
An Efficient Framework of Using Various Decomposition Methods to Synthesize LUT
Networks and Its Evaluation

Shigeru Yamashita Hiroshi Sawada Akira Nagoya

NTT Communication Science Laboratories
2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan

Tel: +81-774-93-f5275, 5273, 5270g
Fax: +81-774-93-5285

e-mail: fger, sawada, nagoyag@cslab.kecl.ntt.co.jp

Abstract— We present an efficient framework for synthesizing
look-up table (LUT) networks.

Some of the existing LUT network synthesis methods are based
on functional (boolean) decompositions. Our method also uses func-
tional decompositions, but we try to use various decomposition
methods, which includealgebraic decompositions. Therefore, this
method can be thought of as a general framework for synthesiz-
ing LUT networks by integrating various decomposition methods.
We use acost database filewhich is a unique characteristic in our
method.

We also present comparisons between our method and some
well-known LUT network synthesis methods, and evaluate the
final results after placement and routing. Although our method
is rather heuristic in nature, the experimental results are encour-
aging.

I. INTRODUCTION

When implementing a combinational logic function using
a given technology, the desired function must be decomposed
or factorized to smaller functions so that the decomposed
functions can fit onto the implementation primitives of the
technology. Accordingly, many decomposition methods have
been proposed. Most of these methods are based on transform-
ing the algebraicexpressionsof switching formulas, which we
call themalgebraicdecomposition methods. For example, ker-
nel extraction [1] is an example of one superior method. Such
decomposition methods appear to be reasonable in conjunction
with the technology mapping phase for standard technology
libraries.

To realize combinational logic functions using a lookup table
(LUT) based field programmable gate array (FPGA), we must
generate an LUT network where each LUT is a special node
that can realize any function withK (typically 4 or 5) inputs.
Most LUT network synthesis methods can be divided into the
following two categories.

The methods in the first category are extended methods for
the standard technology libraries:

� First, a logic optimizer performs decomposition and
technology-independent optimization. In this phase, al-
gebraic decomposition methods are usually used, and the
number of literals is used for the cost considering the
standard technology libraries.

� Next, a technology mapper covers nodes toK-input
nodes.

In this category, there are state-of-the-art methods such as
Chortle-d [2], MIS-pga-delay [3]1 and FlowMap [4]. For
the covering phase, optimal algorithms have been developed
under specified conditions [2, 4]. However, the intermediate
networks before the covering phase often affect the final results;
in such cases, the final results are sometimes not so good.

The methods in the second category consist of only one
phase: they directly transform primary outputfunctions (not
expressions) in terms of primary inputs represented by an
ordered binary decision diagram (OBDD) [5, 6]. (Below,
we call transformations of functionsfunctional decomposition
methods.) Therefore, the final results are not affected by
intermediate results, and are usually better than the results of
the methods in the first category.

The decomposition form of the functional decomposition
methods used in the methods in the second category is limited
to a specified form based on Disjoint Decomposition [7]. In
some cases, another type of functional decomposition called
Non-Disjoint Bi-Decomposition may be more appropriate [8].
However, there is no method that positively tries to utilize vari-
ous functional decomposition methods including Non-Disjoint
Bi-Decomposition in synthesizing LUT networks.

Considering the above discussion, we propose a method
with the following properties:

� Various decomposition methods, not onlyalgebraicbut
alsofunctionaldecomposition methods, can be integrated.

� It consists of only a decomposition phase. That is, we
do not need to consider the covering effect after the
decomposition phase.

� To select the “best probable” decomposition at an interme-
diate decomposition, a “cost database file” is introduced.

Various decomposition methods, such as Disjoint Decomposi-
tion [7], Non-Disjoint Bi-Decomposition [8], Weak Division
by Kernels, and Davio Expansion can be integrated into our
method. Our method can be thought of as an extension of the
methods in the second category and a general framework for

1MIS-pga partially uses a functional decomposition method.



synthesizing LUT networks by integrating various decompo-
sition methods. Although it is rather heuristic in nature, the
experimental results are very encouraging.

This paper is organized as follows. In Section II, we
briefly explain decomposition methods which are used in our
method. In Section III, we propose a method of using various
decomposition methods to synthesize LUT networks. We
present experimental results in Section V. We mention the
features of our method in Section VI. Section VII concludes
this paper.

II. PRELIMINARY

We treat a network as a directed acyclic graph (DAG) where
each node has a specified internal function with respect to its
fanins. If the number of fanins of a node is not more thanK,
we call the nodeK-feasible.

