
Timing closure:

the solution and its problems

Ralph H.J.M. Otten

Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract| In this paper we summerize the deriva-

tion of the size equations, the key to timing closure.

Next we present a number of problems when applying

these equations in practice. The main ones are net-

work generation, discrete libraries, size constraints,

and resistive interconnect.

I. Introduction

Timing closure is the dimensioning of a logic network

such that timing constraints are satis�ed. The now pop-

ular formulation is that logic synthesis not only produces

a netlist with a set of functional nodes (logic gates) and
their interconnections, but also the delay of each gate by

prescribing its restoring e�ort (or gain), de�ned as the

quotient of output and input capacitance. A fundamen-

tal result from [2] states that if delay is to be kept constant

the gate size has to scale linearly with its load capacitance.

Given the netlist with the restoring e�ort of each gate, and

given the capacitances imposed on the nets, sizes have to

be assigned to the gates in such a way that the capaci-

tance ratios are realized simultaneously. In section II.B,

theorem 3 gives necessary and su�cient conditions when

this is possible.

But that is merely a mathematical statement, assuming

that all gates can be arbitrarily and continuously sized.

Neither unfeasibly small sizes, nor unrealistic large sizes

are prevented, and the not so uncommon restriction to a

limited set of library sizes is not considered. Connections

are assumed to be without resistance, only lumped capac-

itances are assumed. The fact that interconnect strategies

constrain capacitances and therefore sizing, adds question

marks to the beautiful results of section A.

II. Timing closure

A. Size equations

Starting from the model of �gure 1 a delay formula

arises which is the sum of two terms, the e�ort delay and

the parasitic delay[8, 9]:

� = bRtrCL + bRtrCp = broco
CL

Cin

+ brocp =
g

f
+ p: (1)

The right-hand expression is called sutherland delay.
The parasitic delay p = brocp is independent of size. The

e�ort delay g=f is a product of computing e�ort g = broco,

and restoring e�ort

1

f
=

CL

Cin

The computing e�ort is also size independent, but in

general depends on the function, topology and relative

transistor dimensioning of the gate type. The impor-

tant observation is that � can be kept constant by �x-

ing f = Cin=CL. This leads to a new paradigm in

synthesis[2, 7]: any delay imposed by synthesis can be

realized, provided that the sizes of the gates can be con-

tinuously adjusted, and the imposed delay exceeds the

parasitic delay. Note however that the derivation replaced

the gate by a single linear \e�ective" resistance and a lin-

ear input and drain capacitance.

For more general charge or discharge networks of mos-

transistors a single sizing factor can be derived[2]:

Theorem 1 If

1. each transistor can be modelled by an e�ective resis-
tance inversely proportional to the device-width,

2. each node i in the (dis)charge network can be modeled
by a linear capacitance Ci composed of a constant
part and device dependent parts, and

3. the gate delay can be approximated by a summation
over all nodes of RiCi where Ri represents the total
resistance between node i and the output node[10],

then the delay of the gate remains constant if all device
widths scale linearly with with the load capacitance CL

Fig. 1. Gate model for obtaining a size independent delay

expression



ca

cb

cn

C

Fig. 2. Fixed relation of each input c with output c

The third condition re
ects the elmore intuition of ap-

proximating delay by adding the time constants of single

rc-sections, each consisting of a node capacitance and the

total resistance through which it is charged or discharged.

Of course, the delay is an approximation for an already

idealized network (linear \e�ective" components, lumped

capacitances, etc), but experiments1 support the stated

fact extremely well[2]:

Theorem 2 The delay of a logic gate can be kept con-
stant by scaling the devices linearly with the (external)
load.

