
Luc Séméria Abhijit Ghosh
lucs@azur.stanford.edu ghosh@synopsys.com

Computer System Lab. Synopsys Inc.
Stanford University Mountain View, CA

Abstract In this paper we present our C/C++-based design envi-
ronment for hardware/software co-verification. Our approach is to
use C/C++ to describe both hardware and software throughout the
design flow. Our methodology supports the efficient mapping of C/
C++ functional descriptions directly into hardware and software.
The advantages of a C/C++-based flow from the verification point of
view are presented. The use of C/C++ to model all parts of the sys-
tem provides great flexibility and enables faster simulation compared
to existing methodologies. We show how co-verification can be done
efficiently and effectively at the various levels of abstraction, how co-
verification can be used to drive co-design through performance esti-
mation and give an example of implementation for the 8051 architec-
ture.

1. INTRODUCTION
With shrinking device sizes, microprocessors, digital signal pro-

cessors, memory and custom logic are being integrated into a single
chip to form systems-on-chip. Verification of such systems poses
unique challenges because unlike systems-on-board, in-circuit emu-
lators cannot be used and internal wires are not easily accessible.

In a traditional design methodology, hardware and software
design takes place in isolation with the hardware being integrated
with the software after the hardware is fabricated. Bugs that cannot
be fixed in software lead to costly re-fabrication and can adversely
affect time-to-market.

To avoid costly silicon re-spins and improve time-to-market, the
design methodology has to change such that hardware and software
are integrated earlier in the design-cycle. Hardware-software co-veri-
fication technology is the enabler for this new design methodology.

Hardware-software co-verification involves the simulation of a
processor model with a simulation of the custom hardware usually
described using Hardware Description Languages. For heteroge-
neous environment such as the co-simulation of C and Verilog HDL
or VHDL, the communication between software and hardware can
be done using remote procedure calls or some form of interprocess
communication (sockets) [10,7]. There is an overhead in passing data
back and forth between the largely HDL-based hardware world and
the largely C/C++-based software world during co-simulation. This
overhead can be reduced [3,7], but cannot be eliminated altogether.

Recently, several C/C++-based hardware design tools [2] and
methodologies have been presented. A C/C++-based design method-
ology has several advantages over an HDL-based methodology. In a
C/C++-based methodology, designer productivity can be improved
significantly because one can eliminate translation from a C/C++
system specification to an HDL specification for implementation, by
synthesizing directly from the C/C++ specification. This not only
reduces translation time but eliminates bugs introduced during trans-
lation, which can take significant time to track down. In addition, one
can also ease the verification bottleneck by reusing the testbenches
that were developed during system validation. In addition, a C/C++-
based methodology enables hardware-software co-design and gives
designers the ability to perform hardware-software co-verification
and performance estimation at very early stages of design.

In this paper we show how hardware-software co-verification is
performed in a C/C++-based flow. Our approach is to use C/C++ to
describe both hardware and software. In particular, we will use the
SYSTEMC (formerly known as SCENIC) environment [6,11] through-
out the design flow. Other C/C++-based approches to co-simulation

include COWARE N2C [1] and PTOLEMY [8]. The SYSTEMC environ-
ment can be used to describe an entire system efficiently in C++ at
the different levels of abstraction for both simulation and synthesis
[4]. A complete description of this environment is beyond the scope
of this paper but can be found in [11].

The rest of this paper is organized as follows. In Section 2, we
present our design flow. In Section 3, we present different CPU mod-
els and techniques to speed-up simulations. Finally in Section 4, an
example of implementation for the dw8051 architecture is given.

2. DESIGN FLOW
The design process starts with the designer creating a functional

specification of the system. The aim is to validate the algorithms and
system functionality. The functional specification is a network of
processes communicating through channels or signals. The processes
represent functionality and may need to be mapped to different archi-
tectural blocks to be implemented in software or hardware. There-
fore, once the system functionality is validated by simulating the
specification (in this case, compiling and executing the C++ pro-
gram), the functional specification is mapped into an architectural
specification.

