
A Timing-Driven Synthesis of Arithmetic Circuits
using Carry-Save-Adders

Taewhan Kim and Junhyung Um

Department of Computer Science
and Advanced Information Technology Research Center(AITrc)

Korea Advanced Institute of Science & Technology
Taejon, 305-701 KOREA

Abstract— Carry-save-adder (CSA) is one of the

most widely used types of operation in implementing

a fast computation of arithmetics. An inherent limita-

tion of the conventional CSA applications is that the

applications are confined to the sections of arithmetic

circuit that can be directly translated into addition ex-

pressions. To overcome this limitation, from the anal-

ysis of the structures of arithmetic circuits found in

industry, we derive a set of simple, but effective CSA

transformation techniques. Those are (1) optimization

across multiplexors, (2) optimization across design boundaries

(restricted notion of [3]), and (3) optimization across mul-

tiplications. Based on the techniques, we develop a new

timing-driven CSA transformation algorithm that is

able to utilize CSAs extensively throughout the whole

circuits. Experimental data for practical testcases are

provided to show the effectiveness of our algorithm.

I. Introduction

Timing of circuit is one of the most important design
criteria to be optimized in several phases of synthesis pro-
cess. The work presented in this paper belongs to RTL
synthesis in that we optimize timing in operation level
from the given latency of design and cycle time. However,
unlike the previous approaches to tree-height reduction in
which they focused on the transformation of operations
using techniques such as simple algebraic manipulations
and constant propagation, this work utilizes a new fast
operation, carry-save-adder (CSA)[1], which leads to a
completely different scheme for tree-height reduction.

The n-bit CSA consists of n disjoint full adders (FAs).
It consumes three n-bit input vectors and produces two
outputs, i.e., n-bit sum vector and n-bit carry vector. Un-
like the normal adders, a CSA contains no carry propaga-
tion. We define a CSA tree to be a tree of CSA operators
and one adder at the root of the tree. A CSA tree can
be used to transform an arbitrary number of additions to
produce two adding operands and the adder is used at the
root of CSA tree to produce a final sum. Note that CSA
transformation is not limited to addition only[2, 4]. We
can replace a subtraction by adding the negation of the

subtraction. A multiplication can be decomposed into two
possible options:[2] (a) sum of products and (b) a partial
multiplication and a final addition obtained by decompos-
ing wallace tree synthesis model for multiplication[4].

Our algorithm is designed to overcome the limitations
of the conventional CSA transformations[2] that have not
been able to optimize operation trees across multiplexors,
across design boundaries and/or across multiplications,
which appear quite often in industrial designs.

II. CSA Optimizations

A. Optimizing Across Multiplexors (OAmux)
A conditional statement in design description or a

resource sharing introduces multiplexors in the circuit.
Fig. 1(a) and (b) show an example of a part of VHDL
design description with a conditional statement and its
corresponding translated circuit graph, respectively. The
dotted arrow in Fig. 1(b) indicates a critical path of the
circuit. We carry out the transformation in three steps:

1. Move-up: The operation on the critical path whose input
comes from the multiplexor moves up across multiplexor
to form an operation tree as shown in Fig. 1(c). Because
of the duplication of the operation, the implementation
area will increase, but the timing is unchanged.

2. Transformation: The operation tree identified on the con-

ditional branch of the critical path (i.e., tree1) is then

transformed into a CSA tree as shown in Fig. 1(d).1 In

addition, when the right conditional branch contains an

operation tree with the duplicated operation as root (i.e.,

tree2), it is also transformed into a CSA tree.

3. Move-down: The final additions of the transformed tree

on the conditional branch (i.e., op1, op2) move down

across the multiplexor and are merged into an addition

as shown in Fig. 1(e). Note that this step will duplicate

the multiplexor, but does not increase timing.