The derivation of theorem 1 also implies that under

constant delay all input capacitances of a gate scale lin-

early with the load. This leads to an analog \restoring
e�ort" as in the sutherland delay for a bu�er, that is, a

single factor f . So, with reference to �gure 2, for every

input x we have cx / fC where the proportionality con-

stant can be di�erent for di�erent inputs of the gate (but

these constants do not change with the restoring e�ort,

and therefore not with f !). It is reasonable to assume

that the size of a gate is proportional to the sum of its

transistors, and therefore proportional to the sum of the

input capacitances:

gatesize /
X

x2fa;b���ng

cx :

Since each cx is proportional with fC, the size of a gate

is proportional to fC as well2, and this proportionality

constant is called the area sensitivity of that gate type:

afC. The area sensitivity of the gate equals the gate area

1The same experiments also supported the validity of the suther-

land model by showing the invariance of the socalled self loading:
cp

cp+cL

.
2That there is a single factor f for each gate means that by

relative dimensioning of the pull-up and pull-down networks, the

transfer behavior can be manipulated and constant delay synthesis

will not change that. However, if each input of a gate requires a

separate relation to the output capacitance, it would not complicate

the formulation

if the restoring e�ort is 1 and at the output there is a unit

capacitive load.

Corollary 1 The size of a gate is proportional to the
capacitance at the input which under the constant delay
paradigm equals the capacitance at the output multiplied
by f as imposed by synthesis.

In the context of a network the implications of corol-

lary 1 can be worked out by writing the expression for the

total capacitance at a single node (see �gure 3) and then

collect them in vector form as follows. The capacitance

at node i is the imposed capacitance qi at that node (this

can be the external capacitance to be driven by the net-

work or the wiring capacitance, but lumped and without

wire resistance) and the (scaled) input capacitances in its

fanout:

ci = qi +
X

j2fanout(i)

nijfjcj :

In �gure 3 the summation for node i contains two terms:

ci = qi + nijfjcj + nikfkck. If we make nij = 0 whenever

gate j is not in the fanout of gate i, and equal to the

proportionality constant that comes with the gate type

of gate j (accounting for function, topology, and relative

sizing) we can write in general

ci = qi +

nX
j=1

nijfjcj :

Collecting the imposed capacitances in a vector q, the

capacitances at the output in a vector c and the recipro-

cals of restoring e�ort in a diagonal matrix fD, yields the

following relation:

c = q+N f
D
c

or �
I�Nf

D
�
c = q (2)

The matrix N has the zero/non-zero pattern of the inci-

dence matrix of the (directed) network, and contains the

q

c

c

n

n

f

f

c

c
i

j

k

ij

ik

j

k

j

k
i

j

k

Fig. 3. E�ort relations in a network



relative sizing of the transistors in the values of the non-

zeros. Both, the pattern of N and f are imposed by logic

synthesis, and the entries come from the library. They

should be such that equation 2 has a positive real solu-

tion.

Corollary 2 The node capacitances are related to the
imposed capacitances by a linear transformation.

Once all node-capacitances are known, that is the vec-

tor c, the area of the network is can be written as

(a � f)Tc = (a � f)T
�
I�Nf

D
��1

q

where the dot indicates componentwise multiplication.

Based on this relation one can determine whether in-

serting bu�ers can save area.3 Note however that al-

though logic synthesis is to produce a network of gates

with restoring e�ort assigned to each gate, the area of the

gates and the total network is not known, because the

capacitances at the nodes are not known.

B. Solving the size equation

For establishing existence conditions for continuous so-

lutions, we look at three di�erent cases: combinatorial

networks, strongly connected networks and general net-

works.

In case of combinatorial networks, that is no memory el-

ements and no cycles,etc., the network can be represented

by an acyclic directed graph. Consequently, there exists

a topological ordering of the nodes. Using that to order

the equations in the set 2 yields a lower triangular matrix

that can be solved by backsubstitution.

