
Thread Partitioning Method for Hardware Compiler Bach

Mizuki TAKAHASHI †‡ Nagisa ISHIURA‡ Akihisa YAMADA † Takashi KAMBE†

†Design Technology Development Center ‡Department of Information Systems Engineering
IC group Graduate School of Engineering

SHARP Corporation Osaka University
Tenri, Nara, 632-8567 Japan Suita, Osaka, 565-0871 Japan

e-mail:fmizuki,yamada,kambeg@icg.tnr.sharp.co.jp fmizuki,ishiurag@ise.eng.osaka-u.ac.jp

Abstract—This paper presents a method forthread partitioning
for a hardware compiler Bach. Bach synthesizes RT level circuits
from a system description written in Bach-C language, where a
system is modeled as communicating processes running in paral-
lel. The system description is decomposed intothreads, i.e., strings
of sequential processes, and then converted into synthesizable be-
havioral VHDL models. The proposed method attempts to find a
partitioning of a given system description into threads that max-
imize resource sharing among processes in the threads. Experi-
ments on two real designs show that the circuit sizes were reduced
by 3.7% and 14.7%. We also show the detailed statistics and anal-
ysis of the size of the resulting gate level circuits.

I. I NTRODUCTION

LSIs embedded in various consumer products, such as dig-
ital audio and video players and mobile terminals, are key de-
vices characterizing their functionality, performance, and mar-
ket prices. Rapid progress of IC process technology has en-
abled integration of large digital systems on a single chip and a
large part of the functionalities are now implemented by hard-
ware. However, due to strong time-to-market pressure, in-
crease of design period in accordance with the increase in the
design size is becoming unacceptable. On the contrary, it is
required that larger systems be designed within shorter period
of time.

Behavioral synthesis [1, 2] is now one of the indispensable
design automation techniques to ease this “design crisis” prob-
lem. However, one limitation of the behavioral synthesis is that
it is often hard to deal with large systemsdirectly. One reason
for this is that existing behavioral synthesizers are not able to
produce efficient circuits for large scale behavioral specifica-
tions consisting of thousands lines. Another reason is that the
behaviors of entire systems do not always fit into the model of
a sequential process. Some systems may be better modeled,
in terms of understanding and in terms of succinctness of the
descriptions, by a set of parallel or concurrent processes com-
municating with each other. For these reasons, large system
specification must be broken down into smaller pieces which
are well modeled as sequential processes and yet efficiently
handled by behavioral synthesizers.

As an attempt to extend the frontier of design automation
beyond behavioral synthesis, we have developed a Bach hard-
ware compiler [3], which synthesizes circuits from system de-

scriptions in Bach-C language. Bach-C is an extension of the
programming language C which features parallel execution of
sequential processes communicating with each other. A given
Bach-C description is decomposed intothreads, strings of se-
quential processes, which are synthesized by behavioral syn-
thesizer along with circuits for communication.

The Bach compiler has been already used in several real
designs, from which two major problems have been reported.
One is that threads sometimes become too large for behavioral
synthesis, and the other is that resource sharing among pro-
cesses in the same thread is sometimes poor so that resulting
circuits become larger than expected. It turned out that these
crudities are attributed to a naive thread partitioning algorithm,
in which threads are constructed simply depending on the or-
der of the appearance of the processes in the description.

This paper presents a refined way of partitioning a given
Bach-C description into threads. The problem of thread par-
titioning, which takes the thread size limitation and hardware
resource sharing into account, is formulated as an optimiza-
tion problem. Then the problem is solved by means of integer
linear programming. In a preliminary experiment on two real
examples, the circuit size reduction of 3.7% and 14.7% was
achieved.

In the following section, we briefly introduce the Bach-C
language and how system descriptions in Bach-C are compiled
by Bach. Then we formalize the thread partitioning problem
and show how the problem is solved by integer linear program-
ming in subsequent sections. Finally, we show experimental
results on two design examples and discuss the effectiveness
of the proposed method.

