
Embedded system design with multiple languages

Abstract – The use of several languages in the design of em-
bedded systems is very convenient for application development
and optimization but it can become an obstacle on the way to
higher design productivity. This paper explains solutions and
future trends.

 I. Introduction

With increasing embedded system complexity, there is a
tendency to use several languages for specification and de-
sign of a single system. A practical reason for this trend is
that different teams and companies have developed certain
language preferences, but more importantly, abstract lan-
guages are often suited for a certain application domain.
Flow graph representations suit transformative functions,
such as digital signal processing (examples COSSAP, SPW,
LUSTRE), while FSM descriptions fit best to describe reac-
tive system behavior, such as a user interface control or a
telecommunication protocol. Some languages are particu-
larly developed for an application domain, such as SDL for
telecommunication.

Since more complex embedded systems such as a mobile
communication terminal almost inevitably include both re-
active and transformative system functions, there is a need to
either combine system parts described in different languages
or find a single general language. There are, in fact, lan-
guages which try to cover both state based descriptions and
flow graphs, such as the languages of STATEMATE (from
I-Logix), ARGOS or UML, but they result in more complex
semantics which are harder to treat in analysis and imple-
mentation.  Also, they basically combine separate languages,
such as Statecharts and Activitycharts in STATEMATE.

Languages like VHDL which are used for implementation
are certainly general enough to implement many of the se-
mantics of the abstract languages, e.g. based on library
functions. It would, however, not be efficient to replace all
these languages by VHDL, Verilog or a similar language
since, e.g. flow graphs are closer to the application domain
and there are numerous transformations on flow graphs

which can be exploited in system optimization. Similarly,
there is much knowledge how to efficiently verify, merge or
split concurrent FSMs.

Moreover, many abstract languages do not define the ex-
act order in which the individual subfunctions are executed
as long as the overall behavior described in the language is
not violated. This partial order can be exploited in design
space exploration. In contrast, languages like VHDL are
based on exact timing which constrains the design space
more than necessary. Such languages are, however, very
useful when it comes to the final hardware and software im-
plementation.

In this paper we will demonstrate two approaches to com-
bine different languages, the language-based approach which
couples models in different languages using a fixed commu-
nication protocol, and the compositional approach which
combines the different model semantics on a unified internal
representation.

The paper is structured as follows. The second chapter
will give a brief overview of important models of computa-
tion with emphasis on their differences. Chapter III intro-
duces the language-based approach which is already used in
commercial tools. Chapters IV and V motivate and present
the compositional approach which is investigated in research
systems. The paper ends with a short conclusion in chapter
VI.

 II. Models of Computation

To give a better understanding of the problems which
arise when coupling languages, we will start with an over-
view of some important languages for embedded systems.
All the languages which are discussed support concurrent
execution of processes. One of the main issues is the process
interaction and the semantics of the overall (composed) sys-
tem, i.e. the model of computation.
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A. Process networks

Process networks [1] are an important model of computa-
tion (fig. 1). There is a set of processes which communicate
via a directed flow. The communication consists of a possi-
bly infinite sequence of tokens, the  “stream”. The processes
perform operations on the input tokens and create output
tokens. The process network is based on two languages, a
host language that describes the processes and the coordi-

nation language which describes the network.

B. Kahn  process networks

Kahn process networks [2] are a special class of process
networks. Here, the stream is a FIFO with unbounded ca-
pacity. The processes “consume” the input tokens at the start
of a process execution (destructive read) and “produce” out-
put token when the process terminates (non destructive
write). A process only executes when all required input data
are available (blocking read) but writes independent on the
FIFO state (non-blocking write).

Let a process in a Kahn process network consume a
stream of input tokens X = x1 x2 ... xn and create a stream
of output tokens F(X). A Kahn process is continuous if F(X)
= F(x1) F (x2) F(xn). This means that a continuous process
can be executed iteratively (stepwise), i.e. it can start before
the whole input token stream is present. A typical example is
a digital filter process where new output data can be gener-
ated for each data sample arriving at the input instead of
having to wait for  all samples to arrive before the output
stream can be generated. An example requiring a non-
continuous process is sorting, where all data must be present
before the largest (or smallest) element is known. Kahn net-
works which only contain continuous processes have a very
nice property: The functions are independent of the order of
process execution (proof see [1]).  This property opens a
wide design space with numerous scheduling opportunities,
in particular because the streams are FIFO buffers which
reduces the effect of data dependencies and supports pipe-
lining.