Our problem is to generate the lowest cost network where
all nodes areK-feasible.

The cost of a decomposed network is defined as follows:
(the number of nodes in the network) + (W� the levels of the
network), whereW is the user defined weight.

We consider various decomposition methods to be incorpo-
rated into our method. Here we summarize some of them as
follows.

Disjoint Decomposition

The disjoint decomposition is the form: f =

�(g1(X
B); : : : ; gt(X

B); XF ) = �(~g(XB); XF ), whereXB

andXF are disjoint variable sets [7]. This decomposition
can be found by using the OBDD representing the function
of a node to be decomposed [6, 9]. In the previous LUT
network synthesis method,jXB

j is limited toK so that each
g(XB) can be mapped into a single LUT. In our method, we
prepare this kind of method withjXB

j as 3 up toK because
we also consider the covering effect at the same time when
decomposing a node, which will be discussed later.

Non-Disjoint Bi-Decomposition

The decomposition form:f = �(g1(X
1); g2(X

2)), whereX1

andX2 are not limited to disjoint variable sets, can be ef-
fectively found by the method proposed in [8]. For some
functions, this decomposition form is better than Disjoint De-
composition [8]. The method can treat an incompletely spec-
ified function forf , and representsg1 andg2 as incompletely
specified functions, which is an advantage of this method.
However, if we want to use this decomposition together with
Disjoint Decomposition, we need to consider covering nodes
at the same time as will be mentioned in Section III because
this decomposition produces a two-input node as a root node
for a decomposition, which is very different from the case of
Disjoint Decomposition. This is one of our motivations to
propose the framework in this paper.

Weak Division by Kernels

This is a decomposition method using sum-of-products ex-
pressions [1]. The computation time is usually smaller than
functional decomposition methods since it is based on the
algebraic division of expressions.

Davio Expansion

The Davio Expansion has the following three forms:

� f = f0 � xi � f2,

� f = f1 � xi � f2 and

� f = xi � f0 � xi � f1,

wheref0 = fxi , f1 = fxi andf2 = f0 � f1. This decomposi-
tion is important because any function can be decomposed by
using these expansions.

III. OUR LUT NETWORK SYNTHESISMETHOD

A. Concept of Our Method

Our strategy is based on the following concept. Suppose
we have various decomposition methods. We can find the best
decomposed network from the search space by considering all
of the possible combinations of the decomposition methods
and the covering effect. However, performing an exhaustive
search for all of the possible combinations is not practical.
Therefore, we instead select a “best probable” decomposition
at an intermediate decomposition.

If we must think of the covering effect after the decomposi-
tion phase, it becomes difficult to determine a “best probable”
decomposition at each intermediate decomposition, because
the decomposition forms are likely to be different between
some of the decomposition methods. Thus, it is difficult to
predict the covering effect when the decomposition is being
done.

With this in mind, we evaluate the “cost” of a decomposition
form with the following strategy.

� We evaluate the cost of a decomposition including the
covering effect at the same time.

� We predict the cost of nodes whose supports are more than
K by using a “cost database file,” which describes de-
composition costs of functions from previously designed
results.

As a result, we can utilize various decomposition methods in
our method.

B. Outline of Our Method

The overall procedure of generating a network whose nodes
are allK-feasible is as follows.

Step 1: Construct an initial network that has only primary
output nodes whose internal logics correspond to the
primary output functions (in terms of primary inputs) of
the given specification.



Step 2: As long as there remains a node that is notK-feasible,
we decompose the node by using a selected decomposition
method. How to select a “best probable” decomposition
is mentioned in Section III-C.

For a node to be decomposed, we prepare both sum-of-products
expressions and functions by OBDDs for the internal logic in
order to utilize both algebraic and functional decomposition
methods.

C. How to Select a “Best Probable” Decomposition

We characterize a decomposition form of the various de-
composition methods used in our method as follows: a decom-
position form of a noden is characterized as a noden0, which
is a replacement ofn, and newly introduced nodesn1; � � �np,
which are fanins ofn0. We can treat most decomposition
methods in this form. Fig.1(b) shows an example of this for
Bi-Decomposition based methods. We call the set of nodes
introduced at the decomposition “DecompArea” (the dotted
rectangle in Fig.1(b)).

In our decomposition form, we do not share common func-
tions between some functions. This is because we bravely
omit sharing functions in order to uniformly treat various de-
composition methods. However, this can be considered as an
extension of our method and will be mentioned in Section IV-A.