In the architectural specification, processes represent actual
hardware blocks, like a processor, memory and ASIC. Communica-
tion between processes is performed using signals that represent
actual communication resources available in the architecture. It is in
the mapping step that the functional specification is partitioned into
hardware and software components. Using one language for the
description of both hardware and software makes mapping easier,
allows the designer to move functionality from hardware to software
and vice versa, thereby allowing the exploration of different architec-
tures and partitions between hardware and software.

The architectural specification may include one or more proces-
sor blocks and other hardware blocks (like DMA, memory, etc.)
After the architectural specification is created, the specification needs
to be simulated to validate the architecture and determine its perfor-
mance. This is where hardware-software co-simulation first comes
into the methodology. Since various architectures may need to be
explored through simulation, co-simulation at this level needs to be
extremely fast. Therefore, the models used at this level tend to be
more abstract. For processors, only a bus-functional model (BFM) is
used. For the other hardware blocks, abstract models with proper
interface behavior are used.

Once an architecture is decided, the individual hardware and
software blocks are refined by adding the necessary implementation
details and constraints for synthesis. Since the hardware and software
teams work separately and in parallel, co-simulation has to be used
constantly to ensure that the system still works. Since the hardware
interfaces have been refined and the software has been targeted to a
processor, models used are more detailed and therefore simulation is
slower. For processors, a BFM has to be used in conjunction with an
instruction set simulator (ISS). For other hardware blocks, register-
transfer level (RTL) or behavioral implementable models are used.

After this point, hardware can be implemented using synthesis
tools and compilers can be used for software. Since this part of the
design flow is well established, we will not describe it any further.
We would just like to point out that after synthesis, i.e. at the gate-
level, whatever co-simulation techniques are in use today can be
employed.

Methodology for Hardware/Software Co-verification in C/C++

3. PROCESSOR MODELS
3.1 Bus Functional Model

A bus functional model of a processor encapsulates the bus
functionality of a processor (see [5] for a definition). Such a model
can only execute bus transactions on the processor bus (with cycle
accuracy), but cannot execute any instructions. A BFM is therefore
an abstract processor model that can be used to verify how a proces-
sor interacts with its peripherals.

A BFM is a key component in any co-verification solution. In
our design methodology a BFM is used throughout the design pro-
cess. In the early stages of the design process, only the BFM is used
for co-simulation, as shown in Figure 1a. The BFM provides a pro-
gramming interface that can be used by the software directly. Since
the software runs on the host processor (on which development is
done), this model is untimed because the software execution time is
not accurate.

In the later stages of the design process, an ISS needs to be used
in conjunction with the BFM in order to execute the instructions for
the target processor (Figure 1b). The ISS makes use of the same pro-
gramming interface to talk to the BFM. Since this ISS can be cycle-
accurate, one can perform cycle accurate simulation at this stage.

In this section we will present how the SYSTEMC environment is
used to develop reusable BFMs and verify hardware-software com-
munication in C/C++.
3.1.1 Design of the BFM

 In the SYSTEMC environment, a BFM is a hierarchical process
that is derived from (using C++ inheritance) a SYSTEMC class called
sc_module . The ports of this module correspond to the pins of the
processor. The BFM class has several methods (which are member
functions of C++ classes) that provide a programming interface to
the software or to the ISS. The methods provided depend on the type
of communication between hardware and software and are described
below. The functionality of the BFM itself is modeled as a set of
finite-state machines (that can execute in parallel).

In the SYSTEMC environment, the programming interface to
BFMs is more or less fixed, i.e. the interface methods have the same
prototype for all BFMs, though some BFMs may support methods
that are not supported in others. This allows the user to swap one pro-
cessor model for another easily, without having to change the C/C++
source code. This capability is important because it allows the user to
explore different architectures with different processors. The various
pre-defined types likesc_address , sc_data , sc_register , etc.
(see below) can be specialized inside each BFM, therefore allowing
complete freedom for each BFM to define these types appropriately.
3.1.2 Memory-mapped I/O

One of the most common architectures in systems-on-chips
consists of CPUs and hardware devices connected to one or multiple
memory buses. A portion of the address space is then allocated for
each I/O device and hardware-software communication is imple-
mented as memory accesses (memory-mapped I/O). A BFM pro-
vides the following methods to read and write memory:

void bfm_read_mem(sc_address addr, sc_data
*dat,int num_bytes)

void bfm_write_mem(sc_address addr, sc_data dat,
int num_bytes)

Thesc_address andsc_data types are types defined in the
BFM. For example, the address type can be an integer while the data
type can be an array of bytes.