Data flow (DF) process networks are Kahn process net-
works where the processes are controlled by firing rules.
Firing rules define the conditions for process execution, i.e.
the number and type of input tokens required and the corre-
sponding number of output tokens which are generated when
the process is executed for a specific firing rule. Data flow
process networks with data independent firing rules only
(synchronous DF process networks, SDF) allow to deter-
mine an efficient static order of process execution. Such DF

process networks are frequent in standard signal processing
applications. The same holds if the network is cyclo-static,
i.e. if it cycles through a data independent sequence of token
consumptions and productions [3]. The more general boo-
lean DF network [1] which uses a control input to select a
firing rule requires knowledge of the token values or must be
implemented with a dynamic process order or leads to less
efficient schedules. DF process networks demonstrate that
we do not always need full knowledge of the process be-
havior for design space exploration and process scheduling
but that it may be sufficient to abstract few properties such
as the token consumption and production. In addition, the
execution time on the respective target architecture is re-
quired which must be estimated or analyzed. Fig. 2 shows
the graphical representation of DF processes.

Commercial examples of DF process network design
tools are COSSAP (Synopsys), SPW (Cadence), or the DSP
Station (Mentor).

C. Synchronous reactive systems

Synchronous reactive (SR) systems [4] are in many re-
spects at the other end of the spectrum of process network
semantics. Fig. 3 shows such an SR system. Here, processes
communicate via events, which are defined with a duration
of tev → 0.  In contrast to DF processes which are only exe-
cuted when all required tokens are available, an SR process
is executed upon arrival of any input event. The SR proc-
esses react instantaneously (i.e. in zero time) creating output
events. This is unlike DF processes which can be delayed
and can take a finite execution time as a consequence of
buffering and execution order independent network function.
The SR output events are immediately visible to all other
processes in the network, i.e. there is no explicit event flow.
Fig. 3 shows this implicit communication  in dotted lines.
Timing is introduced using time events. All other delays are
zero.

Exact timing events and instantaneous signaling and exe-
cution define a total order of events and process executions
of an SR system rather than a partial order as in DF systems.
This is convenient for verification and simulation since the
order of events for a given input pattern becomes unique.
Due to the instantaneous process execution assumption, hi-
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erarchical expansion of nodes becomes straightforward since
the all leaf nodes are, again, executed in zero time preserv-
ing the zero-time execution of the parent node. So, an SR
system clearly specifies the system reaction. On the other
hand, total order and exact timing limit the design space.
The impact of this limitation very much depends on the tar-
get architecture and system requirements. If computation is
fast compared to the specified system timing, such as in
many control applications, then the implementation of the
specified timing and event order is easy to implement, while
in the case of computation intensive tasks and tight timing
requirements, such as in digital signal processing, the limi-

tations will be severe. Therefore, SR and DF process net-
works are suited for complementary system classes.

Examples of languages based on an SR or similar models
are Esterel [5], Argos [4] or Statecharts [6].

D. Other models of computation

SDL is a language which is very popular in telecommuni-
cation system design. It uses a process network where the
process executions are locally controlled. Communication
uses buffers which can be controlled by the processes, such
that SDL does not correspond to a Kahn graph. The model
semantics are rather complex.

MATLAB/SIMULINK (from MathWorks) combines sev-
eral semantics. Processes communicate via shared registers
(destructive write, non-destructive read). They can be exe-
cuted periodically or upon arrival of an event. Communica-
tion via registers hides the actual communication patterns in
the host language and constrains the optimization at the net-
work level. It is best suited for software implementation
where periodic execution and communication via shared
variables is a well known and very general model used in
real-time operating systems.

The POLIS system [7] which is specifically targeted to
hardware-software co-design, is based on concurrent FSMs
with execution time t > 0 (Co-design finite state machines,
CFSM). Process communication uses registers.