If the network is strongly connected, the matrix N

is irreducible4, and therefore N f
D as well. The ques-

tion whether the equation system 2 has positive solutions

(c > 0) for any q > 0 has been studied extensively. It is

known as an open leontief system. The main result from

this setting is

Theorem 3 The equations

�
I�Nf

D
�
c = q

with N a nonnegative irreducible matrix and f a strictly
positive vector, has a solution c; c � 0; c 6= 0 for any
q � 0; q 6= 0 �f �, the perron-frobenius root (that is the
dominant eigenvalue) of N f

D, is smaller than 1.
In that case, there is only one solution c, which is strictly
positive and given by

c =
�
I�Nf

D
��1

q:

3Bu�ers can only be inserted if they do not cause violations in

the timing constraints; bu�ers are allowed to introduce additional

delay locally only if some slack time is available there.
4The usual de�nitions of irreducibility using powers of matrices

or matrix decomposition are equivalent, but in the present context

indirect and not so useful.

A number of useful corollaries easily follow from that

result. We mention

Corollary 3 If it exists,
�
I�Nf

D
��1

> 0 �f � < 1.

Corollary 4 If none of the row sums of Nf
D exceeds

unity, and at least one is less than unity, then � < 1.

A condition equivalent to � < 1 and avoiding the solv-

ing of eigenproblems is from the following theorem5

Theorem 4 � < 1 �f all leading principal minors of�
I�Nf

D
��1

are positive, where the i-th leading principal
minor is calculated from the �rst i rows and columns of�
I�Nf

D
��1

.

Under the stronger (than � < 1) condition of corollary 4

one can derive that when increasing the imposed capac-

itance at one node, the gate driving that node gets the

greatest absolute increase in input capacitance. This does

not imply the greatest increase in area, because that also

depends on the area sensitivities. About relative changes

something can be said under the minimal conditions of

theorem 3:

Theorem 5 If the components of the vector q; q � 0

and q 6= 0 change by amounts of �q such that
q+�q � 0 and q+�q 6= 0, while � < 1, then for each
i

min

�
(0; min

fjj�qj<0g

�cj

cj

�
�

�ci

ci
� max

�
0; max

fjj�qj>0g

�cj

cj

�
:

This implies that if only the imposed capacitance at

a particular node changes while all other imposed ca-

pacitances remain the same, the gate driving that node

changes by the greatest percentage (both, its input capac-

itance and its size, regardless of its area sensitivity).

Finally, if the network is not strongly connected, and

consequently Nf
D is reducible, we have to resort to

weaker results of the perron-frobenius theory. The strict

positivity in corollary 3 has to be replaced by non-

negativity, that is

� > 1 =)
�
I�Nf

D
��1

� 0;

but theorem 4 is still valid, also for networks that are

not strongly connected. Non-negative solutions for the

components of vector c are therefore still ensured, but

some may be equal to 0.

C. Numerical solution of the size equations

An iteration equation for solving the equation set 2

presents itself in a natural way:

c(k + 1) = N f
D
c(k)+q:

5The condition of this theorem is known as the hawkins-simon

condition



ca

c

c c

b

b i

cn

Fig. 4. Inserting a bu�er

In fact, it is the well-known jacobi method and Nf
D is

the socalled jacobi matrix of the system. However, it is

just one out of many ways of splitting the coe�cient ma-

trix for iteratively solving the equations. Another familiar

splitting leads to the gauss-seidel iteration:

c(k + 1) = (I� L)�1U c(k)+(I� L)�1q:

where L is the strictly lower triangular part of Nf
D and

U the strictly lower triangular part6. The inverse obvi-

ously exists (and is actually equal to
Pn�1

i=1 L
i with n the

number of gates in the network). Let us denote the dom-

inant (non-negative) eigenvalue of the gauss-seidel ma-

trix (I� L)�1U with �GS (the gauss-seidel matrix is re-

ducible). The well-known stein-rosenberg theorem then

implies

Theorem 6 If � < 1 then 0 < �GS < �

Corollary 5 Both the jacobi and the gauss-seidel
method do converge when � < 1, and the latter converges
asymptotically more quickly.

Other iteration schemes are possible, and may be faster.