Software can access each device by performing memory reads
and writes. When the software is implemented as a C/C++ program
running on the host machine, explicit calls to the methods above can
be added in the code to access I/O devices.

When an instruction set simulator is used, the software will
make calls to the device drivers which will ultimately get converted
to execution of memory read/write instructions. The ISS will then
call the above methods in the BFM to perform the memory reads and
writes. The BFM performs the appropriate bus transactions and, in
the case of a memory read, sends the received data back to the caller
of the method.
3.1.3 Interrupt-driven I/O

Interrupt signals may be used by external I/O devices and inter-
nal modules (timers, serial ports) to trigger an interrupt on the CPU.
An interrupt controller, sensitive to the interrupt signals, is imple-
mented as part of the BFM. Once the BFM detects an interrupt, it can
execute a user defined function. The function to execute for a partic-
ular interrupt is specified using the following BFM method:

void bfm_register_handler(sc_interrupt intr,
void (*handler)(sc_interrupt))

The typesc_interrupt is defined in the BFM and contains
information about the interrupt (the pin, the vector, etc). Thehan-
dler function is provided by the user and when this function is
invoked, it is provided with the details of the interrupt through its
argument. Most types of interrupts are supported: synchronous, asyn-
chronous as well as vectored interrupts. Besides, interrupts may be
masked using the configuration ports.

When the software is implemented as a C/C++ program running
on the host machine, the software writer has to use the method above
to register interrupt handlers. When an instruction set simulator is
used, the ISS software will register internal ISS routines as handlers
for the interrupts.
3.1.4 Configuration ports, access to internal registers

CPU cores often have multiple modes of operation (e.g. little/
big endian, multiple timer or serial modes, masked interrupts, etc.)
according to the value set on the configuration ports and stored in
internal configuration registers. Reconfiguration may be done by
peripherals (through configuration ports) and by the software. The
BFM provides the following method for accessing internal registers:

void bfm_read_reg(sc_register reg, sc_data *dat,
int num_bytes)

void bfm_write_reg(sc_register reg, sc_data dat,
int num_bytes)

The typesc_register is defined in the BFM. It contains all
the information about a register (address, width, accessibility of each
bit in the register, etc).

The support of configuration ports and registers involves the
development of a controller in the BFM which maintains the value of
the internal registers and other parameters. The value of these param-
eters and registers are then directly accessed by the other processes
of the BFM. Note that the BFM usually models only the configura-
tion registers but not the general purpose registers of the processor
(though this can be added).
3.1.5 Timers and serial port

Some CPUs integrate serial I/O ports and timers. The timing of
the transaction on these ports are controlled by timers internal to the
CPUs. The controllers for the timers and the serial ports are imple-
mented within the BFM. These timers and serial ports are accessed
by writing special registers using the methods specified in the previ-
ous section. Note that the serial port controllers and the timers may
send interrupts (e.g. to signal the end of a transaction, a real-time
deadline or an error in the transmission).
3.1.6 Performance estimation functions

The BFM keeps track of the number of clock cycles used to per-
form various bus transactions and can provide a detailed report at the
end of the simulation (or during each bus transaction). This reporting
feature can be enabled by calling the following method:

void bfm_enable_tracing(int level)

Various levels of tracing are defined, whereby not only perfor-
mance related information, but also debugging information can be
provided by the BFM.

Figure 1: (a) untimed and (b) cycle-accurate co-simulation model

assembly

SW HW
BFMISS

SW HW
BFMC/C++

(a) (b)

3.1.7 Hardware-software synchronization
In the actual hardware, the software and the hardware run in

parallel. However during simulation, when a bus transaction is exe-
cuted, the software is essentially stopped until the bus transaction is
completed (i.e. by default, the BFM read and write methods are
blocking). This essentially serializes the execution of the hardware
and software. Designers have the choice of making the software exe-
cute in parallel with the hardware, by setting a flag in the BFM (a
function is provided for this). When the flag is set, the BFM routines
return instantaneously, allowing the software execution to go ahead.

