A Scheduling and Allocation Method to Reduce Data Transfer Time by Dynamic
Reconfiguration

Kazuhito Ito
Dept. Elec. Elect. Systems, Saitama University
255 Shimookubo, Urawa, Saitama 338-8570, Japan

kazuhito@ees.saitama-u.ac.jp

Abstract— In the era of deep submicron technology, wire de- which are laid out two dimensionally on a LSI chip. Suppose
lay on an LSI chip is bec_oming relatively larger than qperation that a resulP of a multiplicationmis added with another data
delay. Increase of execution speed by parallel processing may be py additiona. If the multiplicationm is allocated to a mul-
limited due to the data transfer time between functional units. If tjplier M and the additiora to an adde, the multiplication
we can dynamically reconfigure nearby functional units into de- reg,tp must be transfered from the multiplist to the adder
sired operation type and execute operations on the reconfigured A. This data transfer is done through a wire on the LSI chip
units, long data transfer is reduced and hence fast processing can If.the destination addeh is placed far apart from the multi- '

be achieved. In this paper we propose a scheduling method to i dl ire delav f h ltiolicati
determine static operation execution time and functional unit al- plier M, we need long wire delay from the multiplication to

location to achieve fast signal processing by considering dynamic the addition. Consequently, high processing speed will not be
reconfiguration of functional units. Results show the effectiveness achieved because of the wire delay.

of the proposed method. In general, the function types and operation parallelism
change as the signal processing algorithm goes on. The re-
1 Introduction quired type and number of functional units are not always the

same. If there is a functional uniEswhich is nearby the mul-
It has been reported that although gate delay becomgsjier M and becomes idle a little after the multiplication

smaller as the LSI process advances, wire delay is becomip can reconfigure the functional uifitinto an addef» and
relatively longer than gate delay and will be dominant in totakyacute the addition on F.. Hence, we can reduce the long
delay [1, 2]. To realize high performance LSils, it is gettingy;e delay from a multiplier to an adder.
more important to consider not only gate delay but wire delay |, this paper, we concentrate on designing dedicated hard-
in high level designs. _ ware for an iterative processing algorithm like digital signal
Reconfigurable LSIs, such as reprogrammable field prgyocessing which consists of many primitive operations, such
grammable gate arrays (FPGA) with rewritable lookup tablegs additions and multiplications. We propose a method for
and interconnections, can be divided based on the reconfigsheduling operation execution and allocating operations to
uration scheme into two categories: statically-reconfigurablginctional units to minimize the iteration period of the process-
and dynamically-reconfigurable [3]. In the case of statlcallymg algorithm by reducing the wire delay by means of dynamic
reconfigurable, the entire operations on the LSI chip are terréconfiguration.
minated beforg reconfigqration. Once reconfiguratiqn IS COM- |t must be noted that although the target hardware is recon-
pleted, operations are initiated. On the other hand, in the CafGured dynamically (i.e. run-time reconfiguration), when and

of dynamically-reconfigurable, only the operation executed Qgpich functional units are reconfigured is static and predeter-
the part to be reconfigured is terminated. During the recopsined by the scheduling and allocation.

figuration of that part, other part continues operations. Once o paper is organized as follows. In section 2, target
the reconfiguration is completed, the recpnfigured part and t'&?namically-reconfigurable hardware is modeled. The idea
other part together execute some operation. how higher speed is achieved with such hardware is also dis-
In dynamically-reconfigurable LSI, it is not necessary tQyssed in this section. The proposed scheduling method is
terminate all the operations during partial reconfigurationyzsed on range chart guided scheduling method [8], which
Dynamically-reconfigurable LSI can gradually change thgs priefly reviewed in section 3. In section 4 the proposed

components while executing some operations simultaneousl¢heduling and allocation method is described. The experi-
Such dynamically- and partially-reconfigurable hardware hagental results are shown in section 5.