II. H ARDWARE COMPILER BACH

Bach-C [3] is a system description language based on ANSI
C with extensions for expressing explicit parallelism, commu-
nications between parallel processes and bit-width specifica-
tion of data types. The semantics for parallelism and commu-
nication are based on CSP [4].

Fig. 1 shows a simple example of Bach-C description with
par and send/receive statements. Statements are exe-
cuted sequentially, like in C language, until thepar statement
is encountered. Thepar statement starts the parallel execution
of the sequential blocks underneath it. We call each sequential
block a process. In this example, execution of processA is

process A x = a * b
 y = x + c;

process B

p = x + y;
q = p - d;
r = receive(c1);
s = q + r;

process C
u = x * y;
send(c1,u);
v = u - y;

process Dz = s + v;
k = k + 1;

par {
 {

 }
 {

 }
}

Figure 1: Bach-C description.

followed by the parallel execution of processesB andC. The
control is passed to processD after bothB andC are finished.
send andreceive statements are used to express commu-
nications between parallel processes. The argumentc1 is a
channel, through which data are transmitted. The communi-
cation is synchronized: If the receive statement is reached in
processB before the send statement in processC, the receive
waits for the send, and vise versa.

Bach system takes a system description in Bach-C and syn-
thesizes RT level circuit models using a behavioral synthe-
sizer. In more precise, Bach compiler converts the Bach-C de-
scription into a set of sequential VHDL processes along with
handshake circuits and pass them to the behavioral synthesizer.
One of the major tasks in compilation is to partition the given
parallel-serial construct into sequential processes.

The simplest way of partitioning is to break the system de-
scription down into individual processes: The description in
Fig. 1 may be decomposed into four processesA, B, C, andD,
each of which will be synthesized separately. Although this
strategy may work if each process is large enough, module in-
stantiation for large number of small processes would result
in an inefficient implementation with lots of idle hardware re-
sources. Instead, the parallel-serial construct can be partitioned
into threads, which are strings of sequential processes. For ex-
ample, the model in Fig. 1 can be decomposed into two threads
as shown in Fig. 2, based on the property that only processesB
andC are subject to parallel execution.#sync is a meta state-
ment (inserted only for synthesis and is not open to users) for
synchronization. It works in the same way assend/receive
statement except that no data are passed.

There are many ways of thread partitioning by which the
configurations of the resulting circuits differ largely. This pa-
per focuses on how we can make the best selection.

A x = a * b
 y = x + c;

B

p = x + y;
q = p - d;
r = receive(c1);
s = q + r;

C
u = x * y;
send(c1,u);
v = u - y;

Dz = s + v;
k = k + 1;

#sync(s1);

#sync(s2);

#sync(s1);

#sync(s2);

Thread 1 Thread 2

(a)

A x = a * b
 y = x + c;

B

p = x + y;
q = p - d;
r = receive(c1);
s = q + r;

C
u = x * y;
send(c1,u);
v = u - y;

Dz = s + v;
k = k + 1;

#sync(s1);

#sync(s2);

#sync(s1);

#sync(s2);

Thread 1 Thread 2

(b)

Figure 2: Thread partitioning.

III. T HREAD PARTITIONING PROBLEM

A. Thread Partitioning Based on Resource Sharing

Let us examine the example in Fig. 2. Partitioning of (a) is
obtained by a naive method, which was employed in the ini-
tial version of the Bach compiler. First, processA is put into
Thread 1. Then the parallel processesB andC are accommo-
dated into Threads 1 and 2, according to the order they appear
in the source description. Finally,D is placed into Thread 1.

Obviously, this partitioning is not preferable in terms of the
hardware cost. ProcessesA andC have multiplications. In par-
titioning (a), we need two multipliers, each of which is used
only once. On the other hand, (b) needs only one multiplier.
In this way, thread partitioning should be done taking the hard-
ware resource sharing into account.