B. Optimizing Across Design Boundaries (OAbound)

1We use Σ symbol to represent a CSA block.

op2op1 mux2

‘0’
‘1’‘1’

‘0’

mux1

tree1

tree2

else

end if;

c > 0
 t := a + b;

 t := b - d;

f := t + e;

if () then

‘0’

‘0’

(a)

d

(c)

e

f

c

b da

(b)

a b

f

e

be eda

c

e

f

c

(e)(d)

a d

c

f

be e

Fig. 1. An example of CSA transformation across multiplexor

Fig. 2(a) shows an arithmetic circuit that is contained
in two sub-designs A and B.2 Applying CSA transforma-
tion to the two designs one by one shall create two CSA
trees as shown in Fig. 2(b). To merge operations in dif-
ferent design hierarchy into CSAs, we use the concept of
allocating additional ports proposed in [3]. However, we
restrict the number of additional ports to only one since it
is simple enough and will not seriously degrade the simu-
lation speed. Fig. 2(c) shows an example of the allocation
of an additional port s associated with regular port r. Ini-
tially, it has been assigned with 0. Consequently, we are
able to produce a CSA tree without final adder for the
operation tree in design A and connect the two output
addends of the tree, i.e., the sum and carry output vec-
tors of the final CSA, to r and s of A to be merged into
CSAs with other addends of the arithmetic expression in
B. Fig. 2(d) shows the resultant CSA tree transformed
from the expression in Fig. 2(c).

C. Optimizing Across Multiplications (OAmult)
An operation tree that is extracted to be transformed

into CSAs may contain a multiplication operation. In that
case, the multiplication is constrained to be a leaf of the
tree.[2] To extend the applicability of CSA transforma-
tion across multiplication, we exploit the application of
distribution rule to arithmetic expressions if the involved
operations are on the critical path of the circuit.

III. The Complete Algorithm

2We use notation D(x) to denote the delay to x (i.e., arrival
time) if x is an operand, and denote the internal delay of the fastest
implementation modules of x if x is an operation, such as CSA,
addition, multiplication.

(b)

‘00....0’

11.0 + D(ADD)
(c)(a)

D(c) = 4.0

D(CSA) = 1.5
D(e) = 0.0
D(d) = 2.0

D(b) = 5.0

(d)

r s

A
A

sr

r A

BBBB

A

c

e

dc

D(a) = 8.0

f

d

f

e

a

ba b

ba

e

f

dc

d

f

a

b

e

c

r

9.5 + chain(2*ADD)

Fig. 2. Examples of transforming operations in different design
hierarchy

A. Transformation Types
To maximize the effectiveness of the optimization tech-

niques, it is necessary not only to consider the applications
of the CSA techniques in Sec. II individually but also to
consider the applications of mixtures of them together.
Our algorithm employs 6 types of CSA transformation.
type1: the conventional optimization[2] - The operation
tree to be transformed must be composed entirely of op-
erations of types addition, subtraction, and/or multipli-
cation where the multiplications are leaves of the tree.
type2: OAmux; type3: OAbound; type4: OAmult

type5: OAmult+OAmux - The preprocessing step of
OAmult (i.e., restructuring operation tree by distribution
rule) is performed, and subsequently, OAmux is applied
to the restructured operation tree.
type6: OAmult+OAbound - The preprocessing step of
OAmult is performed, and subsequently, OAbound is ap-
plied to the restructured operation tree.

B. Transformation Procedure
Given the operations on the critical path of the circuit,

for each transformation type i, (i=1,2,· · ·,6), we extract
all candidates of operation tree to be transformed by that
type. Suppose there are total mi candidates for type i.
We define a cost function which will be used to select the
best among the mi candidates. For each of the mi candi-
dates, we apply the transformation of the corresponding
type and compute the ratio

∆T/(A − ∆A) (1)

where ∆T and ∆A are the amounts of the decrease in
timing and area of the resultant circuit, respectively, and
A is the area of the circuit prior to the application of the
transformation of the type.

The ratio indicates a measure of the effectiveness in
decreasing the timing of the critical path by increasing
the circuit area. Of the mi candidates, we shall choose the
candidate of operation tree which has the largest ratio of
Eq. (1). Again, among the 6 candidates selected, one for
each transformation type, we shall choose the candidate
of operation tree with the largest ratio, and the operation
tree is transformed by the corresponding transformation

type. The process then repeats until the timing of the
circuit is less than the specified cycle time or there is
no more candidate applicable on the critical path of the
circuit.

sqr

tree5

tree9

 1

(b)
(d)

(a)

0 0

s

a b c d

s

f

q

‘01101100’ ‘01110001’

p
p

r

0

0.21

-1122

240

-791

-1180.36

(op_tree, trans_type)

192.2

(c)

1.22
0.9

0.2

237

180.5

33.2

67.4

42.1

T A)

(tree5, type6)
(tree4, type4)

(tree3, type3)

(tree2, type2)

(tree1, type1)

/ (A -

kk

‘01110001’

s

f

a b c d

q

tree2

tree3

tree1

4.16 ns

tree4

4.51 ns

‘01110001’‘01101011’

k

5.89 ns 5.21 ns

2.41 ns

f

tree7

‘01101100’

p

r
s

tree8

a b c d

s

tree6

q sk

s

‘01101100’

c db

‘01110001’

p
p

a

a

f

p

a

r

p

p

AT

a

p

Fig. 3. An example of showing the flow of our algorithm

Example: To illustrate the flow of our transformation proce-
dure, we use the circuit graph in Fig. 3(a) where a, b, c, d, k
and s are input signals of the design and f is an output signal.
The circuit contains one sub-design as a module unit.

