
A Scheduling and Allocation Method to Reduce Data Transfer Time by Dynamic
Reconfiguration

Kazuhito Ito
Dept. Elec. Elect. Systems, Saitama University

255 Shimookubo, Urawa, Saitama 338-8570, Japan
kazuhito@ees.saitama-u.ac.jp

Abstract— In the era of deep submicron technology, wire de-
lay on an LSI chip is becoming relatively larger than operation
delay. Increase of execution speed by parallel processing may be
limited due to the data transfer time between functional units. If
we can dynamically reconfigure nearby functional units into de-
sired operation type and execute operations on the reconfigured
units, long data transfer is reduced and hence fast processing can
be achieved. In this paper we propose a scheduling method to
determine static operation execution time and functional unit al-
location to achieve fast signal processing by considering dynamic
reconfiguration of functional units. Results show the effectiveness
of the proposed method.

1 Introduction
It has been reported that although gate delay becomes

smaller as the LSI process advances, wire delay is becoming
relatively longer than gate delay and will be dominant in total
delay [1, 2]. To realize high performance LSIs, it is getting
more important to consider not only gate delay but wire delay
in high level designs.

Reconfigurable LSIs, such as reprogrammable field pro-
grammable gate arrays (FPGA) with rewritable lookup tables
and interconnections, can be divided based on the reconfig-
uration scheme into two categories: statically-reconfigurable
and dynamically-reconfigurable [3]. In the case of statically-
reconfigurable, the entire operations on the LSI chip are ter-
minated before reconfiguration. Once reconfiguration is com-
pleted, operations are initiated. On the other hand, in the case
of dynamically-reconfigurable, only the operation executed on
the part to be reconfigured is terminated. During the recon-
figuration of that part, other part continues operations. Once
the reconfiguration is completed, the reconfigured part and the
other part together execute some operation.

In dynamically-reconfigurable LSI, it is not necessary to
terminate all the operations during partial reconfiguration.
Dynamically-reconfigurable LSI can gradually change the
components while executing some operations simultaneously.
Such dynamically- and partially-reconfigurable hardware has
been developed [4, 5] and there have been some reports on
applications and design environments for dynamically- and
partially-reconfigurable hardware [5, 6, 7]. In the remaining
of this paper, we assume that dynamic reconfiguration also im-
plies partial reconfiguration.

When executing a digital signal processing algorithm by
parallel processing, usually we need some functional units

which are laid out two dimensionally on a LSI chip. Suppose
that a resultP of a multiplicationm is added with another data
by additiona. If the multiplicationm is allocated to a mul-
tiplier M and the additiona to an adderA, the multiplication
resultP must be transfered from the multiplierM to the adder
A. This data transfer is done through a wire on the LSI chip.
If the destination adderA is placed far apart from the multi-
plier M, we need long wire delay from the multiplication to
the addition. Consequently, high processing speed will not be
achieved because of the wire delay.

In general, the function types and operation parallelism
change as the signal processing algorithm goes on. The re-
quired type and number of functional units are not always the
same. If there is a functional unitsF which is nearby the mul-
tiplier M and becomes idle a little after the multiplicationm,
we can reconfigure the functional unitF into an adderFa and
execute the additiona on Fa. Hence, we can reduce the long
wire delay from a multiplier to an adder.

In this paper, we concentrate on designing dedicated hard-
ware for an iterative processing algorithm like digital signal
processing which consists of many primitive operations, such
as additions and multiplications. We propose a method for
scheduling operation execution and allocating operations to
functional units to minimize the iteration period of the process-
ing algorithm by reducing the wire delay by means of dynamic
reconfiguration.

It must be noted that although the target hardware is recon-
figured dynamically (i.e. run-time reconfiguration), when and
which functional units are reconfigured is static and predeter-
mined by the scheduling and allocation.

The paper is organized as follows. In section 2, target
dynamically-reconfigurable hardware is modeled. The idea
how higher speed is achieved with such hardware is also dis-
cussed in this section. The proposed scheduling method is
based on range chart guided scheduling method [8], which
is briefly reviewed in section 3. In section 4 the proposed
scheduling and allocation method is described. The experi-
mental results are shown in section 5.