Another factor to be considered is the complexity or the size
of each thread. Although this is highly dependent on the syn-
thesizer, behavioral synthesis of large models often leads to
enormous computation cost and sometimes it fails because of
exhaustion of the computation resources. (We are actually suf-
fering from this problem.) If not so serious, large models will
debase the quality of optimization. Swollen control logic is
another well-known problem. Thus, we must keep the size
of each thread moderate, while attempting to group processes
with the same operations as much as possible.

B. Problem Formulation

Our goal here is to find a partitioning of a given description
into threads so that the total cost of hardware resources is min-
imized and each thread satisfies the complexity constraints.

Here, the number of threads is another subject to be dis-
cussed. We may face a choice between 1) the best solution
in terms of the hardware cost and 2) the second best solution
with smaller number of threads. However, the cost of hardware
associated with thread is considerably large as compared with
that of the functional units, we may assume that the feasible
solution with the minimum number of threads gives practically
the best partitioning. Thus, we will only search for the parti-
tioning with the minimum number of threads that satisfies the
complexity constraints.

Suppose a given Bach-C description consists ofN processes
P = fp0; p1; : : : ; pN�1g. The serial-parallel configuration of
the description is expressed by a directed graphGs = (V;E),
which is called asequence graph. For example, Fig. 3 shows
the sequence graph of the description in Fig. 1. Nodevi 2 V
corresponds to a processpi. Direct edgeei j = (pi; p j) 2 E rep-
resents the sequential relation wherep j is executed afterpi. If
there is an edge between two nodes, we can put the two pro-
cesses corresponding to the nodes into the same thread, for it
is guaranteed that they will never be executed in parallel.

Let D = fd0;d1; : : : ;dZ�1g be a set of hardware resource
types appearing in the synthesized circuits. For example,
assuming all the variables in Fig. 1 are 16 bit long, the
minimum setD for implementing this description isD =

fadder(16);multiplier(16)g. Note that functional units of dif-
ferent precisions are considered to be of different types and
thus adder(8) and adder(16) are distinguished, for example.
The use of multi-function hardware resources is not consid-
ered and we only deal with single-function hardware resources

A

B

D

C

Figure 3: Sequential graph.

in this paper. We assume that the implementation cost, denoted
as cost(di), is defined for eachdi. Such metrics as the gate
count ofdi or the chip area ofdi, available in module libraries,
works ascost(di).

For each processpi, we assume that its hardware cost in-
formation n(pi;d) and its complexitycomp(pi) are defined.
n(pi;d) represents the number of the hardware resources of
typed required to synthesize processpi. We assume the value
of n(pi;d) is precomputed by synthesizing eachpi separately.
As for the complexity of the process, we definecomp(pi) to be
the number of operations inpi.

Thread partitioningT = ft0; t1; � � � ; tH�1g is a partition ofP
where no processes in the same partition are executed in paral-
lel.

�
[

tk2T

tk = P andtk1 \ tk2 = φ if k1 6= k2.

� 8pi; p j 2 tk : ei j 2 E _ e ji 2 E.

Let cost(tk) andcomp(tk) be expected cost of the hardware
resources in the circuit synthesized fromtk and expected com-
plexity of tk, respectively. We computecost(tk) by

cost(tk) = ∑
d2D

cost(d)�max
p2tk

(n(p;d)):

Although the exact number of hardware resourced in the cir-
cuit for tk is highly dependent on the synthesizer and there is no
guarantee that it coincides with maxp2tk(n(p;d)), we believe
this still gives a good estimation.comp(tk) is also dependent
on the synthesizer, but we use

comp(tk) = ∑
p2tk

comp(p)

as an estimation.
With the definition stated so far, our thread partitioning

problem is defined as to find partitioningT with minimum H
which satisfies

8tk 2 T : comp(tk)� compmax

and yet minimizing

cost(T) = ∑
tk2T

cost(tk)

wherecompmax is the upper limit of the complexity allowed
for each thread.