From the operations on the critical path, our algorithm ex-
tracts the best candidate of operation tree for each of trans-
formation types according to Eq. (1). The entries of (op tree,
trans type) in the table of Fig. 3(a) show all such pairs of op-
eration tree and transformation type, and the dotted circles
in the circuit graph of Fig. 3(a) show the corresponding oper-
ation trees. For example, (tree5, type6) in the table indicates
that expression a · (b− 1) in tree5 is restructured into a · b− a
by the distribution rule of OAmult, which is then transformed
by OAbound. The last three columns of the table in Fig. 3(a)
summarizes the values of the changes of timing and area, and
the values of Eq. (1), respectively.

As shown in the table of Fig. 3(a), 5 pairs of (op tree,

trans type) are extracted. Among them we select the pair

(tree5, type6) with the largest value of Eq. (1). Operation tree

tree5 is then transformed by type6 as shown in Fig. 3(b). Now,

the critical path of the transformed circuit in Fig. 3(b) becomes

the one passing through the right side of the circuit. Conse-

quently, 3 (op tree, trans type) pairs are extracted as shown

in the circles of the figure. Among them, tree8 with type3 is

selected and transformed. Fig. 3(c) shows the resultant cir-

cuit. Finally, tree9 with type2 is selected and transformed into

the circuit shown in Fig. 3(d).

The Complete Algorithm
/* A: area of current circuit */
/* T : timing of (critical path of) current circuit */
/* ∆A: area decrease resulting from a transformation */
/* ∆T : timing decrease resulting from a transformation */
• Calculate area/timing of the current circuit

(using module implementation and logic optimization);
while (T > cycle time) {

• Extract all candidates of (op tree, trans type);
• Apply, for each candidate, trans type to op tree, and

calculate changes of area and timing, ∆A and ∆T
(using implementation selection only); (statement a)

• Select and transform the candidate with the largest
ratio of ∆T/(A-∆A);

• Update area/timing of the circuit (statement b)
(using implementation sel. and logic opt.);

}
Fig. 4. The complete algorithm

Fig. 4 summarizes the flow of the algorithm. To
speedup the timing-consuming process of the implemen-
tation selection and logic optimization we employ a local
measuring scheme (statement a). That is, we consider
only the modules of the CSA tree transformed at the cur-
rent iteration. Since the structure of CSA implementation
is very regular, which is a set of disjoint fuller adders, it
is relatively easy and also fast to calculate an accurate
estimation of timing and area of the transformed tree. In
addition, we attempt to remove any possible timing/area
discrepancies induced by the local measuring scheme by
performing again the steps of implementation selection
and logic optimization on the entire circuit at the end of
every iteration (statement b).

As mentioned before, measuring the cost of applying
trans type to op tree is based on the area and timing calcu-
lation that are done locally on the transformed CSA tree.
Our algorithm uses a library of timing and area of the
logic-optimized possible implementations such as shown in
Table I where it contains, for each module type, the val-
ues of area and timing for each of area-efficient, timing-
efficient, and area/timing-efficient implementations pro-
duced by the application of implementation selection and
logic-optimization to the module.

IV. Experimental Results

We tested our algorithm on a large number of arith-
metic computations that are typically found in industry.
We used Design Compiler package from Synopsys Inc. to
perform the implementation selection, tree-height mini-
mization and logic optimizations for the designs trans-
formed by our algorithm, those by [2] and those without
using CSAs, and compared their results.3 We used 8-bit
operands for the inputs of the multiplication and 16-bit

3We used lcbg10pv (.35µ) technology[5] for the experimentation.

impl. selection + logic opt.
functions bit-width area-eff. moderate time-eff.

time, area time, area time, area
A + B 16×16 3.47, 339 2.38, 686 1.37, 1172
A - B 16×16 3.55, 387 2.42, 735 1.47, 1387
A + B 8×8 1.71, 163 1.59, 274 0.94, 577
A - B 8×8 1.79, 187 1.60, 284 0.90, 697
A × B 8×8 5.92, 1610 4.49, 2234 3.59, 2820
A ×p B 8×8 - 2.22, 1393 -

Mux(A,B) n × n - 0.32, 24·n -
Inverter(A) n - 0.06, 3·n -
CSA(A,B,C) n×n×n - 0.36, 21·n -

TABLE I
An implementation library for modules to measure the

changes of area and timing by local transformation

for the others and assumed that the arrival times of all
input operands are 0.