2 Hardware Model and Reconfiguration
2.1 Reconfiguration of functional units

Reconfiguration of functional units is to alter the circuit con-
nections so that operations of different types can be executed
on the same hardware before and after the circuit alteration.

time

type a type a
type b

Qa QaQbfab fba

reconfiguration duration

operation operation
operations

Fig. 1. Reconfiguration of functional units. (N(Oa
b) = 2)

In a general parallel multiplier, fast additions of partial prod-
ucts are executed by a carry save adder and a vector merging
addition is executed by a carry propagation adder. By slightly
modifying the connections, the carry propagation adder can
be used to execute ordinary additions. Moreover, if the hard-
ware amount of the carry save adder compares to the hardware
amount of a carry propagation adder, it is possible to reconfig-
ure the carry save adder into a carry propagation adder to exe-
cute ordinary additions. Consequently, it can be assumed that
a parallel multiplier consists of sufficient amount of hardware
to be reconfigured into at least two adders. If the reconfig-
urable multiplier be can reconfigured into two adders, we can
execute at most two additions at the same time on the hardware
when reconfigured into two adders. When those two adders are
reconfigured back into a multiplier, we can execute a multipli-
cation on the same hardware.

Let Oa
b denote a type of functional units which can exclu-

sively execute operations of typea andb by reconfiguration.
In addition, letQa(Oa

b) andQb(Oa
b) denote the execution time

of operation typea andb, respectively.
To simplify the problem, we assume that a functional unit of

typeOa
b can execute one operation of typea when configured

into typea. We also assume that, when configured into typeb,
the functional units can execute at mostN(Oa

b) operations of
typeb at the same time. For example, ifN(OM

A) = 2 for a func-
tional unit of typeOM

A , it can execute one multiplication (type
M) when configured into a multiplier or at most two additions
(typeA) when configured into two adders.

The reconfiguration times arefab to reconfigure the func-
tional unit from typea to typeb and fba from typeb to typea.
During these reconfiguration time, the functional unit cannot
execute any type of operations. This model is summarized in
Fig. 1.

2.2 Data transfer model

In this paper, we assume an architecture as illustrated in
Fig. 2 where many functional units are connected through data
buses. We can use as many data buses as required. Therefore
there are no limit on the number of simultaneous data transfers.

Let τ be defined to be the data transfer time between func-
tional units which are physically adjacent to each other on an
LSI chip. Data transfer time between functional units which
are not adjacent to each other is relative to the physical dis-
tance between these functional units. For example in Fig. 2(a),
functional unitsM1 andM2 are adjacent to each other. There-
fore data transfer time fromM1 to M2 and vice versa isτ. Data

A1 M1 M2 A2

(a)

A1 M2 A2A1 A2
* *

data busτ
2τ

ττ
2τ

(b)

data bus

reconfigured

τ

Fig. 2. Data transfer model. (a) when configured into a multiplier. (b) when
configured into adders.

transfer time fromA1 to M2 is 2τ because a functional unitM1

resides betweenA1 andM2 and the distance betweenA1 and
M2 is about twice longer than physically adjacent functional
units.

We assume that data transfer time between reconfigured
adders and other functional unit is the same as the data transfer
time before reconfiguration. For example in Fig. 2(b),A�

1 and
A�

2 are adders derived by reconfiguring multiplierM1. Since
data transfer time betweenM1 andA1 is τ, data transfer time
between eitherA�

1 or A�

2 andA1 is alsoτ. Similarly, data trans-
fer time betweenA2 andM1 is 2τ, data transfer time between
A2 and eitherA�

1 or A�

2 is also 2τ. Data transfer time between
adders reconfigured from a multiplier is assumed to beτ. For
example, data transfer time betweenA�

1 andA�

2 is 2τ because
these adders are derived by reconfiguring an identical multi-
plier M1.

For data transfer of long distance which require long data
transfer time, we assign as many clock cycles as necessary to
accommodate the data transfer time. Thus we can take into ac-
count the data transfer time, e.g. clock cycles for data transfer,
with some accuracy during high-level design.

