
Performance-Optimal Clustering with Retiming

for Sequential Circuits �

Tzu-Chieh Tien and Youn-Long Lin

Department of Computer Science, Tsing Hua University

Hsin-Chu, Taiwan 30043, R.O.C.

Tel, Fax: 886-3-573-1072

E-mail: fdr814323,yling@cs.nthu.edu.tw

Abstract

We propose an exact clustering with retiming algorith-
m to minimize the clock period for sequential circuits.
Without moving ip-ops (FF's) by retiming, conven-
tional clustering algorithms can only handle combina-
tional parts and therefore cannot achieve the best cycle
time. Pan et al. [2] have proposed an optimal algorithm
under the unit gate delay model. We propose a more
powerful and faster algorithm that produces optimal re-
sults even under the more realistic general gate delay
model. Experimental results show that our algorithm is
twice as fast as Pan's.

1 Introduction

Circuit clustering groups cells in a design into macros to
satisfy some constraints such as area or pin limitations
[3][4][5]. But this often induces large interconnect de-
lays between macros. Therefore, avoiding performance
degradation is a major objective when we perform cir-
cuit clustering.

Retiming, which repositions ip-ops (FF's) while
preserving circuit functionality, can be used to shorten
the clock period [1]. Traditional clustering techniques,
which do not consider retiming, cannot achieve the op-
timal performance for sequential circuits [4][5]. These
clustering methods often treat a sequential circuit as
combinational parts by dropping all FF's and then clus-
tering each combinational part independently. If we can
appropriately relocate FF's by retiming when clustering
a circuit, we can achieve better performance.

Pan et al. have proposed an approach to combine
retiming and clustering[2]. Under the unit gate delay
model[4], their algorithm can achieve the optimal clock
period. For the general gate delay model, it can get
near-optimal clock period within the maximum delay of
any gates in the circuit. They use a labeling technique
to achieve the retiming e�ect and to integrate it with
clustering.

Pan's algorithm cannot produce the optimal results
under the general delay model because it does not �nd
the best labeling. If the relocated position for an FF,
computed during labeling, is occupied by a gate, the
labeling value of this gate has to be modi�ed.

�This work was supported in part by the Science Council,
R.O.C., under a contract no. NSC88-2215-E-007-012.

In this paper, we propose a new algorithm to clus-
ter circuits with retiming using a new labeling method.
This algorithm not only can achieve the optimal clock
period under the general delay model but also uses less
time than Pan's. Experimental results show that the
average ratio of the run time used by Pan's algorithm
to ours is 2 : 1.

The rest of this paper is organized as follows. Pre-
liminaries are described in Section 2. How to enhance
Pan's labeling method is presented in Section 3. For the
convenience of illustrating our clustering algorithm, we
�rst review Pan's algorithm in Section 4. Our algorith-
m is introduced in Section 5. Section 6 presents some
experimental results. Finally, Section 7 draws some con-
cluding remarks.

2 Preliminaries

A sequential circuit N is modeled as a directed (multi-
)graph G(V; E; d;w). Each vertex v 2 V corresponds to
a combinational gate, a primary input (PI), or a primary
output (PO) with propagation delay d(v). Each direct-
ed edge e 2 E connects two vertices u and v if the corre-
sponding gate of u drives, across zero or more registers,
an input of the corresponding gate of v. The number of
registers between u and v is denoted as edge weight w(e)
or w(u; v). A path p consists of a sequence of successive

vertices and edges such as p = v0
e0
! v1

e1
! � � �

ek�1

! vk

and is denoted as v0
p

� vk. The path delay is the sum

of the delay of each vertex of p: d(p) =
P

k

i=0
d(vi).

The path weight is the sum of the edge weight of p:

w(p) =
P

k�1

i=0
w(ei). The critical path of the circuit

has the maximum zero-weight path delay denoted as
�(G) = maxfd(p) : w(p) = 0g.