IV. SOLVING THE THREAD PARTITIONING PROBLEM BY

INTEGERLINEAR PROGRAMMING

It is proved that the thread partitioning problem here is NP-
hard (NP-complete): It is restricted to the bin packing prob-
lem [5] by setting jDj = jPj+ 1, n(pi;di) = comp(pi) for
i = 0; � � � ;N � 1 andn(pi;dN) = 1 and letting no pair of pro-
cesses be executed in parallel.

Fortunately, the size of the problem to be solved is not very
large. In our experience so far,N (the number of processes) is
not more than 20.

Exhaustive search works forN � 10, but not for larger in-
stances. On the other hand, we do not need to resort to an elab-
orate branch-and-bound search nor heuristics approximations.
Furthermore, in order to leave flexibility for other factors, we
decided to solve it by integer linear programming (ILP).

The base 0-1 variable to be solved isxi;k (0� i �N�1;0�
k �H�1)which becomes 1 iff processpi is assigned to thread
tk. Auxiliary integer variableyl;k (0� l � Z�1;0� k�H�1)
represents the number of hardware resources of typedl used in
threadtk.

The objective function to be minimized is the total cost of
the hardware resources summed over all the threads.

Minimize :
Z�1

∑
l=0

H�1

∑
k=0

cost(dl)� yl;k

There are four constraints for this problem.

1. Partition constraint:

Each process must belong to one and only one thread.

8i(0� i � N�1) :
H�1

∑
k=0

xi;k = 1

2. Sequential constraint:

Only those processes in the sequential relation can be ac-
commodated in the same thread.

8i; j;k(0� i; j � N�1;0� k � H �1;
i 6= j;ei j =2 E ^ e ji =2 E) :

xi;k + x j;k � 1

3. Cost constraint:

This constraint computes the maximum of the number of
hardware resources of typedl in each threadtk.

8i; j;k(0� i � N�1;0� k � H �1;
0� l � Z�1) :

n(pi;dl)� xi;k � yl;k

4. Complexity constraint:

The complexity of each thread must not exceed the pre-
determined limitcompmax.

8k(0� j � H �1) :

∑
i=0;���;N�1

Comp(pi)� xi;k � compmax

{
 A();
 par {
 B();
 C();
 }
 par {
 D();
 E();
 }
 par {
 F();
 G();
 }
 H();
}

(a) Parallel-serial structure.

add inc dec mult
10 19 20 13 10 11 20 10

A
B 80
C 2 2
D 1 1 4
E 4 1 2
F 2 2
G 1 1 20 6
H 2

(b) Hardware cost information.

Figure 4: Features of SFIL.

Note that we assume the number of threadsH is fixed in this
formulation. Since our goal is the solution with the minimum
H, we start from the lower limit ofH and increase it one by one
until we find the minimum feasible solution. The lower limit
of H is equal to the maximum width of the sequence graph and
is easily computed.

V. EXPERIMENTAL RESULTS

We implemented the thread partitioner based on the method
stated so far and conducted some experiments. Obtained
VHDL models by the partitioning were passed to behavioral
synthesizer (Synopsys Behavioral Compiler) and then to logic
synthesizer to attain gate level circuits.

Fig. 4 and 5 show the properties of the two system descrip-
tions we tested. SFIL is a circuit for communication mainly
consisting of digital filters. DINT too is a circuit for commu-
nication dedicated to interleaving of the data. Fig. 4 (a) and
Fig. 5 (a) shows the parallel-serial structures of the descrip-
tions. Fig. 4 (b) and Fig. 5 (b) summarize the numbers of the
hardware resources required to synthesize each process. For
example, in Fig. 4 (b), processE needs four 10-bit adders, one
13-bit incrementor, and twenty 20-bit subtractors if it is syn-
thesized separately.