2.3 Data transfer time reduction by dynamic reconfigu-
ration

Long data transfer time is necessary for data transfer be-
tween distant functional units. When the processing speed is
slowed down because of the long data transfer time, we can
use dynamic reconfiguration to reduce the data transfer time by
reducing the distance between the functional unit which gen-
erates the data (data source) and the functional unit which con-
sumes the data (data destination). This is achieved by creating
a functional unit of the same type as the data destination nearby
the data source and executing the data consuming operation on
the created functional unit.

An iterative processing algorithm is given as a data-flow
graph (DFG)G = (N;E) as shown in Fig. 3(a).N denotes
the set of nodes which represent operations. In the figure, the

nodesa1 from a5 are additions and the nodesm1 andm2 are
multiplications. E denotes the set of directed edges between
operations. A directed edge represents data dependency from
the source to the destination, and therefore the precedence re-
lation between executions of these operations. In this paper,
we assume an addition time, a multiplication time, and data
transfer timeτ between adjacent functional units are 1 unit of
time (u.t.), 2 u.t., and 1 u.t., respectively.

Operation schedules determined by taking into account the
data transfer time are shown in Fig. 3(b) and (c). If we are not
allowed to use dynamic reconfiguration, the processing time
becomes shortest when addersA1, A2 and multipliersM1 are
placed and operations are allocated to these functional units
as shown in Fig. 3(b). Arrows in this figure represent data
transfers between functional units. In the schedule shown in
Fig. 3(b), 2 u.t. is required for data transfer froma1 to a4.
Thus the total processing time from the beginning ofm1 to the
completion of the final operation needs 8 u.t.

Here we assume the multiplierM1 can be reconfigured into
adders. The reconfigurable functional unit is denoted asM=A1

in Fig. 3(c). If both the reconfiguration time from a multi-
plier to adders and from adders to a multiplier is the same and
is 1 u.t., by reconfiguringM=A1 into adders, the operationa1

can be executed of a reconfigured adder. Since the hardware
is dynamically-reconfigurable, the adderA2 which is not re-
configured can continue additions. Consequently, data transfer
time froma1 to a4 is reduced to only 1 u.t., and the total pro-
cessing time is minimized to 7 u.t.

3 Range Chart Guided Scheduling Method
The proposed scheduling method for dynamically-reconfig-

urable hardware is based on the range chart guided scheduling
(RCGS) method [8]. In this section we briefly review the range
chart guided scheduling method.

The basic idea of RCGS method is as follows: from un-
scheduled operations of the given iterative processing algo-
rithm, we choose an operation and assign the operation an ex-
ecution staring time within thescheduling rangeso as to mini-
mize the maximum number of operations executed in parallel.
When all operations are scheduled, the number of functional
units necessary to execute the processing algorithm is mini-
mized. Scheduling rangeof an operation is the set of time at
which the execution of the operation could be initiated without
violating any precedence relations. The larger the scheduling
range is, the more probable to find the execution start time to
minimize the number of functional units.

The precedence of operations only defines the relative re-
lations among operation execution times. Scheduling ranges
of nodes can be determined uniquely by fixing the execution
time of one of the operations in the processing algorithm. This
is calleda reference operationand should be carefully cho-
sen and fixed at time 0. LetRi denote the scheduling range
of operationi. The earliest and the latest time withinRi are re-
spectively called thelower bound LBi and theupper bound UBi
of the operationi. When an operation is scheduled (assigned
the execution start time), the scheduling ranges of unscheduled

m2

m1

a1

a3a2

a4

m1

a1

a2

m2

a3 a4

A1

M1

A2

time0 21 3 4 65 7 8

(a)

(b)

(c)

a5

m1 a1

a2

m2

a3 a4

A1

A2

time0 21 3 4 65 7 8

a5

M/A1

reconfiguration

a5

Fig. 3. Fast processing by dynamic reconfiguration. (a) processing
algorithm. (b) schedule without dynamic reconfiguration. (c) schedule with
dynamic reconfiguration.

operations will be changed. Therefore, each time an operation
is scheduled, we must reevaluate the scheduling range of un-
scheduled operations.