We select a “best probable” decomposition form of a node
at Step 2 in our method by evaluating the “cost” of the
decomposition. Since we want to treat various decomposition
methods, we consider the case where the number of fanins of
a node in the DecompArea is less thanK. For example, the
number of fanins ofn0 is two when a decomposition method
based on Bi-Decomposition is used. Such a node may be
merged into a node not in the DecompArea. Since our strategy
does not perform the covering phase after the decomposition
phase, we try to merge such a node, which is at the boundary of
the DecompArea, into a node not in the DecompArea to form
a newly merged node if the merged node is stillK-feasible
as shown in Fig.1(c). In this example,n0 and n2 can be
merged into other nodes, so we do not consider them in the
decomposition cost. Accordingly, the cost evaluation after
the merging of the nodes simultaneously includes the covering
effect.

For the DecompArea after the merging (the dotted rectangle
in Fig.1(c)), our cost is defined as:
cost of a decomposition =

f

X
ni2DecompArea

CostLUT (ni)g+

W � f max
ni2DecompArea

LEV (ni)g;

whereW is the user defined weight.LEV (ni) is recursively
defined as follows, and it becomes 0 for a primary input node.

LEV (ni) = f max
nj is a fanin of ni

LEV (nj)g+CostLEV (ni):

CostLUT (ni) andCostLEV (ni) denote the predicted num-
bers of K-LUTs and the levels for implementing the in-
ternal function ofni, respectively. They become 1 for a

(a) (b) After decomposition (c) After merging nodes 

n n'

n1 n2

n'

n1

n2

DecompArea 

Merged nodes

Fig. 1. Decomposition form of a node.

K-feasible node. However, we cannot know the precise values
of CostLUT (ni) andCostLEV (ni) if ni is notK-feasible.
Therefore, we determine their values by looking up a cost
database file as mentioned in Section III-D.

D. Decomposition Cost

In our cost strategy, at first we prepare a cost database
file which stores the statistical relationships between some
parameters characterizing the output function (in terms of
the primary inputs) of a nodeni, and CostLUT (ni) and
CostLEV (ni). In the present implementation, we use the
number of supports of the function, and the number of cubes
and literals in an expression for the function.

We generated a cost database file as shown here, but clearly
this is not the only method.

� We make a first cost database file in whichCostLUT (ni)

andCostLEV (ni) take the same value as follows.
�

1, if ni isK-feasible
(the number of fanins of ni)�K + 1; otherwise

This value is taken from [5]. We do not consider the
number of cubes and literals in this first cost database file.

� Using the first cost database file, we generate various
networks by our method. We then make a second cost
database file in which each entry describes a statistical
relationship between the above three parameters for the
output function of each node in the decomposed networks,
and the number of transitive fanins of the node and
levels of the node, which correspond toCostLUT and
CostLEV , respectively.

TABLE I
A COSTDATABASE FILE

supports cubes literals CostLUT CostLev

� � � � � � � � � � � � � � �

7 24 113 7 3
� � � � � � � � � � � � � � �

For example, if we need 7 LUTs and 3 levels to implement
a function whose supports, and cubes and literals are 7, 24
and 113, respectively, by using the first cost database file (it
actually happened in our experiments), we get an entry in the
second cost database file as shown in Table I. We think the
second cost database file is more accurate than the first cost



database file because the latter predicts that bothCostLUT

andCostLEV for the function are 3 (K = 5), which is quite
different form the actual results. The second cost database file
can be thought of as a feedback from the previously designed
results. Actually, we usually obtain better results with the
second cost database file than we do by using the first cost
database file.

With the cost database file, we calculateCostLUT (ni) and
CostLEV (ni) as follows.

� Calculate three parameters from the internal function of
ni.

� Find the values ofCostLUT (ni) andCostLEV (ni) in
the entry that produces the best fit for the three parameters
in the cost database file.

In most of the previous logic synthesis methods, the cost of a
function is usually measured only by the number of supports of
the function or literals in the logic expression of the function.
We can use the both parameters in our method.

We can generate the third cost database file from the second
cost database file in the same way. With the third cost database
file, we sometimes obtain better results than we do by using
the second cost database file.

IV. A N EXTENSION OFOUR METHOD

A. Sharing Sub Functions

As previously mentioned, our strategy takes little account of
the sharing of common functions, which sometimes dramat-
ically reduces the network cost. Therefore, we plan to add
the following operation to the decomposition methods that are
also used as decomposition methods at Step 2: When a node
ni is decomposed, we check whether an existing nodenj can
be used for the node. This can be accomplished by dividing
the expression ofni by the expression ofnj , which is called
algebraic resubstitution. This can also be done by utilizing the
boolean resubstitution and the support minimization technique
proposed in [6]. Note that we can adopt the above operation
as a decomposition method in our framework if we do not
considernj in the decomposition cost.