Successive overrelaxation is such a candidate. But to

achieve this computational advantage in convergence,

more knowledge about the eigensolutions, and the domi-

nant eigenvalues is needed. To do the analysis, or calcu-

lating useful bounds might not pay of, and therefore the

preferred approach is gauss-seidel iteration.

D. Area recovery

Inserting bu�ers might decrease the total area of a mod-

ule. However, time critical paths should not get bu�ers

inserted, because they cause additional delay. Only when

there is a certain amount of slack, bu�ers can be inserted

if they provide a decrease in area. We will show that all

potential insertion points can be determined at synthesis

time, that is before the node capacitances, and thus the

gate sizes are known.

6N has only zeros on the diagonal because the input and output

of driving gates are never directly connected (except for generating

the inversion voltage as for fast sensing, but that is outside the

present application).

The delay of a bu�er is given by equation 1, that is

�s = gb=fs + pb with gb and pb as library constants. Area

decreases by the insertion only when

aifiCi > aificb + abfsCi or aifi > aifi
cb

Ci

+ abfs:

Note however that cb=Ci is precisely equal to fs, so that

aifi > (aifi + ab)fs

The condition for area recovery is therefore

1

fs
> 1 +

ab

aifi

Substituting this in the delay equation of the bu�er shows

that the added delay by inserting a bu�er is at least

pb + gb

�
1 +

ab

aifi

�

and this has to be compared with the available slack at

that point. Clearly, all variables are either chosen by syn-

thesis or library constants, and consequently, the compar-

ison can be performed before sizing.

Theorem 7 A network with restoring e�orts assigned in
order to meet the timing requirements, can be reduced in
size by bu�er insertion �f there is a gate in the network
with area sensitivity ai and restoring e�ort f�1i such that

pb + gb

�
1 +

ab

aifi

�
(3)

where gb, pb, and ab are the computing e�ort, the parasitic
delay and the area sensitivity of the bu�er to be inserted.

This means that the locations for potential area recov-

ery can be determined at synthesis time. For it is synthe-

sis that creates the network (that is the matrixN), selects

the gates and assigns restoring e�ort to them. However,

inserting a bu�er at a certain node changes the slacks on

all paths containing that node. Each insertion can in-

validate many other potential area recovery points. And

since sizing still has to take place, it is not known at syn-

thesis time how much is gained by inserting a bu�er. A

generic procedure should therefore have synthesis insert

bu�ers at all the candidate points, and minimize

(a � f)T
�
I�Nf

D
��1

q

without violating the timing requirements by assigning

values to the f -components that belong to the inserted

bu�ers, where the value 0 indicates no bu�er in the ob-

ject function, and �gb=pb should be used in the delay

equations.



III. Network generation

A. Heuristics

In addition to providing a network topology (the matrix

N, and the identity of the gates), synthesis has to come up

with the vector f . The complete problem is to produce the

cheapest (smallest) network realizing the logic and timing

speci�cation. This is very hard, and e�ective heuristics

have to be developed.

A simpler problem is: given a network topology what

restoring e�ort should each gate have in order to satisfy

the timing requirements without demanding too much

space and/or unrealistic size variations over gates. Of

course, the parasitic delay should not already exceed tim-

ing requirement on any path. Assuming the parasitic de-

lay is small enough, the remaining time budget has to be

distributed over the gates, which then is to be translated

in a value for f .

Sutherland's hypothesis of uniform restoring e�ort [8]

might be helpful here. It states that given a network

with an equal number of gates on every path from pri-

mary input to primary output, a capacitive load at each

primary output, and a driving capability at each pri-

mary input, the network is fastest when every stage on

all input-output paths has the same e�ort. This is obvi-

ously true for a cascade of inverters, and it can be easily

extended to networks with equal fanout in a stage. But

also counter-examples can be easily constructed. Never-

theless, the principle may be useful as a heuristic. Note

however that it is driven by the speed optimization, not

by timing requirements. So, if valid, it shows the poten-

tial for perfomance guarantees, and subsequent relaxing

and area recovery should produce an acceptable network

with restoring e�ort assigned.