been developed [4, 5] and there have been some reports on

appl_lcatlons ar_ld design environments for dynam|cally: gng Hardware Model and Reconfiguration

partially-reconfigurable hardware [5, 6, 7]. In the remaining

of this paper, we assume that dynamic reconfiguration also ird-1 Reconfiguration of functional units

plies partial reconfiguration. Reconfiguration of functional units is to alter the circuit con-
When executing a digital signal processing algorithm byections so that operations of different types can be executed

parallel processing, usually we need some functional units the same hardware before and after the circuit alteration.

reconfiguration duration 21

o fb)/ lT ,T, data bus
s L T AT

— — Al My] Mz 1A

type a type a
type b
operation gp?erations operation €)

Q Tha Qq
l l

| Iy time

) data bus
In a general parallel multiplier, fast additions of partial prod- [V |[V ﬂ v | |

ucts are executed by a carry save adder and a vector merging

addition is executed by a carry propagation adder. By slightly ALl AL AS M, A,
modifying the connections, the carry propagation adder can
be used to execute ordinary additions. Moreover, if the hard- reconfigured
ware amount of the carry save adder compares to the hardware (b)
amount of a carry propagation adder, it is possible to reconfi%_— _ _ o
ure the carry save adder into a carry propagation adder to el 2. Data transfer model. (a) when configured into a multiplier. (b) when

. L. . configured into adders.
cute ordinary additions. Consequently, it can be assumed that 9

a parallel multiplier consists of sufficient amount of hardwarg.,;nsfer time fromA; to M, is 2t because a functional urif;
to be reconfigured into at least two adders. If the reconfigggiges betweeA; andM, and the distance betwedn and

urable multiplier be can reconfigured into two adders, we €3}, is about twice longer than physically adjacent functional

execute at most two additions at the same time on the hardweyﬁts

when reconfigured into two adders. When those two adders arewe' assume that data transfer time between reconfigured
reconfigured back into a multiplier, we can execute a multipli yqers and other functional unit is the same as the data transfer
cation on the same hardware. time before reconfiguration. For example in Fig. 2(&),and
Let Of denote a type of functional units which can echu—AE are adders derived by reconfiguring multiplMs. Since
sively execute operations of tygeandb by reconfiguration. 4t transfer time betweevl; andA, is T, data transfer time
In addition, 1etQa(0p) andQy(O5) denote the execution time petween eitheA: or A; andA, is alsor. Similarly, data trans-
of operation type andb, respectively. fer time betweer\, andM; is 21, data transfer time between
To simplify the problem, we assume that a functional unit ofy, and eitherA; or A; is also 2. Data transfer time between
type Of can execute one operation of typevhen configured adders reconfigured from a multiplier is assumed ta.bEor
into typea. We also assume that, when configured into 9pe example, data transfer time betwehandA; is 2t because
the functional units can execute at motOf) operations of these adders are derived by reconfiguring an identical multi-
typeb at the same time. For exampleNfO)) = 2 for a func- plier My.
tional unit of typeOY, it can execute one multiplication (type For data transfer of long distance which require long data
M) when configured into a multiplier or at most two additionggnsfer time, we assign as many clock cycles as necessary to
(type A) when configured into two adders. accommodate the data transfer time. Thus we can take into ac-
The reconfiguration times arky, to reconfigure the func- count the data transfer time, e.g. clock cycles for data transfer,

tional unit from typea to typeb and f,a from typeb to typea. \with some accuracy during high-level design.
During these reconfiguration time, the functional unit cannot