A retiming of a circuit is an integer-valued vertex-
labeling function r : V ! Z. Labeling vertex v with
r(v) means that r(v) registers will be moved from each
output and added to each input of v as shown in Fig. 1.
The edge weight of the retimed graph Gr(V; E; d;wr)
can be obtained by

wr(e) = w(e) + r(v)� r(u):

A clustered circuit is composed of clusters and is
functionally equivalent to the original one. The area of
each cluster must be less than M , the given area con-
straint. The interconnect between clusters incurs large

v v

r(v) = −1

r(v) = 1

Fig. 1: Basic retiming operation.

delay, D, which is also a given parameter. We de�ne the
function �(u) to denote the interconnect delay from u
to a cluster. Because we assume there is no inter-cluster
delay for PI's and PO's, �(u) is zero if u is a PI or the
cluster is a PO; otherwise it is D. A node can be du-
plicated without changing functionality for optimizing
the clock period. The cycle time may di�er from the
original because of retiming. The clustering problem in
this paper is as follows:

Problem 1 Given a sequential circuit G, and a target

clock period c, �nd a clustered circuit Gr with �(Gr) less
than or equal to c, if such a circuiting exists.

3 The Weakness of Pan's Approach

In this section, we explain why Pan's approach cannot
obtain the optimal clock period under the general delay
model and give our solution. Pan's approach does not
�nd the best labeling. The algorithm labels each node
in the circuit an "l-value", de�ned as the weight of the
longest path from the PI's to the node using the "w1

weight". The w1 weight is de�ned as w1(e) = �c �
w(e) + d(v) for each edge e : u ! v, where c is the
target clock period.

Next we explain the meaning of the l-value. Consider
a path p starting from a PI u and ending at a node v. If
we want to retime the path to satisfy the time constraint
c, there must be at least dd(p)=ce � 1 FF's on p in the
�nal circuit. Since there exists w(p) FF's on p, we can
set the retiming value r(v) as (dd(p)=ce � 1) � w(p).
(dd(p)=ce�1)�w(p) can be further translated as follows:

(dd(p)=ce � 1) � w(p)
= dd(p)=c�w(p)e � 1
= d(d(p)� c �w(p))=ce � 1:

We want to use a function related to v to represent the
value d(p) � c � w(p), so we let

l(v) = d(p)� c �w(p):

If p is the longest path from the PI's to v using the w1

weight, l(v) is the l-value. The use of l-value also gives
a good failure condition for the retiming algorithm by
checking on whether the l-value of the PO is greater
than c [2]. If the l-value of a PO is greater than c, there
exists no clustered circuit Gr with �(Gr) less than or
equal to c.

However, this labeling method is not adequate if we
want to �nd the optimal solution under the general de-
lay model. In fact, it attempts to relocate the ith FF
to the position at which the propagation delay from PI
equals to i�c. Unfortunately, this position is very likely
to be at the middle of a gate. Since a gate cannot be
split, we can only push this FF to the front of the gate

to satisfy the timing constraint c. Thus this kind of ap-
proach may produce a solution near the optimal within
the maximum delay of any gates in the circuit.

In our approach, we follow the method proposed in
[6] to modify the l-value. The l-value of a node v can be
computed by using the l-value of its fan-in node u by

l(v) = l(u)� c �w(u; v) + d(v):

If we �nd that there is an FF with computed position
occupied by a gate v, the l-value of v is increased to

lag(l(v)) � c+ d(v);

where lag(x) is de�ned as

lag(x) = dx=ce � 1:

We can detect whether the computed position of an FF
is occupied by a gate v by checking on whether lag(l(v))
is greater than lag(l(v) � d(v)). The optimal-clock-
period circuit can be obtained by setting the retiming
value r(v) for each v according to the �nal l-value as

r(v) =

�
0 if v is a PI
lag(l(v)) otherwise:

Fig. 2 shows a simple example that Pan's approach
cannot achieve the optimal clock period but we can.
Fig. 2 (a) is the original circuit showing the gate de-
lay on each node. The minimal timing constraint that
Pan's labeling can achieve is 5. The l-value and the cor-
responding retiming value r(v) for each node are listed
in Fig. 2 (b). However, the critical path delay of the
retimed circuit is 7. On the other hand, the minimal
timing constraint that our labeling can achieve is 6. As
shown in Fig. 2 (c), the critical path delay of the re-
timed circuit according to our labeling is 6, which is the
optimal clock period.

2 2 2 222 3original

retimed

r(v)

0 2 −1 1 3 6 8 5 5

0

2 2 2 222 3

(a)

retimed

r(v)

0 2 8

0 −1

2 2 2 222 3

(c)

(b)

−2 0 2 5 4 4

0 0 0

00 −1 0 1 1 0 0

0 −1 0 1

l−value
with c=5

l−value
with c=6

Fig. 2: (a) The original circuit. (b) The �nal critical
path delay is 7 by using Pan's labeling. (c) We can
achieve the optimal clock period 6 by using our labeling.