E. Systems without systematic models of computation

Even in up-to-date design processes, there are system func-
tions which are not described with systematic models of
computation. Such functions might be legacy code which
must be included, non-critical maintenance functions, 3rd

party software or large software packages which shall not be
touched. These functions will have to be implemented with
unknown or data dependent communication and running
times. For reliable system design, we should find some way
to include such system function in the formal system design
process.

 III. Language-based approach

The current approach to combine multiple languages in
simulation and synthesis is shown in fig. 4. The subsystems
1 to n which may be described in different languages at dif-
ferent levels of abstraction are individually designed and
optimized. The subsystems are coupled as communicating
processes via a common protocol “backbone.” The backbone
protocol can be used for simulation as well as for imple-
mentation using communication synthesis. This two-level
approach allows to use existing tool environments for each
of the subsystems.

The language-based approach is the state of the art that is
reflected in tools such as CoWare [8] which uses a  client-
server approach to communication or AREXSYS [9] which
uses a remote procedure call protocol. These EDA systems

provide libraries with communication primitives imple-
menting the backbone protocol. Object oriented languages,
such as C++ or Java are well suited for this task since they
allow to hide interface details.

The individual processes can then be mapped to hardware
or software components while the communication protocol
is mapped to target system communication primitives, such
as bus transactions or operating system functions.

The language-based approach is a systematic and very
flexible approach to system integration of individually de-
signed subsystems. It is already effective in early design
phases since it can combine models at different levels of
abstraction.

 IV. Design space exploration, global analysis and
optimization

To understand the differences between the language-based
and the compositional approach, we should have a closer
look at the problems of design space exploration and global
analysis and optimization. The design process takes an ab-
stract system specification as an input. This specification
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defines the design space, i.e. the set of feasible solutions.
The design space is bound by technical and non-technical
constraints which should be included in the specification.
Design space exploration shall explore the constrained de-
sign space to determine the best feasible solution under a
given objective function.

In practice, design space exploration is always limited by
the design process and the available components and archi-
tectures. Examples of component parameters are processor
types, memory modules and capacity or word length, while
the architecture includes the coarse structure, component
integration and global control and data flow as well as the
software selection such as the operating system. The design
process is defined by methodologies and tools.

The language-based approach is strong in supporting op-
timization and design space exploration in each language
domain and puts a systematic and reliable integration on top.
In effect, it uses process networks in their general form as a
model of computation. The integration backbone defines the
coordination language while there are several host languages
corresponding to the subsystem design languages. This
model is very flexible but it contains little information at the
coordination language level which could be used for analysis
or optimization. This is no problem for simulation or inter-
face synthesis, but it limits global analysis. Hence, manual
global design space exploration is still possible, but tool
support for global analysis and optimization is limited.

There are many reasons to ask for global analysis and
optimization. Input-output timing constraints often reach
across more than one subsystem. Large memories can possi-
bly be shared by more than one subsystem which requires
global memory and buffer optimization. The same holds for
system buses and even processor resources which may be
controlled by an operating systems which needs a strategy
for optimal scheduling. If no such knowledge is available the
best strategy is to resort to the well known Rate-Monotonic
Schedule, a Round-Robin Schedule, or a dynamic schedule
(software) or to keep the subsystems on different compo-
nents (hardware). The compositional approach described in
the following tries to overcome this limitation  by collecting
and exploiting global information at higher levels of ab-
straction.

 V. Compositional approach

The compositional approach combines the semantics of
the subsystem languages to obtain a common representation,
the composition format, which can be used for global analy-
sis and optimization. As fig. 5 shows, the language and ap-
plication specific optimizations at the subsystem level are
complemented by analysis and optimization on the abstract
common representation.

We can distinguish approaches

1) which map several input descriptions to a common
model of computation,

2) which coherently couple several models in a model
hierarchy,

3) which capture the design space for a subset of analysis
and optimization tasks.

A. Process coordination calculus PCC

The process coordination calculus, PCC [10] approach
which belongs to type 1) combines 2 process types in a sin-
gle model, as shown in fig. 6. There are data driven proc-
esses which may be activated if the required tokens are
available (DF semantics) and event driven processes, which
are executed at any input event (see SR). The data token are
communicated via data streams which are depicted as solid

edges in fig. 6, while event communication is shown with
dotted edges. Events can be queued.