In our framework, we can also prepare another operation
to share common functions: after all decompositions, the
minimization method proposed in [11] is performed to replace
the output of a node with that of another node.

B. Speeding Up the Framework

We believe that some decomposition methods had better be
applied first if possible. For example, a simple disjunctive
decomposition usually provides good decomposition forms
that can be found relatively fast [10]. Such decomposition
methods should be applied before the decomposition of a node
at Step 2. We expect that this process will sometimes reduce
the total computation time.

Another technique of speeding up the framework is to
independently checking each decomposition method at Step 2.

Indeed, we can perform decomposition methods in parallel on
different processors, and this reduces the computation time.
The idea is as follows. If a decomposition method takes a much
longer time to decompose some functions (or expressions)
than other decomposition methods, the decomposition result is
usually worse. Therefore, we abandon some of decomposition
methods that take too much time in a parallel implementation
without sacrificing the quality of our results. This dramatically
reduces the computation time. As processors are getting
cheaper and cheaper, an implementation in parallel becomes
more attractive for our method.

V. EXPERIMENTAL RESULTS

A. Evaluation of Various Implementations

We can get various results from various implementations of
our method; for example, the implementation varies depending
on the types of decomposition methods that are integrated and
the cost database file that is used. All of our results shown in
this section were produced by an implementation using Davio
Expansion with each variable, Disjoint Decomposition with
jX

B
j as 3, 4 and 5, and Non-Disjoint Bi-Decomposition.

In our cost strategy, we originally expect the followings
features:

� The results obtained with the (n+ 1)-th cost database file
are usually better than those with then-th cost database
file.

� We can control the trade-off between network levels and
the number of nodes by using the user defined weightW .

We performed experiments with the first, second and third
cost database files andW = 0:5, 1 and 2:0. From a comparison
of the results, we could not find the above features but instead
the following features:

� The results with the second cost database file andW = 1
are usually the best. This means that we cannot expect
the third cost database file to always be better than the
second cost database file.

� If W is larger, the levels usually becomes smaller. How-
ever, changingW seemed to have no effect on the number
of nodes.

From the above, we do not consider our current cost database
files to be robust. However, the differences between the various
cost database files andW were not so large, and all results were
thought to be good enough, as we will see in the following
sub-sections.

B. Comparison Before Placement and Routing

Table II compares the mapping results for 5-LUT networks
between our method and several of the well-known level-
optimized LUT network synthesis methods. Our results were
obtained with the second cost database file andW = 1.

The sub-columns “]lut” and “]lvl” show the numbers of
5-LUTs and network levels, respectively. The sub-column



TABLE II
COMPARISON OFMAPPINGRESULTS FOR5-LUT NETWORKS

circuit ALTO[12] mispga-d chortle-d FlowMap-r BoolMap-D[5] Ours
name ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl ]lut ]lvl CPU
5xp1 19 2 21 2 26 3 23 3 13 2 11 2 0.33
9sym 7 3 7 3 63 5 61 5 7 3 5 4 0.55
alu2 61 6 122 6 227 9 148 8 43 4 33 4 5.44
alu4 259 8 155 11 500 10 245 10 268 7 85 7 77.33
apex4 - - - - 1112 6 - - - - 302 4 32.67
apex6 229 4 274 5 308 4 232 4 189 4 161 4 691.89
apex7 77 4 95 4 108 4 80 4 78 3 61 4 204.98
clip 33 3 54 4 - - - - - - 11 3 2.39
count 47 3 81 4 91 4 73 4 42 2 30 4 732.5
duke2 156 4 164 6 241 4 187 4 193 5 150 4 162.75
f51m 15 3 23 4 - - - - - - 10 3 0.34
misex1 14 2 17 2 19 2 15 2 15 2 10 2 0.22
misex3 251 6 - - - - - - - - 166 6 196.64
rd73 8 2 8 2 - - - - - - 6 2 0.21
rd84 13 3 13 3 61 4 43 4 10 2 7 3 0.54
sao2 38 3 45 5 - - - - - - 21 3 3.56
vg2 26 3 39 4 55 4 38 4 30 4 21 4 120.16
z4ml 5 2 10 2 25 3 13 3 5 2 5 2 0.13
ALTO 1258 61 793 61
mispga-d 1128 67 627 55
chortle-d 2836 62 881 48
FlowMap-r 1158 55 579 44
BoolMap-D 893 40 579 44