The first priority to choose one of unscheduled operations
is the tightness of the scheduling range. If operationj uses
a result of operationi, the execution start time ofj must be
later than the execution completion ofi. When the execution
start time of i is set toUBi , the lower bound ofj (LBj) is
pushed toward the upper boundUBj and henceRj becomes
smallest. In general, for an operation with small scheduling
range, whichever time it is scheduled, the reduction of schedul-
ing ranges of other operations would be small. Hence, it is
preferable to choose the operation with the smallest schedul-
ing range and schedule the operation first in order to minimize
reduction of the schedule ranges of other operation.

The second priority to choose one operation among un-
scheduled operations is the existence offixed bounds. The
lower (upper) bound of the operation is saidfixedif all the im-
mediate predecessors (successors) of an operation are already
scheduled. WhenLBi is fixed, setting the execution start time
of i to LBi does not change the upper bounds of other opera-
tions since all the immediate predecessors are already sched-
uled. Hence, it is preferable to choose the operation with the
fixed bound and schedule the operation at or close to the fixed
bound in order to minimize reduction of the schedule ranges of
other operation.

4 Scheduling and Allocation Algorithm
In order to minimize total time of operation execution, re-

configuration, and data transfer, we must allocate functional

units to satisfy data transfer time requirements which should
be obtained from scheduling ranges of operations. On the
other hand, scheduling ranges of operations depends on the
data transfer time between operations. Thus scheduling opera-
tions and allocating functional units are closely related. In this
paper we propose a method to determine schedule and alloca-
tion in parallel.

4.1 Basic idea
From the set of operations of the given iterative processing

algorithm, we choose an operation,i, among unscheduled op-
erations. Theni is allocated to an appropriate functional unit
and assign an execution start time by taking into account the
reconfiguration time and data transfer time. This is repeated
until all the operations are scheduled.

4.2 Choice of operation to schedule
The preference of choosing an operation among the set of

unscheduled operations is as follows.
1. scheduling range is smallest
2. the lower bound or the upper bound is fixed
3. the operation time is longest
In the case a single operation cannot be identified by the step

3, we arbitrarily choose one operation among the candidates.
Let i denote the operation chosen. For each functional unitx

of the set of already allocated functional unitsX, it is checked
if i can be scheduled at timet 2 Ri on x. In the case that func-
tional unitx is used by other operation or during reconfigura-
tion at timet, operationi cannot be allocated tox. Moreover,
if schedulingi at timet onx violates some precedence to/from
i, theni cannot be allocated tox at timet.

4.3 Operation allocation
Let a functional unitx be of typeOa

b. Whenx is config-
ured into a number ofN(Oa

b) functional units of typeb, each
functional unit is denoted asxk (k= 0;1; : : : ;N(Oa

b)�1). The
set of functional unitsX is the collection of functional units
to be used to execute operations. The contents ofX varies
time to time by dynamic reconfiguration. Namely, when func-
tional unitx is configured into typea, X does not contain func-
tional unitsxk (k = 0;1; : : : ;N(Oa

b)� 1). On the other hand,
whenx is configured into typeb, x is removed fromX andxk

(k= 0;1; : : : ;N(Oa
b)�1) are included instead.

Let i denote an operation of either typea which can be exe-
cuted byx or typeb which can be executed byxk.

Wheni is typea, the conditions where the functional unitx
can executei at timet are: no operation of typea is scheduled
to x at any timet1 which satisfiest �Qa(Oa

b)+ 1� t1� t +
Qa(Oa

b)� 1; andx is not reconfiguring at any timet2 which
satisfiest� fba+1� t2� t + fab�1.

Wheni is typeb, the conditions where the functional unitxk

can executei at timet are: no operation of typeb is scheduled
to xk at any timet1 which satisfiest�Qb(Oa

b)+1� t1� t +
Qb(Oa

b)�1; andxk is not reconfiguring at any timet2 which
satisfiest� fab+1� t2� t + fba�1.