4 Outline of Pan's Algorithm

For illustrating our algorithm, we outline the algorithm
proposed by Pan et al.[2] in this section. Their algorith-
m consists of two phases. The �rst is the labeling phase
to compute the l-value and generate the corresponding
cluster for each node. The second phase connects al-
l nodes and clusters, retimes the clustered graph, and
then merges clusters to reduce area. Clusters have to
be merged because the algorithm generates one cluster
for each node during the �rst phase. We address the
labeling phase in this paper; the second phase can be
found in [2].

As we have illustrated in the previous section, the
l-value of a PO cannot be greater than the target clock
period c. Instead of Problem 1, Pan's algorithm tries to
solve the \Strong Clustering Problem":

Problem 2 (Strong Clustering Problem) Given a pos-

itive integer c, �nd a clustered circuit such that the l-

values of the PO's in the circuit are less than or equal

to c.

To reduce the search space, Pan's algorithm only
considers \simple clustered circuits". A simple clustered
circuit satis�es four conditions:

1. Each cluster has only one node that can output
signals to the outside of the cluster. Thus we can
name a cluster as Cv if it outputs from node v.

2. The retiming value at each node in the clustered
circuits is zero.

3. For each node v in the circuit, there is at most one
Cv.

4. If Cu is connected to nodes in Cv, then Cv does
not contain a copy of u.

Details about the simple clustered circuit can be found
in [2]. We just quote one of its theorems:

Theorem 1 If a strong clustering problem has a solu-

tion, it has a simple solution.

Pan's algorithm iteratively computes a new l-value
for each node. A new cluster Cv which leads to the new
l-value for node v is generated at the same time. If the
present l-value of v is less than the new computed value,
it is updated. If no more l-value can be updated, the
algorithm terminates. Otherwise, the failure condition
will be met for some PO with its l-value greater than
the target clock period c. Fig. 3 gives the pseudo code
of Pan's labeling procedure.

The new l-value of a node v and the new cluster Cv

are calculated by the routine PansTightenBound as
shown in Fig. 4. PansTightenBound �rst computes
the candidate l-value of v for each u by assuming that u
fanouts to Cv. l

0(u), the candidate l-value of v for each
u, is computed by the equation:

l
0(u) = l(u) + �(u; v) + �(u);

where �(u; v) is the w1 weight of the longest path from
u to v. Among these candidates, there exists an l0(u)
which may become the new l-value of v. So, a bina-
ry search is performed to �nd the minimum l0(u) and

PansLabel(N, c)
for each v in the circuit N do

if (v is a PI) then l(v) 0
else l(v) �1

for i 1 to B do /* B, number of iterations */
changed FALSE
for each non-PI node v in N do

(lnew ; Cnew) PansTightenBound(v)
if (lnew > l(v)) then
l(v) lnew
changed TRUE

Cv Cnew

if (v is a PO and l(v) > c) then
return FAILURE /* no solution */

if (changed = FALSE) then
return SUCCESS /* Bounds have settled */

Fig. 3: Pan's labeling procedure.

the legal cluster Cv leading to the l0(u). If we want to
achieve a desired l-value L for v, there is no choice but
putting all nodes with l0(u)0s greater than L into the
cluster Cv. Of course, the total area of the formed clus-
ter Cv must be smaller than M , the given cluster size
constraint. Finally, PansTightenBound will return a
possible l-value for v to be compared with the present
one and a legal cluster Cv.

PansTightenBound(v)
for each node u in N do

l0(u) l(u) + �(u; v) + �(u)
sort all l0 values in increasing order L1,L2,...,Lt

low 1, high t
while (low � high) do
mid (low + high)=2
remove every node u with l0(u) � Lmid

form cluster Cv;Llow

if (area of Cv;Llow
> M) then low mid + 1

else high mid
return (Llow ; CLlow

)

Fig. 4: Pan's procedure for improving the lower bound.

The time used by Pan's algorithm is mainly spent on
�(u; v) calculation and the labeling phase. �(u; v) can
be calculated in time O(jV j2logjV j + jV jjEj) by using
an all-pair shortest path algorithm [10]. Time for the
labeling phase depends on how many iterations will be
executed (i.e., B in Fig. 3). Pan et al. give the upper
bound on B as jV j(jV j�1)D, and PansTightenBound
takes time O((jV j + jEj)logjV j). Therefore, the time
complexity for the algorithm is O(jV j3jEjDlogjV j).