execute any type of operations. This model is summarized /3 Data transfer time reduction by dynamic reconfigu-
Fig. 1. ration
Long data transfer time is necessary for data transfer be-
tween distant functional units. When the processing speed is
In this paper, we assume an architecture as illustrated sfowed down because of the long data transfer time, we can
Fig. 2 where many functional units are connected through datge dynamic reconfiguration to reduce the data transfer time by
buses. We can use as many data buses as required. Therefedeicing the distance between the functional unit which gen-
there are no limit on the number of simultaneous data transfeesates the data (data source) and the functional unit which con-
Let T be defined to be the data transfer time between funsumes the data (data destination). This is achieved by creating
tional units which are physically adjacent to each other on amfunctional unit of the same type as the data destination nearby
LSI chip. Data transfer time between functional units whictthe data source and executing the data consuming operation on
are not adjacent to each other is relative to the physical ditie created functional unit.
tance between these functional units. For example in Fig. 2(a),An iterative processing algorithm is given as a data-flow
functional unitsM; andM; are adjacent to each other. Theregraph (DFG)G = (N,E) as shown in Fig. 3(a).N denotes
fore data transfer time fromil; to M2 and vice versa is. Data the set of nodes which represent operations. In the figure, the

Fig. 1. Reconfiguration of functional unitN(Of) = 2)
ll i

2.2 Data transfer model

nodesa; from as are additions and the nodes andnp are
multiplications. E denotes the set of directed edges between
operations. A directed edge represents data dependency from
the source to the destination, and therefore the precedence re-
lation between executions of these operations. In this paper,
we assume an addition time, a multiplication time, and data
transfer timetr between adjacent functional units are 1 unit of
time (u.t.), 2 u.t., and 1 u.t., respectively.

Operation schedules determined by taking into account the
data transfer time are shown in Fig. 3(b) and (c). If we are not
allowed to use dynamic reconfiguration, the processing time
becomes shortest when add@ss A, and multipliersM; are
placed and operations are allocated to these functional units
as shown in Fig. 3(b). Arrows in this figure represent data
transfers between functional units. In the schedule shown in
Fig. 3(b), 2 u.t. is required for data transfer fraam to as.

Thus the total processing time from the beginningmetto the
completion of the final operation needs 8 u.t.

Here we assume the multiplidt; can be reconfigured into
adders. The reconfigurable functional unit is denotelll A48,
in Fig. 3(c). If both the reconfiguration time from a multi-
plier to adders and from adders to a multiplier is the same and ©
is 1 u.t., by reconfigurind/l/A; into adders, the operaticn _ _ _ _ _ _
can be executed of a reconfigured adder. Since the hardwé]% 3. Fast processing by dynamic reconfiguration. (a) processing
. . . . i gorithm. (b) schedule without dynamic reconfiguration. (c) schedule with
is dynamically-reconfigurable, the add&s which is not re- gynamic reconfiguration.
configured can continue additions. Consequently, data transfer
time fromay to a4 is reduced to only 1 u.t., and the total pro-operations will be changed. Therefore, each time an operation

cessing time is minimized to 7 u.t. is scheduled, we must reevaluate the scheduling range of un-
scheduled operations.
3 Range Chart Guided Scheduling Method The first priority to choose one of unscheduled operations

. . . is the tightness of the scheduling range. If operafjamses
The proposed scheduling method for dynamwally-reconflgé resultgof operation, the executi%n stgrt timeF:ij mgust be

urable hardware is based on the range chart guided SChedu"Qt%r than the execution completion iofWhen the execution

E:?gr?gsai:jn: (;hsocc:"[i]mli?q;hﬁ :tiztéon we briefly review the "8N9%tart time ofi is set toUB;, the lower bound ofj (LB;) is
The basic idea of RCGS method is as follows: from unPuShed toward the upper boutlB; and hence; becomes

. . . . L smallest. In general, for an operation with small scheduling

scheduled operations of the given iterative processing algo- . L .

rithm, we choose an operation and assign the operation an &pge, whichever time it is scheduled, the reduction of schedul-

ecution staring time within thecheduling rangso as to mini- ng ranges of other operations would be small. Hence, it is

. ; : : é?referable to choose the operation with the smallest schedul-
mize the maximum number of operations executed in parall€l.

