that the proposed

algorithm is eÆcient and, can handle the randomness in

simulated power values in both small and large circuits.

Comparison with Monte Carlo estimation shows that the

proposed method is preferable due to its generalization

capacity.
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