We tested our algorithm on designs with multiplexor as
shown in Fig. 5(a) and the results are summarized in the
upper row of Table II. We also conducted our experimen-
tation on four design expressions of the form (a+x) ·c−d
where x is variable b, 39, 7, or 1 and the results are sum-
marized in the middle of Table II. The comparisons in-
dicate that our CSA transformation technique with the
operation-distribution can reduce the timing of design fur-
ther. However, it increases area. Consequently, it is desir-
able to use the transformation technique selectively only
when it is the last choice for reducing the timing of circuit
to meet the cycle time. We also conducted our experimen-
tation on the three designs shown in Fig. 5(b). The results
shown in the low part of Table II reflect that combining
our CSA techniques OAbound, OAmux and OAmult all to-
gether becomes a very powerful vehicle to overcome the
limitation of the conventional CSA transformations and
enables us to extend the applicability of CSA transfor-
mation to the entire circuit to produce faster timing and
smaller area.

mix_3

A

(b)

C

1

mix_1mux_3mux_1

(a)

mux_2 mix_2

1

C

A

D

E

Fig. 5. (a) Designs containing multiplexors; (b) Designs
containing multiplexor, sub-design, and/or multiplication of the
form (a + X) · c

V. Conclusions

RTL [2] Ours Impr. Impr.
Designs time/ time/ time/ over over

area area area RTL [2]

mux 1 3.26 3.26 2.09 36% 36%
4742 4742 3565 25% 25%

mux 2 4.78 4.78 4.20 12% 12%
5036 5036 4265 15% 15%

mux 3 2.89 2.81 2.55 12% 9%
5756 5004 4115 29% 18%

(a + b) · c − d 5.14 4.08 3.75 27% 8%
5066 3813 6052 -19% -59%

(a + 39) · c − d 4.80 3.93 3.66 24% 7%
4290 3277 4360 -2% -32%

(a + 7) · c − d 4.66 3.87 3.58 23% 7%
4308 3369 4033 6% -20%

(a + 1) · c − d 4.12 3.43 3.35 19% 2%
4892 3430 3217 34% 6%

mix 1 3.41 3.20 2.49 27% 22%
4456 4399 4051 11% 8%

mix 2 4.49 4.27 3.34 26% 22%
5296 4676 5129 3% -10%

mix 3 4.66 4.36 3.33 29% 24%
4329 4147 3607 17% 13%

TABLE II
Comparison of results for arithmetic circuits

This paper presented a new algorithm for optimizing
arithmetic circuits using CSAs. We overcome some of the
limitations of the conventional CSA transformations by
proposing a set of effective CSA techniques for optimizing
across multiplexors, optimizing across design boundaries
(restricted form of [3]), and optimizing across multipli-
ers. Those techniques allow an extensive utilization of
CSAs throughout the whole circuit. We then integrated
the techniques into our CSA optimization framework to
fully exploit their effects in a global way. In addition,
we devised a fast, but relatively accurate (bit-level) tim-
ing/area estimation scheme in the CSA transformations
which in turn solidifies the effectiveness of our algorithm.

Acknowledgments

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) through the Advanced In-
formation Technology Research Center (AITrc).

References

[1] N. Weste and K. Eshraghian, Principles of CMOS VLSI De-
sign - A Systems Perspective, Addition-Wesley Publishers,
1985.

[2] T. Kim, W. Jao, and S. Tjiang, “Circuit Optimization using
Carry-Save-Adder Cells”, IEEE TCAD, October 1998.

[3] J. Um, T. Kim, C. L. Liu, “Optimal Allocation of Carry-Save-
Adders in Arithmetic Optimization”, Proc. ICCAD, 1999.

[4] Synopsys Inc., DesignWare Components Databook, 1996.
[5] LSI Logic Inc., G10-p Cell-Based ASIC Products Databook,

1996.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