4.4 Scheduling range
Suppose a directed edge(i; j) heading from operationi to

operationj is included in the edge setE. In the case that the op-

eration typepi of i is different from the operation typepj of j,
we need either reconfiguration of a functional unit executable
of pi into a functional unit executable ofpj , or transferring
data from a functional unit executingi to another functional
unit executingj. Let γi j denote the required time for either re-
configuration or data transfer betweeni and j. In this case,γi j

is the minimum of the time to reconfigure the functional unit
from typepi to pj and the time to transfer data from one func-
tional unit to another. At this point we have no information
about functional unit allocation. Therefore, the time to transfer
data is assumed to be the smallest, i.e.τ. In the case thatpi

and pj are the same, we do not need reconfiguration. Ifi and
j can be allocated to the identical functional unit, then the data
transfer time is 0. Henceγi j is set to 0.

By usingγi j , the lower boundLBi and the upper boundUBi

of operationi satisfy the following equations

LBi = max
(h;i)2E

fLBh+Qh+ γhi�dhiTrg (1)

UBi = min
(i; j)2E

�
UBj �Qi � γi j +di j Tr

	
(2)

whereQi is the operation execution duration ofi, di j is the
number of delays associated with the edge(i; j), Tr is the it-
eration period of the processing algorithm. We must choose
one operation as a reference and schedule it at time 0. Then
LBi andUBi are respectively identical to the as soon as possi-
ble schedule and the as late as possible schedule of operation
i. The scheduling rangeRi is the set of timet which satisfies
LBi � t � UBi .

By assuming the reference operation is the start node and
LBi is the longest path to operationi, Equation (1) forms a
longest path problem. The smallestTr so as to make all the
directed loops nonpositive and make the longest path problem
solvable is the feasible minimum iteration period of the given
iterative processing algorithm.

When we specify a particular functional unit to execute op-
eration i, we can take into account more accurate time for
reconfiguration or data transfer. Suppose operationi is allo-
cated to functional unitx. Also suppose an operation which
has been scheduled and decides either the lower bound or the
upper bound ofi is allocated to a functional unity. In the
case thatx 6= y, we need data transfer timeτxy associated with
the displacement ofx andy. For example in the DFG shown
in Fig. 4(a), the operationsh and j are already scheduled. If
the operationi is allocated to functional unitx as illustrated in
Fig. 4(b), the lower bound ofi is determined by the execution
start time ofh, execution duration of operationn, and the data
transfer timeτ. On the other hand, the upper bound is deter-
mined by the execution start time ofj and the necessary data
transfer time of 2τ. Hence, the scheduling range of operation
i is the area bounded by the bold lines in Fig. 4(b). Conse-
quently, the lower boundLBx

i and the upper boundUBx
i wheni

is allocated to the functional unitx are given by the equations

LBx
i = max

p(h;i)

�
LBh+Qi

h+ τxy�DhiTr
	

(3)

UBx
i = min

p(i; j)

n
UBj �Qj

i � τxy+Di j Tr
o

(4)

h
i

j

time

(a)

(b)

x

h

j

0 1 2 3 4 5 6 7 8

n

Fig. 4. Scheduling range by precise calculation of data transfer time.

wherep(i; j) denotes the directed path fromi to j, Qj
i is the

total sum of execution durations of operations onp(i; j), Di j is
the total sum of the number of delays onp(i; j).

The set oft which satisfiesLBx
i � t � UBx

i is the scheduling
range obtained by precisely calculating data transfer time by
assuming thati is allocated tox. It is denoted asRx

i .

4.5 Proposed scheduling and allocation algorithm
The scheduling and allocation algorithm for dynamically-

reconfigurable hardware is summarized as follows. The ma-
jor difference to the original RCGS method is the addition of
the search to evaluate the allocation of operations to functional
units.

1. For a given iterative processing algorithm, choose one op-
eration as the reference operation and set its execution start
time to 0. Prepare a reconfigurable functional unitx and al-
locate the reference operation to it. Let the set of functional
unitsX = fxg. Calculate the minimum iteration period of
the given algorithm and set it toTr.

2. Evaluate scheduling range of each operation for the speci-
fied iteration periodTr.

3. Among unscheduled operations, choose one operationi
as mentioned in section 4.2. When all the operations are
scheduled, then exit.

4. Determine the execution start time ofi.

If the lower bound ofi is fixed, let the fixed bound be de-
noted ast. If the upper bound ofi is fixed, let the upper
bound be denoted ast. Otherwise, if both the lower and
upper bounds are not fixed, then choose the lower bound
and sett to the lower bound.