Other heuristics, among which equal delay distribution

and zero slack algorithms, come to mind, but only exten-

sive experience can provide su�cient evidence about their

e�ectiveness.

B. Technology mapping

A side bene�t is that technology mapping becomes ef-

�cient under this constant delay paradigm. Technology

mapping is known to be an e�cient cost (area) optimizer

of convergent networks7. It has been shown recently [4]

that technology mapping for load independent speed opti-

mization can be solved e�ciently for all acylic (and there-

fore combinational) networks. Thus the standard �rst

step of technology mapping in logic synthesis of partition-

ing into trees need not be done and hence the optimum

solution can be found.

Besides, elegant ways of capturing several networks into

a representation were introduced [6]. To take advantage

of these discoveries ways must be found to keep track

7Often called leaf-dags. These are essentially trees of which the

primary inputs may feed several gates.

of other performance characteristics than speed and to

prevent excessive usage of computer time and memory.

IV. Floorplanning

A. Iterations

In sections II.B and II.C the imposed capacitances are

assumed to be given constants. When solving the size

equations by iteration these capacitances can be updated

if adequate information becomes available. This is the

case when a 
oorplan8 is available at each stage. This


oorplan does not have to be updated: only 
oorplan op-

timization has to be applied. This can be done e�ciently

if the 
oorplan satis�es certain structural restraints. For

if these restraints guarantee that the 
oorplan possesses

slicing property, many optimizations can be performed in

polynomial time.

The scenario can be as follows:

1. generate a point con�guration on the basis of the net

list and minimum gate sizes

2. �nd the best slicing structure compatible with that

point con�guration (\best" can be interpreted as

minimal area)9

3. iterate until convergence:

(a) optimize the 
oorplan with area as objective

(b) derive the wire capacitances on the basis pre-

liminary positions (this yields the components

of q)

(c) solve the size equations

(d) generate new shape constraints with the result-

ing sizes

Note thet the 
oorplan is not changed in this scenario,

only the geometrical estimates. Of course, from time to

time regeneration of point con�guration and slicing struc-

ture is feasible!

B. Resistive interconnect

The approach in the previous section is only applica-

ble if resistance on the wires can be neglected. For small

modules (actually for all modules synthesis can handle

today, and in the foreseeable future) this is an accept-

able assumptions. But 
at designs easily exhibit wires for

which this is no longer sustainable. The equations can-

not be modi�ed such that resistance is taken into account

8To avoid confusion, a 
oorplan is not a rectangle dissection! A


oorplan is a data structure that �xes relative positions between

objects. Floorplan optimization determines the shapes under so-

called shape constraints and optimizing an objective function while

preserving the relative positions.
9This can be done in polynomial time, although speed-up tech-

niques are necessary for more than thirty points.



and the above scenario can be maintained. For example,

if half of the wiring capacitance is before and half is after

a wire resistance RW the delay formula becomes without

load:

� = b

�
Rtr(Cp + CW ) +RW

CW

2

�
=

= b

�
RtrCW +

1

2
RWCW +RtrCp

�
=

= b

�
(rocg +

1

2
RWCin)

CW

Cin

+ rocp

�
= (g + r)h+ p

where r is not size-independent.

Simply negelecting resistance in large designs will lead

to signi�cant deviation fro projected performance!

V. Wire planning

A. Time budgetting

Wire planning refers to the approach of basing early

decisions on the layout of global wires. Global wires in

this concept are wires whose delay can be improved by

segmentation and bu�ering. Local wires are assumed to

be inside modules that in this stage are considered to

be points. A wire plan is therefore a point placement of

modules in a rectilinear space, that is, possibly under the

presence of larger preplaced blocks. Several analyses on

these wire plans are possible (e.g. detour free wirning,

valid retiming, sliceability), but the �nal result should be

a kind of 
oorplan with delays on the global wires. The

remaining budget under the timing requirements can be

consumed by the modules. The time budgetting problem

is then to create the smallest area chip that satis�es the

timing requirements. The trade-o�s between area and

delay of the modules can be assumed to be convex. This

problem can be e�ciently solved.