When all operations are scheduled, the number of functiongy, 29 and schedule the operation first in orde;r to minimize
. reduction of the schedule ranges of other operation.

units necessary to execute the processing algorithm is mini- . .
y P g alg The second priority to choose one operation among un-

m|;ed. Schedulmg rangef an opgraﬂon IS the. s.e.t of t|m'e at %cheduled operations is the existencefinéd bounds The
which the execution of the operation could be initiated W|thouI T :
ower (upper) bound of the operation is séikkdif all the im-

violating any precedence relations. The larger the SChedu"?ﬁediate predecessors (successors) of an operation are already
range is, the more probable to find the execution start time stheduled. WhehB; is fixed, setting the execution start time

minimize the number of functional units. of i to LB; does not change the upper bounds of other opera-

The precedence of operations only defines the relative rﬁ()ns since all the immediate predecessors are already sched-

lations among operat|on_ execut!on tmes. _S_chedulmg rangiRg. Hence, it is preferable to choose the operation with the
of nodes can be determined uniquely by fixing the executig

. X . ; : fixed bound and schedule the operation at or close to the fixed
time of one of the operations in the processing algorithm. Thg : L .
. . ound in order to minimize reduction of the schedule ranges of
is calleda reference operatiomand should be carefully cho- other operation

sen and fixed at time 0. Ld&¥ denote the scheduling range P '

of operation. The earliest and the latest time witt®are re-)))

spectively called thiower bound LBand theupper boundUg 4 Scheduling and Allocation Algorithm

of the operation. When an operation is scheduled (assigned In order to minimize total time of operation execution, re-

the execution start time), the scheduling ranges of unscheduleahfiguration, and data transfer, we must allocate functional

units to satisfy data transfer time requirements which shoulration typep; of i is different from the operation type of j,

be obtained from scheduling ranges of operations. On tlvee need either reconfiguration of a functional unit executable

other hand, scheduling ranges of operations depends on dfep; into a functional unit executable qdj, or transferring

data transfer time between operations. Thus scheduling opedata from a functional unit executirigto another functional

tions and allocating functional units are closely related. In thignit executingj. Letyij denote the required time for either re-

paper we propose a method to determine schedule and allocanfiguration or data transfer betweieand j. In this casey;

tion in parallel. is the minimum of the time to reconfigure the functional unit

41 Basicidea from type_ pi to pj and the tim_e to t_ransfer data from one fupc-
nal unit to another. At this point we have no information

From the set of operations of the given iterative processirf/jfl;g t functional unit allocation. Theref the time to t f
algorithm, we choose an operatianamong unscheduled op- out functional unit aflocation. 1neretore, ine time {o transter
data is assumed to be the smallest, Le.In the case thap

erations. Ther is allocated to an appropriate functional unit . .
pprop dp; are the same, we do not need reconfiguration.atid

and assign an execution start time by taking into account tﬁ@ .) . -
reconfigugration time and data transfeyr timeg This is repeatéocan be allocated to the identical functional unit, then the data

: : transfer time is 0. Hencg; is setto 0.
until all the operations are scheduled. . !
P By usingyij, the lower bound.B; and the upper boundB;

4.2 Choice of operation to schedule of operationi satisfy the following equations
The preference of choosing an operation among the set of
unscheduled operations is as follows. LB = max {LBn+ Qn+Yni — dniTr} 1)

1. scheduling range is smallest .
2. the lower bound or the upper bound is fixed UBi = (if?)'QE {UB; — Qi —vij+d;Tr})

3. the operation time is longest))) L .
In the case a single operation cannot be identified by the st¥fi€re Qi is the operation execution duration bfd; is the
3, we arbitrarily choose one operation among the candidated!Umber of delays associated with the edgg), Tr is the it-
Leti denote the operation chosen. For each functionabunitération period of the processing algorithm. We must choose

of the set of already allocated functional uriisit is checked ©ON€ Operation as a reference and schedule it at time 0. Then
if i can be scheduled at tintes R, onx. In the case that func- LBi andUB; are respectively identical to the as soon as possi-

tional unitx is used by other operation or during reconfigura?'e schedule and the as late as possible schedule of operation