5 Proposed Algorithm

In this section, we present our exact algorithm for the
performance-optimal clustering with retiming. We have
illustrated our labeling method leading to the optimal
clock period in Section 3 with

new l � value of v =�
lag(l(v)) � c+ d(v) if lag(l(v)) > lag(l(v)� d(v))
l(u) � c �w(u; v) + d(v) otherwise:

(1)
In addition, we adopt another circuit traversing method
rather than Pan's by using FIFO's to incorporate our
labeling technique for run-time e�ciency.

The procedure PansLabel is a variation of the
Bellman-Ford algorithm1 [10]. We develop an algorith-
m similar to the retiming algorithm proposed by Chen
[6]. Chen's algorithm uses a FIFO to store the nodes
for updating rather than iteratively traversing the whole
circuit. Experimental results show that Chen's algorith-
m runs much faster than the Bellman-Ford-like retiming
algorithm [6]. Thus in our labeling procedure, we use
a queue, called queue1, to store the nodes whose new
l-values will be calculated. Initially, all PI's are put into
queue1. Then, nodes are retrieved from queue1 one at a
time. We update the l-value for a node if the calculated
value is greater than the present one. Then we put all
nodes reachable from the updated node into queue1 if
they have a chance to be updated. The procedure stops
if queue1 is empty or the failure condition is detected.
Fig. 5 shows the procedure, Label.

Label(N, c)
for each u in the circuit N do

for each v in the circuit N do

labelmatrix[u][v] �1
if (u is a PI) then
l(u) 0
if (UpadteLabelMatrix(u,c)=FAILURE) then
return FAILURE /* no solution */

else l(u) �1

while (queue1 6= ;) do
v dequeue(queue1)
(lnew; Cnew) TightenBound(v)
if (lnew > l(v)) then
l(v) lnew
if (UpdateLabelMatrix(v,c)=FAILURE) then
return FAILURE /* no solution */

Cv Cnew

if (v is a PO and l(v) > c) then
return FAILURE /* no solution */

return SUCCESS /* Bounds have settled */

Fig. 5: Our labeling procedure.

Fig. 6 shows routine UpdateLabelMatrix which
decides on whether a node has a chance to be updat-
ed. Since a node reachable from the updated vertex

1Strictly speaking, PansLabel is not a pure Bellman-Ford
algorithm because a failure condition is inspected to enhance

the run-time e�ciency.

UpdateLabelMatrix(v,c)
if (lag(l(v)+�(v)) > lag(l(v))) then
/* propagation delay exceeds c */
/* a ip-op is assumed to be moved here */
labelmatrix[v][v] lag(l(v)+�(v)) � c + �(v)

else labelmatrix[v][v] l(v) + �(v)
enqueue(v, queue2)
while (queue2 6= ;) do
x dequeue(queue2)
for each fanout node y of x do
label0 labelmatrix[v][x] � c � w(x;y)
label label0 + d(y)
if (lag(label) > lag(label0)) then
/* propagation delay exceeds c */
/* a ip-op is assumed to be moved here */
label lag(label) � c + d(y)

if (label > labelmatrix[v][y]) then
if (y is a PO and label > 2c) then
return FAILURE /* no solution */

labelmatrix[v][y] label
if (y 62 queue2) then enqueue(y, queue2)
if (y 62 queue1) then enqueue(y, queue1)

return SUCCESS

Fig. 6: Our procedure for updating the labelmatrix.

v may have a chance to be updated, we use another
queue, named queue2, to help traverse the sub-circuit
starting from v. If the l-value of a node y computed
according to the updated l-value of v is greater than
the original value, y will be put into queue2 for further
traversal. The candidate l-value (i.e., l0(v)) to a node
y computed according to the l-value of node v is stored
in labelmatrix[v][y]. The l-value is calculated according
to Equation 1. Meanwhile, y is also put into queue1 if
it is put into queue2 since its l-value has a chance to be
updated. Routine TightenBound as shown in Fig. 7
will calculate the possible l-value of y associated with
Cy when y is retrieved from queue1.

TightenBound(v)
for each node u in N do

l0(u) labelmatrix[u][v]
sort all l0 values in increasing order L1,L2,...,Lt

low 1, high t
while (low � high) do
mid (low + high)=2
remove every node u with l0(u) � Lmid

form cluster Cv;Llow

if (area of Cv;Llow
> M) then low mid + 1

else high mid
return (Llow ; CLlow

)

Fig. 7: Our procedure for improving the lower bound.