Search for a time to start execution ofi by increasingt
(if t is the lower bound) or decreasing (ift is the upper
bound)t one by one so that the execution start time will be
determined nearby the fixed bound.

4.1 For each of already existent functional unitsx2 X (or xk

which can be obtained by reconfiguringx), calculate the
scheduling rangeRx

i where data transfer time is precisely
taken into account.

Then, for each functional unitx2 X, check if operationi
can start execution at timet on x. The conditions are, (a)
t is contained inRx

i , (b) functional unitx is idle at timet,
and (c) at timet, x is configured or can be configured into
the same operation type asi.

Let tx
i denote the time at whichx can executei and closest

to the fixed bound.

4.2 If there exist functional unitsx 2 X wheretx
i 2 Ri , then

choose one functional unitx0 with tx0

i being closest to the
fixed bound ofi. Allocatei to x0 and fix the execution start
time of i to tx0

i .

4.3 If there does not exist any functional unitx 2 X where
tx
i 2 Ri , then prepare a new functional unity 62 X and as-
sume thaty is placed at one of the edges of already placed
function units. Fory, calculate scheduling rangeRy

i by
precisely considering data transfer time and check ifi can
be executed ony. If true, let ty

i denote the time to start
i which is closest to the fixed bound. Repeat this by as-
suming thaty is placed at the other edge of already placed
functional units.

If y can executei, then letX = X[fyg, allocatei to y and
fix the execution start time ofi to ty

i .

4.4 In the case that the execution start time ofi cannot be de-
termined by above steps, we try extending the scheduling
rangeRi of i.

The execution start time of already scheduled operation
is determined as close as possible to the fixed bound. In
the case that both the lower and upper bounds are fixed,
we choose the lower bound and the operation is scheduled
closest to the lower bound. However this does not always
make the scheduling ranges of other operations largest.
Thus we check if the scheduling range ofi can be widened
by slightly shifting the execution start time of operations
which immediately preceding or succeedingi

If Ri can be widen, then go back to step 3. Otherwise,
it means that we can not schedulei with the given iter-
ation periodTr. IncreaseTr by one, unschedule all the
operations, and go back to step 1.

5. If there is unscheduled operation, reevaluate scheduling
ranges and go to step 3.

The computational complexity of the algorithm for a value
of Tr is O(n2e+npTr) wheren is the number of operations,e
the number of edges,p the number of functional units. This
will be repeated withTr increased one by one until every
precedence among operations is satisfied. The upper bound of
Tr is O(n) where all the operations are executed sequentially
on a functional unit. Thus the total complexity isO(n3(e+ p)).

5 Experimental Results
The proposed scheduling method is implemented with C

programming language. CPU time for each of the experiments
is within one second on a 75 MHz Sparc computer.

D

D
DD

D

D
D1

2

3

4 5 6 7 9

8

10

12

13

14

11

15

16 21

17 20 22

1918

29

30

31

28

27

24 25 26 33 32

3423

Fig. 5. The 5th orderwavefilter algorithm.

M/A

A1

M1

M2

A2

(a)

1 16 21

17

20

15 9

7

18 19 6 5 8 12

30 3225

22 24

4 13

2 31014 11

26 3323 29 312728 34

0 5 10 15 20 24

1

2

3

(b)

1

16 21
17

20

15 9

7

18 19

6 5

8 12

30

32

25
22 24

4

13

2 3

1014 11 26

33

23

2931 2728

34

0 5 10 15 20 23

M/A

M/A

Fig. 6. Schedules of thewavefilter with the minimum iteration period.
(a) without dynamic reconfiguration. (b) with dynamic reconfiguration.

The scheduling result of the 5th order wave filter (Fig. 5)
is shown in Fig. 6(a). In this case, a multiplication time is 2
units of time (u.t.), an addition 1 u.t., and data transfer time
between adjacent functional unitsτ = 1 u.t. The multiplier is
pipelined so that we can start a new multiplication every unit
of time. In Fig. 6, a small square implies an addition and a
small rectangle implies a multiplication. In scheduling opera-
tions, iterations are allowed to overlap with each other as long
as precedence among operations is maintained (i.e., functional
pipelining). Operations 28 and 34 scheduled in the beginning
of the iteration period may be considers as the executions of
the previous iteration. When dynamic reconfiguration is not in
use, we need two adders and two multipliers, and the minimum
iteration period is 24 u.t.