tion at timet, operationi cannot be allocated ta Moreover, - The scheduling rang®; is the set of timd& which satisfies
if schedulingi at timet onx violates some precedence to/fromLBi <t < UBi. o
i, theni cannot be allocated toat timet. By assuming the reference operation is the start node and

i , LB; is the longest path to operation Equation (1) forms a

4.3 Operan(?n aIIochon)) longest path problem. The smallést so as to make all the

Let a functional unitx be of typeOp. Whenx is config- jrected loops nonpositive and make the longest path problem
ured into a number oR(Gg) functional units of typeh, each g4y aple is the feasible minimum iteration period of the given
functional unit is denoted a& (k=0,1,...,N(Of) —1). The erative processing algorithm.
set of functional unitsX is the collection of functional units \yhen we specify a particular functional unit to execute op-
to be used to execute operations. The contentX ®aries grationi, we can take into account more accurate time for
time to time by dynamic reconfiguration. Namely, when f“ncfeconfiguration or data transfer. Suppose operaitiisnallo-
tional unitxis configured into typ@, X does not contain func- cateq 1o functional unik. Also suppose an operation which
tional unitsx _(k =0, _1,...,N(Og) —1). On the other hand, p55 peen scheduled and decides either the lower bound or the
whenx is configured into typ®, x is removed fronX andx« ypper bound of is allocated to a functional unit. In the

(k=0,1,...,N(Gf) — 1) are included instead. case thak # y, we need data transfer timg, associated with
Leti denote an operatlon of either typevhich can be exe- ihqo displacement of andy. For example in the DFG shown
cuted byx or typeb which can be executed by. in Fig. 4(a), the operations and j are already scheduled. If

Wheni is typea, the conditions where the functional umit ¢ gperation is allocated to functional uni as illustrated in
can executeat timet are: no operation of typais scheduled g 4(p), the lower bound dfis determined by the execution
to x at any timet1 which satisfies — Qa(Of) + 1 <t1<t+ gart time ofh, execution duration of operation and the data
Qa(Op) — 1; andx is not reconfiguring at any time2 which yansfer timer. On the other hand, the upper bound is deter-
satlsﬂest”— frat1l<t2<t + ,fab_ 1. . ~mined by the execution start time pfand the necessary data

Wheni is typeb, the conditions where the functional URkt {ransfer time of 2. Hence, the scheduling range of operation
can executéat timet are: no operation of typeis scheduled is the area bounded by the bold lines in Fig. 4(b). Conse-
to X at any timet1 which satisfies — Qy(Of) +1 <t1<t+ quently, the lower bountiB* and the upper bourdB wheni
Qu(Op) — 1; andx is not reconfiguring at any time2 which s gjiocated to the functional unitare given by the equations

satisfiesd — fap+1<t2<t + fpa— 1. § i
4.4 Scheduling range LB = [)?ﬁ))({LBh+Qh+TXy— DniTr} ®3)

Suppose a directed edge j) heading from operationto " . _ i B
operationj is included in the edge sEt In the case that the op- UB g(‘l']r; {UBJ —Q —Tyt D.JTr} 4

i Then, for each functional unite€ X, check if operation
can start execution at timteon x. The conditions are, (a)
t is contained irR¥, (b) functional unitx is idle at timet,
and (c) at time, x is configured or can be configured into
the same operation type as

Lett* denote the time at whickcan executéand closest
to the fixed bound.

4.2 If there exist functional units € X wheret* € R;, then
choose one functional unit with t* being closest to the
fixed bound of. Allocatei to X' and fix the execution start
time ofi totY.

4.3 If there does not exist any functional uwie X where
t* € R;, then prepare a new functional ugitZ X and as-
sume thay is placed at one of the edges of already placed
function units. Fory, calculate scheduling rang?%' by

Fig. 4. Scheduling range by precise calculation of data transfer time.

wherep(i, j) denotes the directed path frointo |, Qij is the precisely considering data transfer time and checkan

total sum of execution durations of operationsggi j), Dij is be executed oy. If true, lett denote the time to start

the total sum of the number of delays pfi, j). i which is closest to the fixed bound. Repeat this by as-
The set ot which satisfied BX < t < UB is the scheduling suming thay is placed at the other edge of already placed

range obtained by precisely calculating data transfer time by functional units.

assuming thaitis allocated tox. It is denoted a&. If y can executg then letX = XU {y}, allocatei toy and

. . . . y
4.5 Proposed scheduling and allocation algorithm fix the execution start time ofto .