To prove the correctness of our algorithm, we give

the following theorem:

Theorem 2 Given a sequential circuit G and a target

clock period c, there exists a retimed clustered circuit

Gr with �(Gr) less than or equal to c if, and only if,

procedure Label returns SUCCESS.

The proof for Theorem 2 is omitted due to space limi-
tation.

The storage requirement is O(jV j2) for the all-pairs
matrix, labelmatrix, which is the same as that of Pan's
algorithm for storing �(u; v) for every node pair (u; v).

To analyze the time complexity, we �rst examine
how many times a node will be visited in procedure La-
bel. A node v will be visited only when the l-value
of another node u is updated and there is a path from
u to v. The increasing amount for an updated l-value
is at least c=�, where � is the minimal positive di�er-
ence between any two gate delays. The l-value has a
range between �c � jF j and c � (jF j + 1) because the
largest possible propagation delay is c � (jF j+1), where
jF j is the number of FF's in the circuit. As a con-

sequence, queue1 is enqueued at most c�(2jF j+1)

�
jV j2 =

O(��1jF jjV j2) times. Next we examine how many times
a node will be visited in routine UpdateLabelMatrix.
A node y will be visited only when one of its fan-in
node, x, has been updated. By the similar analysis,
O(��1

jF jjEj) nodes will be visited in UpdateLabel-

Matrix. Since the time complexity of TightenBound
is almost the same as PansTightenBound at O((jV j+
jEj)logjV j), our approach takes time O((��1

jF jjV j2) �
(��1
jF jjEj)+ (jV j+ jEj)logjV j)) = O(��2

jF j2jV j2jEj+
��1
jF jjV j2jEjlogjV j). Comparing our results with the

time complexity of Pan's approach, we are not sure
which is faster. Thus we need experiments to prove
the e�ciency of our algorithm.

6 Experimental Results

We have implemented our algorithm in C language and
embedded it in the SIS package [7]. We have also im-
plemented Pan's algorithm for comparison purpose. We
run the experiments on an UltraSparc-2 machine with
2GB of memory. The M is set as a quarter of the total
circuit area, and D twice the average gate delay.

Experimental results on the ISCAS89 benchmark
suite [9] are listed in Table 1. All the circuits are tech-
nology mapped by SIS using a 0:5um library from TSM-
C [8]. The number of gates for each circuit are listed
in \jV j". Circuits are retimed before clustering and the
results are listed in \�(G)" column. The maximal gate
delay of each circuit is listed in column \max d" for ref-
erence. The minimal target clock periods that the la-
beling phase can achieve are listed in \min c" columns.
The �nal clock periods are listed in \�(Gr)" columns.
Results prove that the clock period obtained by Pan's
algorithm is bounded by c plus maximal gate delay and
may not be the optimal. 11 of totally 26 cases of Pan's
results are sub-optimal as bold-faced in the table.

The run time in second is listed in \CPU" columns,
and the ratio of the time used by Pan's algorithm over
ours is listed in \Pan's/Ours CPU" column. Only for
two cases (s1423 and s9234) is our algorithm a little bit
slower than Pan's. The average ratio of the run time
used by Pan's algorithm to ours is 2 : 1.

The experimental results prove our algorithm valu-
able since it is an exact algorithm and runs faster than
the previous non-optimal heuristic.

7 Conclusions

We have presented an exact algorithm to cluster-with-

retiming sequential circuits to get the optimal clock pe-
riod. We pointed out why a previous work, Pan's ap-
proach, could not produce the optimal solution under
the general delay model. We modi�ed Pan's labeling
methods and proposed an exact algorithm which used
two queues to enhance run-time e�ciency. Experimen-
tal results show that the average ratio of the run time
used by Pan's algorithm to ours is 2 : 1.

These techniques can also be used for technology
mapping with retiming. We will study this problem in
the future.

References

[1] C. E. Leiserson, and J. B. Saxe, \Retiming Syn-
chronous Circuitry," Algorithmica, vol.6, pp.5-35,
June, 1991.

[2] P. Pan, A. K. Karandikar, and C. L. Liu, \Opti-
mal Clock Period Clustering for Sequential Circuits
with Retiming," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,
vol.17, pp.489-498, June 1998.