When using a BFM stand-alone, explicit timing information
may also be added in the software through the use ofwait() or of
the following method call:

void bfm_idle_cycle(int cycles)

 These calls suspend the execution of the software for one clock
cycle or more. Nevertheless, this technique has limitation for model-
ing the timing of complex superscalar pipelined architectures. There-
fore, for timing accurate simulation, a BFM needs to be used with an
ISS.

3.2 Instruction set simulator
For a given architecture, an instruction set simulator (ISS) reads

the assembly code written for the architecture and simulates it on a
host machine. Different types of ISS can be developed for different
purposes.

First, the verification of the functional correctness of an applica-
tion written in assembly code can be performed using ISS. For this
purpose, very fast ISS can be developed by translating the instruc-
tions of the target architecture into instructions on the host machine.
This technique has been applied for hardware/software co-verifica-
tion. However, this type of ISS cannot be cycle-accurate for complex
pipelined, superscalar architectures.

Second, the verification of the timing and interfaces (buffer size,
bus contention) between the different components of the system can
be done using an ISS and a BFM. Here, the timing accuracy is usu-
ally important and the ISS is often implemented as an emulator.

Our environment makes no assumptions about the nature of the
ISS that the designer chooses to use, as long as the ISS can be inte-
grated with BFM. However, if the designer requires performance
estimates, we recommend that the designer chooses an ISS that can
provide accurate cycle counts. Also if the designer wants certain
types of simulation speed improvements, the ISS is then required to
provide the necessary ‘hooks’ for that (these ‘hooks’ are described in
Section 3.4).

3.3 Integrating an ISS and a BFM
By integrating an ISS and a BFM a complete processor model

can be generated and used for detailed simulation. If the ISS is cycle-
accurate, then the entire processor model is also cycle-accurate (note
that a BFM is a cycle-accurate model to begin with).

An ISS typically consists of fetch, decode, and execute units.
The fetch unit reads the current instruction in the instruction memory
or in a file. The decode unit decodes the instructions and outputs the
opcode as well as the different operands. Finally the execute unit per-
forms the operation, reads/writes memory, updates registers and
computes the address of the next instruction. A typical ISS consists
of these three units. In the execution unit of the ISS, calls are made to
the BFM interface methods to execute memory and configuration
register reads/writes. The fetch unit of the ISS also makes call to
BFM methods to get instructions and data.

For more complex architectures (e.g. superscalar, pipelined)
several units must be added to implement pre-fetch, issue and write-
back stages. Level 1 cache would also be modeled as part of the ISS.
Moreover, the interrupt controller used in the BFM should also be
modified to take into account some of the features of modern proces-
sors (pipeline, reorder buffer, etc.). For such complex architectures,
various parts of the ISS may need to call BFM methods.

In addition, the ISS may need to provide the BFM with certain
memory access functions. These functions are described in Section
3.4.

3.4 Supporting techniques for speeding up simulation
Several techniques have been presented in [3,7] that improve

simulation speed by reducing the amount of activity that needs to be
simulated. These techniques are fairly universal and can also be
exploited in our environment.
3.4.1 Reduce activity on memory bus

For most applications more than 95% of the traffic on the mem-
ory bus can be attributed to instruction and data fetches. If the func-
tionality of the processor bus interface with the instruction and data
memory has been verified, there is no need to simulate this activity
during co-simulation.

The simulation of instruction fetch can be avoided by putting
the instruction memory as part of the ISS. The ISS is modified to
access instruction memory directly. Such a technique can also be
applied to the data memory, thereby eliminating data access simula-
tion. However, since external devices may need to access the data
memory, the BFM can be configured to recognize bus cycles where
an external device is accessing data memory. The BFM can then
modify the data memory directly inside the ISS. For this, the ISS
needs to provide a set of functions that will be used by the BFM to
read and write the data memory. The ISS also needs to implement a
memory map whereby addresses in certain ranges will be accessed
directly while addresses in other ranges will cause the bus cycles.