The scheduling and allocation algorithm for dynamically-4-4 In the case that the execution start time cdnnot be de-
reconfigurable hardware is summarized as follows. The ma- termined by above steps, we try extending the scheduling

jor difference to the original RCGS method is the addition of ~ rangeR; of i.

the search to evaluate the allocation of operations to functional The execution start time of already scheduled operation
units. is determined as close as possible to the fixed bound. In

1. For a given iterative processing algorithm, choose one op- the case that both the lower and upper bounds are fixed,

eration as the reference operation and set its execution start we choose the lower bound and the opgratlon Is scheduled
time to 0. Prepare a reconfigurable functional wraihd al- closest to the Iowe.r bound. However this does_ not always
locate the reference operation to it. Let the set of functional _rrnk?ke the sCth:l#]mg rﬁmgels of othe_r c;pet;atlo_r:js Iargest.
unitsX = {x}. Calculate the minimum iteration period of us we check T the scheduling ranga oan be widene

the given algorithm and set it fr. by slightly shifting the execution start time of operations
which immediately preceding or succeeding

If R can be widen, then go back to step 3. Otherwise,
it means that we can not schedulwith the given iter-
. Among unscheduled operations, choose one operation ation periodTr. IncreaseTr by one, unschedule all the
as mentioned in section 4.2. When all the operations are gperations, and go back to step 1.
scheduled, then exit.

. Evaluate scheduling range of each operation for the speci-
fied iteration period'r.

. Determine the execution start timeiof 5. If there is unscheduled operation, reevaluate scheduling
If the lower bound ofi is fixed, let the fixed bound be de- ~ "anges and go to step 3.

noted ad. If the upper bound.of IS fixed, let the upper The computational complexity of the algorithm for a value
bound be denoted ds C_)therwse, if both the lower and of Tr is O(ne+ npTr) wheren is the number of operations,
upper bounds are not fixed, then choose the lower bou%ie number of edgeg the number of functional units. This
and set to the lower bound. will be repeated withTr increased one by one until every
Search for a time to start execution ioby increasingt precedence among operations is satisfied. The upper bound of
(if t is the lower bound) or decreasing fifis the upper Tr is O(n) where all the operations are executed sequentially

bound)t one by one so that the execution start time will bexn a functional unit. Thus the total complexity@$n3(e+ p)).
determined nearby the fixed bound.

4.1 For each of already existent functional units X (or xx 5 Experimental Results

which can be obtained by reconfiguriry calculate the The proposed scheduling method is implemented with C
scheduling rang& where data transfer time is preciselyprogramming language. CPU time for each of the experiments
taken into account. is within one second on a 75 MHz Sparc computer.

TABLE | SCHEDULING RESULTS

processing 5th order 8-point

algorithm wave filter DCT

mul 8 11

add 26 29

edge 58 69

w/o reconfig 24 u.t. 14 u.t.

FUs 2 adds, 2 muls| 3adds, 3 muls

w/ reconfig 23 u.t. 13 u.t.

FUs 3 reconfigurable 4 reconfigurable
1 mul

A1 [15]o]18[1e] [e[s[8]1z] [2]
M,
A
@
0 5 10 15 20
L 1
1 65 23
e Shendcs
21] 15] 9 26]23] 8 [12 ‘
M/A 17 25 13
’ RANEE EEl—
4 18[19
MIA, '
30

(b)

Fig. 6. Schedules of theavefilter with the minimum iteration period.
(a) without dynamic reconfiguration. (b) with dynamic reconfiguration.

cessing can be achieved by dynamic reconfiguration also in the
case of DCT.