[3] H. H. Yang, and D. F. Wong, \Circuit Clustering
for Delay Minimization under Area and Pin Con-
straints," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol.16,
pp.976-986, September 1997.

[4] R. Murgai, R. Brayton, and A. Sangiovanni-
Vincentelli, \On Clustering for minimum de-
lay/area," in Proceedings of International Confer-

ence on Computer Design, pp.6-9, 1991.

[5] E. Lawler, K. Levitt, and J. Turner, \Module Clus-
tering to Minimize Delay in Digital Networks,"
IEEE Transactions on Computers, vol.18, pp.47-
57, January 1969.

[6] W.-J. Chen, \A Study on the Relationship Be-
tween Retiming and Loop Folding," Master thesis,
M312.93, National Tsing-Hua University, Taiwan,
August 1994.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. Sangiovanni-Vincentelli,
\SIS : A System for Sequential Circuit Synthesis,"
Memorandum No. UCB/ERL M92/41, Electronics
Research Laboratory, College of Engineering, Uni-
versity of California, Berkeley, May 1992.

[8] TCB650 Library, 0.5um Standard Cell Data Book,

TSMC, April 1996.

[9] F. Brglez, D. Bryan, and K. Kozminski, \Combina-
tional pro�le of sequential benchmark circuits," in
Proceedings of International Symposium of Circuits

and Systems, pp. 1929-1934, May 1989.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, In-
troduction to Algorithms, New York: McGraw-Hill,
1993.

Table 1: Experimental results.

circuit
Initial Pan's Ours Pan

0
s

Ours

jV j �(G) max d min c �(Gr) CPU min c �(Gr) CPU CPU

s208 83 2.74 0.42 3.08 3.08 2.0 3.08 3.08 1.0 2.0

s298 98 0.99 0.38 0.99 1.05 3.9 1.05 1.05 2.4 1.6

s344 180 2.10 0.42 2.10 2.13 11.9 2.10 2.10 8.0 1.5

s349 174 1.99 0.42 1.99 1.99 11.1 1.99 1.99 6.9 1.6

s382 204 1.40 0.38 1.40 1.52 21.9 1.45 1.45 21.2 1.0

s386 175 2.30 0.38 2.66 2.66 7.3 2.66 2.66 4.2 1.7

s400 198 1.69 0.42 1.69 1.77 24.3 1.69 1.69 9.7 2.5

s420 179 2.80 0.42 3.15 3.15 6.2 3.15 3.15 2.7 2.3

s444 197 1.54 0.38 1.54 1.65 19.0 1.56 1.56 10.6 1.8

s510 288 2.41 0.70 2.58 2.90 40.4 2.79 2.79 22.6 1.8

s526 198 1.45 0.38 1.45 1.50 11.7 1.45 1.45 8.2 1.4

s526n 185 1.46 0.42 1.46 1.49 13.9 1.46 1.46 6.7 2.1

s641 276 2.99 0.56 3.55 3.55 20.1 3.55 3.55 9.9 2.0

s713 225 2.35 0.38 2.69 2.69 10.3 2.69 2.69 4.7 2.2

s820 425 2.33 0.38 2.43 2.59 180.2 2.49 2.49 81.7 2.2

s832 428 2.33 0.38 2.50 2.69 96.3 2.50 2.50 52.7 1.8

s838 399 4.62 0.56 4.97 4.97 39.5 4.97 4.97 16.4 2.4

s1196 732 5.05 0.70 5.56 5.56 129.4 5.56 5.56 38.6 3.4

s1238 895 2.73 0.38 3.12 3.12 258.5 3.12 3.12 66.1 3.9

s1423 867 5.60 0.42 5.60 5.71 288.5 5.71 5.71 299.7 1.0

s1488 525 3.78 0.70 3.78 3.94 87.8 3.94 3.94 54.0 1.6

s1494 776 2.54 0.41 2.91 3.05 209.2 2.91 2.91 160.5 1.3

s5378 1403 3.78 0.70 4.28 4.28 850.8 4.28 4.28 300.0 2.8

s9234 1406 2.20 0.56 2.31 2.46 929.1 2.32 2.32 1123.3 0.8

s35932 11720 2.88 0.43 3.10 3.10 245944.3 3.10 3.10 23563.7 10.4

s38417 9750 6.19 0.70 6.19 6.19 16431.5 6.19 6.19 11675.8 1.4

average 3.03 2.99 2.1

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