Obviously, the function of the rightmost SDF process in
fig. 6 depends on the order in which the leftmost SDF proc-
esses are executed. To avoid such situations, the authors
introduce additional scheduling constraints to control the
network behavior. Such constraints, however, limit the de-
sign space.

B. *charts

*charts [11] are hierarchical process networks. Each pro-
cess network uses a single model of computation. A single
process or state in that network can be refined by a process
network with a different model of computation as shown in
fig. 7. There is a fixed order in the hierarchy, where either
the parent node is a state of a finite state machine (FSM) or
the child network is a finite state machine. In other words,
every second level is an FSM model. The other levels can be
SDF networks, SR systems and some  other models of com-
putation which have not been explained here, such as DE
(discrete event) systems.
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There are few rules for process refinement which are nec-
essary to guarantee the required semantics of the refined
process. As an example, an FSM state transition takes a fi-
nite time. If an FSM state is refined by an SDF process net-
work, then there must be a termination time of the SDF net-
work. An SDF process network can contain complex loops
and therefore does not have a trivial termination condition.
Instead, the minimum cycle which is unique and can be de-
termined from the network is used as a termination condi-
tion. Since every FSM state can be defined by a different
SDF, FSM timing becomes state dependent. To be as precise
as possible, the timing is propagated to higher levels of the
hierarchy eventually ending up with a potentially large set of
global state dependent equations which can be used for
scheduling.

*charts exploit the features of the different
languages. It keeps the language domains
separate but propagates optimization con-
straints such that global analysis becomes pos-
sible. *charts are used as internal representa-
tion for the new version of PTOLEMY.

Both PCC and *charts can be used as a gen-
eral representation. They are executable (can
be simulated) and can, given the limitations
which were mentioned above, be used for de-
sign space exploration. *charts have the addi-
tional capability that global states and con-
straints can be propagated through the model
hierarchy which PCC does not support. On the
other hand, both adhere to fixed models of
computation and do not offer a solution to
include legacy  code, 3rd party software or
partially documented system parts.

C. System property intervals SPI

System property intervals (SPI) [12, 13] is a single ab-
stract, non executable process network model which is only
targeted to design space exploration and system synthesis.
Process communication uses FIFO buffers or registers.

The main feature of SPI is that system properties are an-
notated as intervals. These properties include communica-
tion, timing and constraints. This way, SPI can cover sys-
tems with conditional or incompletely known behavior, such
as in legacy or 3rd party IP components. The SPI modeling
approach, as shown in fig. 8, maps the process networks of
the input languages to the SPI process network. SPI uses
intervals whenever it cannot directly reflect the input lan-
guage semantics. Similar to the firing rules of DF graphs,
some of the SPI properties are derived from the process de-
scriptions of the input languages. These process descriptions
may be given in a completely different host language. Vir-
tual processes are used to describe input language semantics
which cannot directly be modeled, such as periodic process
execution (see Matlab/Simulink). SPI allows to model proc-
ess modes [14] which are communicated between processes
to capture system state dependent timing and communica-
tion. Similar to *charts, the knowledge of global system
states can be used to optimize scheduling but unlike *charts,
SPI does not require minimum cycle termination for mode
changes which supports faster system reaction. Furthermore,
SPI supports process merging and refinement by adaptation
of the intervals.

SPI covers a wide range of model semantics. Translation
rules have been derived for periodic processes, DF networks,
SDL, or Statecharts.

On the other hand, SPI is not executable due to the un-
certainty effect of property intervals. Its only intended pur-
pose is system implementation including process scheduling
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and load distribution. A second representation is required for
simulation, e.g. using a language-based approach. So, the
SPI modeling approach is an approach of type 3).

 VI. Conclusion

There is no single design language which is suitable and
convenient for all applications. The necessity to reuse parts
of a design which may be described in a different language
are a further incentive to consider designing with different
languages. We may, therefore, expect that multi-language
designs will become standard at least at the more abstract
design levels. The main problem is the integration of designs
in different languages. The state of the art covers multi-
language simulation and subsystem optimization. Integration
uses a communication backbone with a low level communi-
cation protocol. In the future, language composition is re-
quired to enable design space exploration and global optimi-
zation across input languages. We have presented several
approaches to language composition which are based on
different paradigms.
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