
Fast Development of Source-level Debugging System Using Hardware

Emulation

Sang-Joon Nam, Jun-Hee Lee, Byoung-Woon Kim, Kyong-Gu Kang
Yeon-Ho Im, Young-Su Kwon and Chong-Min Kyung

VLSI Systems Lab., Dept. of Electrical Engineering MRI Divison,

Korea Advanced Institute of Science and Technology, Medison Corporation,

Teajon, Korea Teajon, Korea

Tel: +82-42-866-0700 Tel: +82-42-488-9201

Fax: +82-42-866-0702 Fax: +82-42-488-9202

e-mail: fsjnam, munjigi, bwkim, mini, yskwong@duo.kaist.ac.kr, e-mail kedison@mri.medison.co.kr

kyung@eekaist.kaist.ac.kr

Abstract| We describe the co-development of a

processor and its source-level debugging system using

an emulation-based validation technology including

hardware emulation, not simulation. Since a source-

level debugging system is essential to develop an appli-

cation system and it takes a long time to validate the

functionality of the source-level debugging system, we

have adopted hardware emulation for a fast validation

and system development. Using this methodology, we

were able to validate the source-level debugging sys-

tem successfully before the chip fabrication.

I. Introduction

As the complexity of the application programs is grow-

ing, most of them are implemented with high-level pro-

gramming languages for fast development, easy debugging

and easy upgrading. Therefore, in developing an appli-

cation program, it is essential to support the source-level

debugging system, which allows the program developer to

follow any execution path within the complex programs.

One of the advantages of the source-level debugging

system is that this system enables a programmer to run

his/her application programs at full speed within the tar-

get hardware. Unlike simulation environment, this system

is capable of operating in the actual target-application

hardware environment considering interrupts, PCI (Pe-

ripheral Component Interconnect) and host interfaces.

Therefore, complete testing and veri�cation of real-time

program at the source level requires running application

on the target hardware[1]. Running real-time software

while controlling and observing the state of the running

program requires emulator.

There are two implementations for an emulation-based

source-level debugging system. One is JTAG emulator

which is based on the boundary scan technique as de�ned

by IEEE 1149.2[2], and the other is In-Circuit Emulator

(ICE) which uses a special bond-out processor to observe

the states of the target processor precisely. While ICE re-

quires an expensive bond-out chip to observe and control

the processor, JTAG emulator supports these features us-

ing an additional small control logic and �ve testing pins

which are de�ned by IEEE 1149.1.

However, so far, the source-level debugging system has

been implemented and veri�ed after the fabrication of

processor, which is a great disadvantage in terms of the

fast time-to-market request[3]. Hardware emulation al-

lows truly concurrent engineering in the system develop-

ment as depicted in Fig.1. At some point in the traditional

development
ow, software and hardware e�orts need to

wait for the delivery of the �rst silicon for further debug-

ging and continuing the development. Hardware emula-

tion is equivalent to receiving \the �rst silicon" as soon

as synthesizable RT-level design is complete. Using hard-

ware emulation, software and hardware can be integrated

and veri�ed concurrently at the earlier stage.

In this paper, we propose a methodology for the co-

development of a processor and its source-level debugging

system using hardware emulator. A co-development re-

quires a system co-validation. Two approaches have been

used for co-validation, i.e., simulation-based validation

and emulation-based validation [4]. The choice depends

on the complexity of the system being designed. If the

coverage of the functionality of the design can reach the

satisfactory degree in a short time using simulation, the

simulation-based approach would be preferred due to its

high observability. However, to validate the source-level

debugging system, it is necessary to run a lot of test-

ing programs and application programs on a processor

model, which can be modeled by either software or hard-

ware. Many processor companies have used emulation-

based approach to validate the functionality of processors

because it takes too long time to run programs on the

software model [3][5][6]. Validation of the source-level de-

bugging system within a processor is as complex as that

of the processor because the source-level debugging sys-

Early to
Market!!

Design
Implemen

tation
System

Integration
SW

Design Build

Design Fab

HW

CHIP Debug

Hardware
Integration

Debug

Debug

Traditional Development Flow

Back
Annotation time

Co-development Flow

Design & ImplementationSW

Design & Build

Design Fab

HW

CHIP

Chip
Debug

HW emulation HW/ SW integration
& HW / SW Debug

Final
Integr-
ation

Debug

Concurrent
Development

Sequential
Development

Back
Annotation

Fig. 1. Co-development using hardware emulation.

tem uses both the processor's normal mode and debug

mode, which is invoked by interrupt requests from a on-

chip debug unit. Thus, we adopted an emulation-based

validation approach for the co-development of a processor

called FLOVA (FLOating-point VLIW Architecture) and

a corresponding source-level debugging system targeted

for image processing and 3D graphics [7].

The organization of this paper is as follows. Section

2 describe FLOVA source-level debugging system. In

Section 3, the hardware emulation environment for co-

development is explained. Section 4 shows the hard-

ware and software results of the proposed co-development

method. Finally, conclusions are presented in Section 5.