Note that the same technique can also be applied to any other
device on the memory bus with little additional re-coding.
3.4.2 Turn off clocks on modules

All processes connected to the memory bus receive the clock
signal, irrespective of whether the process is addressed by the CPU
or not. Since the clock signal forces evaluation of at least a part of the
process functionality of each process, it is wasteful. By turning off
the clock for all instances except when the processor addresses
devices on the bus, we can speed up simulation. This is supported in
our framework by having the BFM generate the bus clock for the
system. The BFM will generate the bus clock only when devices on
the bus are addressed.

4. IMPLEMENTATION: 8051
In this section we present our model of BFM and cycle-accurate

ISS for the Synopsys DesignWare 8051 core [9]. The dw8051 mac-
rocell is a configurable, fully-synthesizable, and reusable 8051 core.
It is binary compatible with the industry standard 803x/805x micro-
controllers.

The 8051 is an 8 bit microcontroller widely used in simple
embedded application such as in smartcard, cars, toys, etc. It sup-
ports many of the I/O modes found in other processors. A block dia-
gram of a system based on the dw8051 core is presented in Figure 2.
Hardware devices can be connected to the memory bus or to the Spe-
cific Function Register (SFR) bus. The dw8051 also features six
interrupt ports (extendable to twelve), up to two serial ports and one
or two timers. The timers and serial ports have respectively three and
four different modes of operation which makes them fairly complex
to model. For more details on the dw8051 architecture, refer to [9].

4.1 dw8051 bus functional model
We developed a dw8051 BFM using the SYSTEMC framework.

In particular, our BFM supports:
- timer 1, mode 0,1,2
- serial port 0, mode 0,1,2,3

dw8051 coreexternal SFR
external RAM

external ROM

 device models

serial port
 device models serial ports

 mem_bus

sfr_bus

 interrupt ports

 mem. mapped

Figure 2: block diagram of the DW8051 core

SFR = Specific Function Registers

- external interrupts
- external memory accesses with variable stretch cycles
- SFR (Specific Function Register) accesses
A system consisting of the dw8051 BFM and the testbench is

depicted in Figure 3. The BFM (8051BFM process) consists of sev-
eral processes. The software interface process (sw_interface) pro-
v ides the BFM programming in te r face methods . The
io_controller process updates the values of internal specific
function registers (SFR) and models the behavior of the timer and
serial port. Both processes access methods of the interrupt controller
(int_cont) implemented as a separate class.

The dw8051 BFM has been tested with an example system. The
software part (test_sw) of this example consists of several test-
cases to interactively test the different features of the BFM. In addi-
tion to the BFM, the hardware part consists of several processes
(memory, interrupt , serial) modeling the behavior of devices on
the memory bus and on the serial port.

The number of lines for each process is presented in Table 1.
The results in Table 2 compare our methodology to a traditional
HDL-based co-simulation methodology. The first row shows the sim-
ulation time for the system depicted in Figure 3, where the entire sys-
tem is modeled in the SYSTEMC environment. The software/
hardware test programs are testing the different features of the BFM
(memory port, sfr update, serial ports and timer). The simulations
have been measured on Sun Sparc5 with one 85MHz processor and
256MB RAM.

The second row shows simulation time for the same system,
where the software runs on a workstation and communicates through
some form of IPC (sockets) to the hardware. This is the way co-sim-
ulation is done in all HDL-based commercial tools. Note that only
the overhead due to the use of IPC is taken into account (i.e. the hard-
ware is still described in C/C++). When the hardware is described
using an HDL, one would also typically have to add the effect of pos-
sibly less efficient HDL models and the overhead of the HDL simula-
tor itself. As can be seen, our environment can be up to three times
faster due to the simplification of the communication between hard-
ware and software (cf. test of the memory and SFRs). As expected,
the speed-up is less noticeable when the communication between the
software and hardware is limited (cf. test of the serial ports and tim-
ers).

4.2 dw8051 cycle-accurate model
A cycle-accurate ISS for a subset of the dw8051 architecture

has also been developed and integrated with the BFM described in
the previous section. The ISS is implemented as a single process that
fetches, decodes and executes the 8051 instructions.