B. Size constraints

Wire planning seems to be the solution to the resistive

interconnect problem. Only global wires are a�ected by it

and designed before the synthesis of the modules. Within

the modules the assumption of resistance free intercon-

nect is acceptable, and the constant delay method can be

applied.

However, there is now the problem of �xed capaci-

tances: global wires are optimally bu�ered, yielding wire

delays invariant under module positioning (in a detour

free layout), but do have �xed input and wiring capaci-

tances. This constrains the sizing. The simple example

of cascades of inverters, well known from textbooks since

the pioneering work of Mead and Conway, serves well to

illustrate Sutherland's uniform stage e�ort, but also the

necessity of having either the delay time as a variable to

choose with consequences for the inverter sizes, or the

input and output capacitance of the chain, but then con-

straining the performance that can be achieved.

VI. Library discretization

All derivations assumed continuous sizability of gates.

It is not unlikely that gates are only available in discrete

sizes. The selection of available sizes[1], algorithms that

use these limited libraries[5], and the discretization prob-

lem in synthesis[3] deserve careful analysis, but the prob-

lems seem to be certainly surmountable. That is, if a solu-

tion exists under the assumption of continuous sizability,

these studies and experience up to now show that e�ec-

tive solutions exist for reasonably rich discrete libraries,

or adequate sets of cell generators.

Cell generation is most likely the big challenge in a con-

stant delay approach. The set of functions can be quite

small, but extensive research is necessary to determine

which sizes should be made available. Ultimately, a li-

brary of cell layout generators seems to be the way to go.

In addition, yield is also an issue here.

Conclusions

Timing closure is an intriguing novelty, with undeni-

able power but also serious unsolved questions. The panel

brings together representatives of companies that seri-

ously pursue the conversion of these ideas into tools. It

will be also interesting to see how they cope with the prob-

lems of timing closure, the ones mentioned here as well as

the ones encountered during their development.

References

[1] F.Beeftink, P.Kudva, D.S.Kung, L.Stok, Gate-size selection for

standard cell libraries, Proceedings of the International Confer-

ence on Computer Aided Design, pp 545-550, 1998.

[2] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, Y.

Watanabe, A delay model for logic synthesis of continuously-

sized networks, ICCAD, Nov. 1995

[3] P. Kudva. Continuous optimizations in synthesis: the dis-

cretization problem, Proceedings of the International Workshop

on Logic Synthesis, pp408-418, 1998.

[4] Y. Kukimoto, R.K. Brayton, P. Sawkar, Delay-optimal tech-

nology mapping by dag covering, Proceedings 35th Design Au-

tomation Conference, 1998

[5] D.S. Kung, A fast fanout optimization algorithm for near-

continuous bu�er libraries, Proceedings of 35th Design Au-

tomation Conference, pp352-353, 1998.

[6] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness Logic

Decomposition during Technology Mapping, IEEE Transactions

on Computer Aided Design of Integrated Circuits and Systems,

pages 813-833, August 1997.

[7] R.H.J.M. Otten, L.P.P.P. van Ginneken, N.V. Shenoy, Speed:

new paradigms in design for performance, ICCAD, Nov. 1996

[8] I. Sutherland, R. Sproull, The theory of logical e�ort: designing

for speed on the back of an envelope, in Advanced Research in

VLSI, UC Santa Cruz, 1991

[9] I. Sutherland, R. Sproull, D.Harris,Logical e�ort: designing fast

cmos circuits, Morgan Kaufmann publishers,inc, 1999.

[10] J.L.Wyatt Jr, Signal propagation delay in rc models for inter-

connect, chapter 11 (pp254-291) in Circuit analysis, simulation

and design, 2, Elsevier Science Publishers B.V., 1987


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