II. Source-level Debugging System of FLOVA

Fig. 2 shows FLOVA source-level debugging system

consisting of source-level debugging library, source-level

debugger, JTAG control driver, JTAG emulator, on-chip

debug unit, JTAG unit, and hardware emulator. After

the target program is downloaded, the debugger program

can control the target program and read or write on-chip

registers and internal/external memories. These debug-

ging control operations are done by on-chip debug unit

in FLOVA, which is controlled by the debugger program

through JTAG control driver.

A. Source-level Debugger

The C source-level debugger is an advanced program-

mer's interface that helps the program writer to develop,

test, and re�ne C programs. The debugger program is run

on the host computer and is need to download a target

program into the target system through the JTAG port,

followed by the debugging of the target program. Espe-

cially, the source-level debugger can debug interrupt ser-

vice routine. These debugging operations are performed

using source-level debugging library.

B. Source-level Debugging Library

Source-level debugging library consists of two parts.

One part provides the relation between a line of source

program and \Program Counter", the location of a vari-

able and the information about source �les of a target

program. Another part consists of several C functions,

which control JTAG emulator board, access the on-chip

debug unit and control source-level debug operations.

C. JTAG control driver and JTAG emulator

The JTAG control driver controls the JTAG controller

in JTAG emulator, accesses debug registers in the on-chip

debug unit and performs speci�c debug operations such as

stopping, restarting, stepping, setting breakpoints. This

driver consists of three hierarchical layers according to its

functions.

� Bottom layer: JTAG control functions to read or

write the contents of registers in the JTAG controller.

� Middle layer: On-chip debug register access functions

to read or write the contents of on-chip debug regis-

ters.

� Top layer: Source-level debugging functions to read

or write the contents of on-chip registers or inter-

nal/external data memory, and do the speci�c debug

operations such as step, run, stop, set breakpoints,

clear breakpoints, etc.

The JTAG emulator has the JTAG controller that

translates parallel data into the JTAG serial data or vice

versa, and ISA interface controller [8]. This board is con-

nected to the source-level debugger via JTAG header to

run on the board and debug the programs in the target

system.

D. On-chip Debug Unit

To support debugging in hardware, FLOVA has an on-

chip debug unit whose functions are to stop/resume/run

single-step/set breakpoints/access the registers of

FLOVA. The debug unit is controlled via JTAG ports,

which is the boundary scan technique and standardized

as IEEE 1149.1. Using the JTAG ports, the source-level

debugger can set hardware breakpoints on two program

addresses and four data addresses, where several condi-

tions (=, 6=, >, and <) can be checked for each address

using breakpoint logic as shown in Fig. 3. If a condition is

met on speci�ed address, an interrupt occurs to stop the

normal execution of a program and to enter the debug-

ging mode where FLOVA waits for an instruction from the

Source- leve l Debugger (GUI)

Source- leve l Debugging
Library

Object Fi le

C Compi le r

C source
Fi le

JTAG Contro l Dr iver

JTAG control ler

JTAG Emulator

Target System

Hardware
Emula tor

FLOVA

Debug
Uni t

J T A G
Unit

Fig. 2. FLOVA source-level debugging system consisting of a source-level debugging library, a source-level debugger, a JTAG control

driver, a JTAG emulator, an on-chip debug unit, a JTAG unit, and a hardware emulator.

IAddr

>,<,=,= >,<,=,=

Ibkpt0 Ibkpt1

IEN
IBKPT

XAddr

>,<,=,= >,<,=,=

Xbkpt0

XBKPT

Xbkpt1 YAddr

>,<,=,= >,<,=,=

Ybkpt0

YBKPT

Ybkpt1

DBKPTIBKPT

Fig. 3. Breakpoint logic for a program address and two data

addresses in FLOVA

debug unit while executing NOP (No-operation) instruc-

tions. Then, the instruction to be executed on FLOVA

in debug mode, can be transferred via the JTAG ports to

a debug instruction register (DIR) whose content would

be shifted through FLOVA instruction chain for a single

instruction execution. Using this controllability, FLOVA

supports debugging functions. Fig. 4 shows instruction

chain for debug logic. Detailed explanation for breakpoint

and debug logic is omitted in this paper.

NOP

ID

DIR

c
l
k

instruction chain

TCK

EX WB

n
o
r
m
a
l

i
n
s
e
r
t

i
n
s
t
r
u
c
t
i
n
o

instruction from memory

instruction
from JTAG

Fig. 4. Debug unit for a single instruction execution in FLOVA

III. Hardware Emulation

The greatest advantage of hardware emulation over

simulation is in its higher veri�cation speed. Hardware

emulation is only 100 times slower than a real chip. Fur-

thermore, the integration of the environment is much eas-

ier and high expenditure for the generation of test benches

can be avoided. Therefore, nowadays hardware emula-

tion becomes the standard technique in processor veri�ca-

tion. Since the speed advantage of hardware emulation is

more apparent compared with simulation, hardware em-

ulation can be expected to become an essential part of

co-development methodology.