For this test, an I/O device has been connected on the memory
bus. This generic device has a latency of 100 clock cycles. The first
row shows the simulation time without any optimization. The second
row presents the results after applying the techniques described in
Section 3.4. These optimizations provides a 94% speed-up. Finally
the last row presents the results when the software is running directly
on the host machine. In this example, the ISS is quite simple. There-
fore, the overhead for using an ISS is only about 10%. It would typi-
cally increase for more complex architecture (e.g. superscalar
pipelined architectures).

5. CONCLUSION
We have presented our environment for hardware-software co-

verification in C/C++ using SYSTEMC. This approach to choosing an
environment for co-simulation and to creating models has several
advantages.

Our environment is based on the use of a single language and a
uniform modeling paradigm for both synthesis and simulation. The
interaction between the software part, running directly on the host
machine or emulated by the ISS, and the hardware is therefore sim-
plified. We don’t need any of the complex co-simulation mechanisms
to interface HDL simulators with the software world.

Our environment allows designers to model their system
entirely using C/C++. By design, the C/C++ language can be very
efficiently compiled on today’s architectures, enabling the develop-
ment of very fast models. In addition, there are no overheads associ-
ated with interfacing a C world with an HDL world. Moreover, our
environment also offers flexibility and therefore supports most of the
techniques used to speed-up hardware software co-simulation [3,7].

By proper design of the BFM and ISS, performance estimates
can be obtained for software execution, which can be used to drive
the codesign process. Having software and hardware described in the
same language together with a good object oriented (OO) design
technique will make moving functionality between software and
hardware easier.

Finally, C++ allows us to use OO techniques to create BFMs
and ISSs that can be reused from one generation of processors to the
next, making the job of developing and maintaining these models
simpler.

6. REFERENCES
[1] CoWare N2C,http://www.coware.com
[2] Giovanni De Micheli, “Hardware Synthesis from C/C++ Models,” pro-

ceedings of the DATE’99 conference, pp.382-383, March 99.
[3] Abhijit Ghosh et al. “A hardware-software co-simulator for embedded sys-

tem design and debugging,” proceedings of the ASP-DAC’95, pp. 155-
164, 1995.

[4] Abhijit Ghosh, Joachim Kunkel, Stan Liao,“Hardware Synthesis from C/
C++,” proceedings of the DATE’99 conference, pp.382-383, March 99.

[5] Michael Keating, Pierre Bricaud, “Reuse Methodology Manual For System-
on-Chip Designs,” Kluwer Academic Publishers, 1998.

[6] Stan Liao, Steve Tjiang, Rajesh Gupta,“An Efficient Implementation of
Reactivity for Modeling Hardware in the SCENIC Design Environment,”
proceedings of the Design Automation Conference DAC’97, pp.70-75,
June 97.

[7] Mentor Graphics Seamless,http://www.mentorgraphics.com/seamless/
[8] C. Passerone, L. Lavagno, M. Chiodo, A. Sangiovanni-Vintentelli, “Fast

hardware/software co-simulation for virtual prototyping and trade-off
analysis,” Proceedings of the Design Automation Conference DAC’97,
pp. 389-394, 1997.

[9] Synopsys DW8051http://www. synopsys.com/products/designware/
8051_ds.html

[10] Synopsys Eaglehttp://www.synopsys.com/products/hwsw/hwsw.html
[11] SystemChttp://www.SystemC.org

File 8051 BFM HW test_sw

Lines of C++ 1,944 497 1,134

Table 1: number of lines for BFM and testbench

Implementation
Testbench

Memory SFRs Serial Timer

SYSTEMC
time 274 438 405 449

speed 4,671 1,826 7,521 7,540

Co-simulation
time 907 1,051 561 451

speed 1,411 761 5,429 7,505

Table 2: simulation time (in seconds) and speed (in clock cycles/
second) for the dw8051 system

 test_sw 8051BFM

 sw_interface

 io_controller

 memory

 interrupt

 serial

 8051BFM

SFR int_cont

Figure 3: co-verification with dw8051 bus functional model

mem_bus

int_ports

methods
calls

serial_port

 HW

Implementation Simulation time

ISS + BFM 4,708
optimized ISS + BFM 279

C/C++ + BFM 252

Table 3: simulation time for the cycle accurate model (in seconds)

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