Using ILP package XPRESS-MP, it took 0.9 sec. and 0.4
sec. on SUN SparcStation10 for computing the minimum so-
lution of SFIL and DINT, respectively. The numbers of the
variables and inequalities are 34 (vars.) and 53 (inequals.) for

{
 par {
 A();
 B();
 }
 par {
 C();
 D();
 }
 par {
 E();
 F();
 }
 G();
}

(a) Parallel-serial structure.

add dec mult
4 9 14 24 14 14 24

A 3 2 4 1
B 1 1
C 2 1 1 1
D 1 1
E 1
F 1
G 2

(b) Hardware cost information.

Figure 5: Features of DINT.

SFIL, and 28 (vars.) and 41 (inequals.) for DINT.
Since the number of the processes in the examples were

small, we synthesized gate level circuits for all the possible
combination of thread partitioning and evaluate the effective-
ness of our method. Table 1 and 2 summarizes the result. The
column “thread partitioning” lists all the possible combinations
of processes for partitioning to two threads. In both exam-
ples, none of the thread violated the complexity constraint of
compmax = 200. The partition “c1” is obtained by the naive
method in the initial version of Bach compiler. Underlined par-
titioning c3 of SFIL and c4 of DINT are the optimum solutions
obtained by ILP. The second column shows the value of objec-
tive functioncost(T). “Gate count” is the size of the resulting
circuits, which is further categorized for closer analysis: [Op]
functional units, [Mux] multiplexers, [Reg] registers, [FSM]
finite control logic, and others. The percentage and standard
deviation of each part is shown in the bottom two rows. The
last column “ratio” shows the percentage of the total gate count
against the original partitioning c1.

Comparing c3 of SFIL and c4 of DINT with c1, we see the
circuit sizes are reduced by 3.8% in SFIL and 14.7% in DINT
as compared with the naive partitioning. The reduction rate
against the average are 2.5% and 7.3%, respectively. We can
conclude that improved partitioning has its effect on hardware
cost reduction.

We can observe that the values of the objective function do
not exactly match the gate counts of the functional units but
they have good correlation. So the objective function works
as a good estimation of the final circuit size. We can also see
that the functional units occupy about one third of the total

gate count. Although registers and multiplexers have compat-
ible or larger costs, the standard deviation of the gate count of
the functional units is still larger than those of the other parts.
These explains the reasons why the thread partitioning based
on the estimated resource sharing worked well.

VI. CONCLUSION

We have presented a method of optimal thread partitioning
method focusing on resource sharing among processes.

The detailed examination of the experimental result suggests
that there is a possibility that deviation of the hardware cost
of registers and multiplexers may have as much impact than
that of functional units depending on systems. Researches will
continue on the investigation of larger examples and develop-
ment of efficient ways of incorporating the costs of registers
and multiplexers as well as functional units.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Isao Shirakawa of Os-
aka University for his support and valuable comments on this
research. We would also like to thank Dr. Takao Onoye, Mr.
Gen Fujita, and Mr. Tatsuo Watanabe for their discussion and
comments.

REFERENCES

[1] D. Gajski, A. Wu, N. Dutt and S. Lin, “High-level
Synthesis: introduction to Chip and System Design: ”
Kluwer Academic Publishers, 1992.

[2] “Behavioral Compiler User Guide” version 1997.01,
Synopsys, 1997.

[3] R. Sakurai, M. Takahashi, A. Kay, A. Yamada, T. Fu-
jimoto and T. Kambe: “A Scheduling Method for Syn-
chronous Communication in the Bach Hardware Com-
piler,” ASP-DAC ’99, 1999.

[4] C. A. R. Hoare: “Communicating Sequential Processes,”
Prentice-Hall, London, 1985.

[5] M. R. Garey, D. S. Johnson: Computers and
Intractability—A guide to the Theory of NP-
Completeness—, W. H. Freeman and Company,
New York (ISBN0-7167-1045-5).

Table 1: Experimental result on SFIL.