One of the main disadvantages of hardware emulation

over simulation is that it is hard or impossible to detect

the timing errors. Therefore, hardware emulation mostly

serves the testing of functional correctness. There are

further disadvantages: slow compilation once the circuit

changes, di�erent design
ows for implementation and

emulation, and the high expenditure, which may be up

to one dollar per emulated gate.

We use M3000 class of Quickturn [9] as hardware model

of FLOVA. M3000 allows a maximum capacity of 3 mil-

lion gates. The support software includes partitioning

and mapping on the di�erent FPGAs. There is also

an integrated instrumentation available to capture and

process real-time data for design-debugging. Quickturn

M3000 model especially supports a very
exible mem-

ory emulation. Small scattered memories can be com-

piled into the FPGAs' internal RAM which can emulate

single, dual, and triple-port memories. In addition, spe-

cial target interface modules (TIM) interfaces the emula-

tor with the target system. Furthermore, complex ASIC

functions including micro-controllers, processors, periph-

eral controllers and etc. are integrated into the emulated

environment by plugging real chips into the TIM. Like all

other emulation systems, it allows debugging in the test

vector mode and in the dynamic mode. In the test vector

mode, test vectors are applied and results are stored. A

special functional test mode supports regression testing

where 128K of vectors can be applied at up to 4MHz in

an IC tester-like functional validation environment. In

the dynamic mode, a logic analyzer can be connected to

the emulation environment. This logic analyzer includes

a state machine based trigger and acquire capability with

up to 8 states, 8 event trigger support, 128K channel

depth and 1152 channels. The trigger-and-acquire con-

ditions are very similar to advanced commercial logic an-

alyzers.

IV. Results

For co-development of the source-level debugging sys-

tem, we �rst developed the JTAG emulator and the simple

target system.

We have validated the functionality of the debugging

system easily with the help of the hardware emulation

speed in the environment as shown in Fig. 5. If FLOVA

model were simulated using a general RTL simulator, it

would have taken a long time to validate the source-level

debugger system because less than 10 FLOVA instruc-

tions could be executed per second.

Fig. 5. Co-development environment of FLOVA source-level

debugging system.

Fig. 6 shows an window example of source-level de-

bugger GUI (Graphic User Interface) consisting of several

information windows such as a source program window,

a breakpoint window, a register window, and a memory

window.

Hardware emulation facilitates concurrent development

and validation by allowing system hardware and software

integration even before design tape-out.

V. Conclusions

In this paper, we described the co-development method-

ology of a processor and its source-level debugging system

using an emulation-based validation technology includ-

ing hardware emulation. Since a source-level debugging

system is essential to develop an application system and

it takes a long time to validate the functionality of the

source-level debugging system, we adopted hardware em-

ulation for a fast validation and development of FLOVA

source-level debugging system. Using this methodology,

0x9
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

0x8
0x0
0x0
0x0
0x0

0x9
0x0
0x0
0x0
0x0
0x0
0x0
0x110
0x0
0x0
0x0

Fig. 6. An example of source-level debugger consisting of a source

program window, a breakpoint window, a register window, and a

memory window.

we have validated the source-level debugging system suc-

cessfully before a chip fabrication. To meet the chal-

lenges of shortened product life-cycles and reduced time-

to-market, the co-development using hardware emulation

is indispensable.

Acknowledgements

This work was performed as a part of ASIC Develop-

ment Project supported by the Ministry of Trade, Indus-

try & Energy, the Ministry of Information and Commu-

nication, and the Ministry of Science and Technology.

References

[1] R.A.Gott, \Debugging embedded software," Computer Design,

pp.71-78, Feb. 1998.

[2] IEEE, \IEEE Standard Test Port and Boundary-Scan Archi-

tecture," IEEE, 1990.

[3] J.Kumar, N.Strader, J.Freeman, and M.Miller, \Emulation Ver-

i�cation of the Motorola 68060," Internal Conference on Com-

puter Design, pp.150-158, Oct. 1995.

[4] G.J.Bunza,

\The Impact of Hardware/Software Co-development on Design

Process Methodology: Big Changes and Bigger Success," Proc.

Design, Automation and Test in Europe, pp.37-41, Feb. 1998.

[5] G.Ganapathy, R.Narayan, G.Jorden, and D.Fernan-

dez, \Hardware Emulation for Functional Veri�cation of K5,"

Proc. Design Automation Conference, pp.315-318, June 1996.

[6] J.Gateley et.al, \UltraSPARC-I Emulation," Proc. Design Au-

tomation Conference, pp.13-18, June 1995.

[7] S.J.Nam et.al, \VLIW Geometry Processor for 3D Graphics Ac-

celeration," International Symposium on Low-Power and High-

Speed Chips (COOL Chips), pp.107-120, Apr. 1999.

[8] Texas Instruments, \SN74ACT8990, Test-Bus Controllers IEE

STD 1149.1 TAP masters with 16-bit Generic Host Interfaces,"

http://www.ti.com.

[9] Quickturn Design Systems, Inc., \System Realizer User's Guide

Version 5.0,"

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