Fig. 6(b) shows the scheduling result by using dynami-
cally reconfigurable functional units of typeOM

A . We as-
sume that a multiplication timeQM(OM

A) = 2, an addition time
QA(OM

A)=1, the number of adders obtained by reconfiguration
is N(OM

A) = 2, and reconfiguration times arefMA = fAM = 1.
A gray trapezoid means that the functional unit is being recon-
figured. In Fig. 6(b) multiplications 32 and 30 are executed
in pipelined fashion on the functional unitM=A3. The itera-
tion period of 23 u.t. which is smaller than the case of no dy-
namic reconfiguration is obtained by using three dynamically-
reconfigurable functional units of typeOM

A .
Table I shows the scheduling results for one dimensional 8-

point DCT [9] which consists of 29 additions, 11 multiplica-
tions, and 69 directed edges. The table shows that faster pro-

TABLE I SCHEDULING RESULTS

processing 5th order 8-point
algorithm wave filter DCT
mul 8 11
add 26 29
edge 58 69

w/o reconfig 24 u.t. 14 u.t.
FUs 2 adds, 2 muls 3 adds, 3 muls

w/ reconfig 23 u.t. 13 u.t.
FUs 3 reconfigurable 4 reconfigurable,

1 mul

cessing can be achieved by dynamic reconfiguration also in the
case of DCT.

6 Conclusions
We proposed a scheduling and allocation method for oper-

ation executions to achieve fast processing by reducing data
transfer time between functional units by means of dynamic
reconfiguration. Experimental results show that the proposed
method minimizes the iteration periods of the given processing
algorithms.

In this paper, we assume that a multiplier is reconfigured into
some adders and these adders would be reconfigured back into
a multiplier. By removing such boundaries of reconfiguration
and assuming hardware resource can be freely configured into
adders and/or multipliers, the solution space becomes larger
and better solution could be found. It remains as a future work.

References
[1] M. Yamashina, “Prospect of Sub-Quarter Micron LSI Design,” in

IEICE Tech. Report, vol. VLD95-136, pp. 53–60, 1996.
[2] T. Sakurai, “Outline of System LSI: An Introduction to System

LSI’s — Applications and Issues,”Journal of IEICE, vol. 81,
pp. 1083–1086, Nov. 1998.

[3] Toshinori Sueyoshi, “Reconfiurable Logic,”Journal of IEICE,
vol. 81, pp. 1100–1106, 1998.

[4] XILINX, XC6200 Field Programmable Gate Arrays Data Sheet,
1997. http://www.xilinx.com.

[5] Masayuki Ito and Junji Kitamichi and Nobuo Funabiki, “A De-
sign of Dynamically Reconfigurable FPGA and An Implementa-
tion of Parallel Algorithm on it,”IPSJ SIG Notes, vol. 98DA88,
pp. 1–8, 1998.

[6] P. Lysaght and J. Stockwood, “A Simulation Tool for Dynam-
ically Reconfigurable Field-Programmable Gate Arrays,”IEEE
Trans. VLSI Systems, vol. 4, pp. 381–390, Sept. 1996.

[7] M. J. Wirthlin and B. L. Hutchings, “Improving Functional Den-
sity Using Run-Time Circuit Reconfiguration,”IEEE Trans. VLSI
Systems, vol. 6, pp. 247–256, June 1998.

[8] S. M. Heemstra de Groot, S. H. Gerez, and O. E. Herrmann,
“Range-Chart-Guided Iterative Data-Flow Graph Scheduling,”
IEEE Trans. Circuits Syst.-I: Fund. Theory & Appl., vol. CAS-
39, pp. 351–364, May 1992.

[9] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical Fast
1-D DCT Algorithms with 11 Multiplications,” inProc. IEEE
ICASSP, pp. 988–991, 1989.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