Thread partitioning Obj. func. Gate count
cost(T) OP Mux Reg FSM other total ratio

c1: fA,B,D,F,Hg,fC,E,Gg 14076 16795.7 7651.3 17519.3 690.0 2705.745362.0 100.0%
c2: fA,B,D,Fg,fC,E,G,Hg 14076 16817.3 7720.0 17714.3 735.3 2709.745696.7 100.7%
c3: fA,B,D,G,Hg,fC,E,Fg 11040 14246.3 8159.0 17742.0 766.0 2708.343621.7 96.2%
c4: fA,B,D,Gg,fC,E,F,Hg 11040 14246.3 8159.0 17742.0 766.0 2708.343621.7 96.2%
c5: fA,B,E,F,Hg,fC,D,Gg 11040 13855.7 8619.3 17502.0 690.7 2706.743374.3 95.6%
c6: fA,B,E,Fg,fC,D,G,Hg 11040 13853.0 8620.3 17572.0 728.3 2706.743480.3 95.9%
c7: fA,B,E,G,Hg,fC,D,Fg 13872 21661.7 7892.0 17540.0 695.3 2709.750498.7 111.3%
c8: fA,B,E,Gg,fC,D,F,Hg 13872 16475.0 7908.7 17545.3 714.0 2705.745348.7 100.0%
c9: fA,C,D,F,Hg,fB,E,Gg 13872 16503.0 7818.3 17548.0 725.7 2706.345301.3 99.9%

c10:fA,C,D,Fg,fB,E,G,Hg 13872 16446.3 7992.0 17681.0 716.3 2706.345542.0 100.4%
c11:fA,C,D,G,Hg,fB,E,Fg 11040 13908.3 8575.7 17693.0 725.3 2706.743609.0 96.1%
c12:fA,C,D,Gg,fB,E,F,Hg 11040 13908.3 8575.7 17693.0 725.3 2706.743609.0 96.1%
c13:fA,C,E,F,Hg,fB,D,Gg 11040 14153.7 8029.7 17541.7 745.7 2709.043179.7 95.2%
c14:fA,C,E,Fg,fB,D,G,Hg 11040 14239.7 7908.7 17443.3 736.0 2708.043035.7 94.9%
c15:fA,C,E,G,Hg,fB,D,Fg 14076 16810.0 7511.7 17651.3 720.7 2707.045409.7 100.1%
c16:fA,C,E,Gg,fB,D,F,Hg 14076 16830.3 7566.7 17632.7 719.3 2708.045457.0 100.2%

ratio of average 35.0% 18.0% 39.3% 1.6% 6.0% 100%
standard deviation 2070.3 377.6 94.3 22.4 1.3 1836.7

Table 2: Experimental result on DINT.

Thread partitioning Obj. func. Gate count
cost(T) OP Mux Reg FSM other total ratio

c1: fA,C,E,Gg,fB,D,Fg 2944 2824.0 1815.0 3239.7 311.7 118.7 8309.0 100.0%
c2: fA,C,Eg,fB,D,F,Gg 2908 2299.3 1601.3 3219.3 299.0 128.7 7547.7 90.8%
c3: fA,C,F,Gg,fB,D,Eg 2235 1818.0 1620.7 3167.7 308.7 145.0 7054.0 84.9%
c4: fA,C,Fg.fB,D,E,Gg 2199 1829.0 1573.0 3238.7 303.0 145.7 7089.3 85.3%
c5: fA,D,E,Gg,fB,C,Fg 2331 2157.7 1616.7 3544.7 301.3 95.7 7716.0 92.9%
c6: fA,D,Eg,fB,C,F,Gg 2331 1861.7 1617.0 3551.3 300.0 80.7 7410.7 89.2%
c7: fA,D,F,Gg,fB,C,Eg 3040 2195.7 1625.7 3551.3 300.0 103.3 7700.0 92.7%
c8: fA,D,Fg,fB,C,E,Gg 3040 2395.3 1637.7 3576.3 299.7 99.3 8008.3 96.4%

ratio of average 28.6% 21.5% 44.4% 4.0% 1.5% 100.0%
standard deviation 345.5 73.9 175.1 4.7 23.8 429.3

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