6 Conclusions

We proposed a scheduling and allocation method for oper-
ation executions to achieve fast processing by reducing data
transfer time between functional units by means of dynamic
reconfiguration. Experimental results show that the proposed
method minimizes the iteration periods of the given processing
algorithms.

In this paper, we assume that a multiplier is reconfigured into
some adders and these adders would be reconfigured back into
a multiplier. By removing such boundaries of reconfiguration
and assuming hardware resource can be freely configured into
adders and/or multipliers, the solution space becomes larger
and better solution could be found. It remains as a future work.

The scheduling result of the 5th order wave filter (Fig. 5)

is shown in Fig. 6(a). In this case, a multiplication time is @eferences

units of time (u.t.), an addition 1 u.t., and data transfer time
between adjacent functional units= 1 u.t. The multiplier is 4
pipelined so that we can start a new multiplication every un'E]
of time. In Fig. 6, a small square implies an addition and
small rectangle implies a multiplication. In scheduling opera-
tions, iterations are allowed to overlap with each other as lorg

M. Yamashina, “Prospect of Sub-Quarter Micron LSI Design,” in
IEICE Tech. Reportvol. VLD95-136, pp. 53-60, 1996.

T. Sakurai, “Outline of System LSI: An Introduction to System
LSI's — Applications and IssuesJournal of IEICE vol. 81,
pp. 1083-1086, Nov. 1998.

Toshinori Sueyoshi, “Reconfiurable LogicJournal of IEICE

as precedence among operations is maintained (i.e., functional vol. 81, pp. 1100-1106, 1998.

pipelining). Operations 28 and 34 scheduled in the beginnirid]
of the iteration period may be considers as the executions of
the previous iteration. When dynamic reconfiguration is not it}
use, we need two adders and two multipliers, and the minimum
iteration period is 24 u.t.

Fig. 6(b) shows the scheduling result by using dynami[-s]
cally reconfigurable functional units of typ@}‘('. We as-
sume that a multiplication tim&y (OY) = 2, an addition time
Qa(OM) =1, the number of adders obtained by reconfiguratiofy]
is N(O}‘(‘) = 2, and reconfiguration times afgia = fam = 1.

A gray trapezoid means that the functional unit is being recon-
figured. In Fig. 6(b) multiplications 32 and 30 are executetf]
in pipelined fashion on the functional u/Az. The itera-

tion period of 23 u.t. which is smaller than the case of no dy-

namic reconfiguration is obtained by using three dynamicall)fé
reconfigurable functional units of typ@).]

Table | shows the scheduling results for one dimensional 8-
point DCT [9] which consists of 29 additions, 11 multiplica-
tions, and 69 directed edges. The table shows that faster pro-

XILINX, XC6200 Field Programmable Gate Arrays Data Sheet
1997. http://www.xilinx.com.

Masayuki Ito and Junji Kitamichi and Nobuo Funabiki, “A De-
sign of Dynamically Reconfigurable FPGA and An Implementa-
tion of Parallel Algorithm on it IPSJ SIG Notesvol. 98DA8S,
pp. 1-8, 1998.

P. Lysaght and J. Stockwood, “A Simulation Tool for Dynam-
ically Reconfigurable Field-Programmable Gate ArrayEEE
Trans. VLSI Systemsol. 4, pp. 381-390, Sept. 1996.

M. J. Wirthlin and B. L. Hutchings, “Improving Functional Den-
sity Using Run-Time Circuit ReconfigurationEEE Trans. VLSI
Systemgsvol. 6, pp. 247—-256, June 1998.

S. M. Heemstra de Groot, S. H. Gerez, and O. E. Herrmann,
“Range-Chart-Guided lterative Data-Flow Graph Scheduling,”
IEEE Trans. Circuits Syst.-I: Fund. Theory & Appliol. CAS-

39, pp. 351-364, May 1992.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical Fast
1-D DCT Algorithms with 11 Multiplications,” inProc. IEEE
ICASSPR pp. 988-991, 1989.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