“CPU” indicates the CPU run-time (sec.) on a Sun Ultra 2
2200. To compare our results with other results, we show the
total numbers for the same circuits in the lower part of the table.
The shaded numbers indicate the best results. Our framework
appears relatively good in the comparison. We think one reason
is that Non-Disjoint Bi-Decomposition sometimes provides
good decompositions. Our method sometimes needed a long
computation time, which we do not think is a very serious
problem, as mentioned in Section IV-B.

C. Comparison After Placement and Routing

We have incorporated the proposed method into
PARTHENON [13], which consists of a simulator and syn-
thesizers for a hardware description language SFL (Structured
Function description Language).

To evaluate the integrated system, we compared the follow-
ing two logic synthesis flows.

Using the mapping method in Max+plus II

Step 1 Convert the file format and perform the logic syn-
thesis at the technology independent level (including
logic reduction) by PARTHENON, and output the
result to MAX+plus II, which is the development
system for Altera devices.

Step 2 Perform the technology mapping for the Altera
FLEX8000 series [14] by MAX+plus II.

Step 3 Perform placement and routing by MAX+plus II.

Using our mapping method

Step 1 Convert the file format by PARTHENON.

Step 2 Our method is called from PARTHENON sys-
tem to perform the technology mapping for 4-LUT
networks2. Then PARTHENON outputs the result
with the mapping information3 to MAX+plus II.

Step 3 Perform placement and routing by MAX+plus II.

The two flows are different depending on the method used to
generate LUT networks, our proposed method or MAX+plus II.

Table III shows the results after placement and routing.
“]LE” and “Delay” show the numbers of logic elements and
the delay values (ns) for the longest paths in the final results,
respectively. From the table, we can see that our method
also has a good effect on the final results after placement and
routing.

VI. FEATURES OFOUR METHOD

The proposed method has the following features.

� Various decomposition methods can easily be integrated
into our method. If a new decomposition algorithm has
been developed, we can easily check its effectiveness in
our framework.

� We can get various results from various implementations
of our method. Therefore, we are able to obtain various

2A logic element of FLEX8000 has one 4-input, 1-output LUT.
3An LCELL primitive in MAX+plus II can be used to attach the mapping

information.



TABLE III
COMPARISON OFFINAL RESULTS FORALTERA FLEX8000

Base tool PARTHENON
(synthesis & converter)

Mapping MAX+plus II Ours
Place & Route MAX+plus II
circuit name ]LE Delay ]LE Delay
5xp1 46 27.2 15 17.5
9sym 35 44.4 8 18.6
alu2 135 40.2 97 32.7
alu4 715 87.4 420 75.2
apex4 1447 70.6 691 46.4
apex6 230 38.6 258 47.6
apex7 113 43.0 140 27.7
clip 33 29.3 20 24.4
count 41 31.2 36 32.9
duke2 322 70.7 261 61.1
f51m 42 26.7 13 20.0
misex1 23 27.1 14 16.3
misex3 604 76.7 313 67.5
rd73 29 32.8 7 18.6
rd84 37 34.5 14 26.7
sao2 80 35.5 37 19.6
vg2 71 33.3 55 36.1
z4ml 10 17.4 6 16.0
Total 3922 773.9 2405 604.9

decomposed networks for a given specification, and can
explore a large design space.

There are some interesting features in our cost strategy. It is
natural for a “bad” entry (which we think has a bad effect on
our cost strategy) to be generated in our cost database file from
a “bad” node for which abnormal (unexpected) number(s)
of nodes or (and) levels were used in previously designed
networks. In our experiment, we ignored a “bad” entry in the
cost database file. However, it was interesting that when we
resynthesized a “bad” node, the numbers of nodes and levels
for the node were reduced at times to normal values in our cost
database file. We think this feedback to the resynthesis is one
of the advantages of our framework. In other words, the cost
of the network was sometimes reduced by resynthesizing the
output of “bad” nodes.

VII. CONCLUSION

We have proposed an efficient method for synthesizing LUT
networks. In our method, we successfully integrated many
decomposition methods that are not only algebraic but also
functional. Our method can be thought of as a general frame-
work for synthesizing LUT networks by integrating various
decomposition methods.

Currently, our framework cannot treat large networks be-
cause some of functional decomposition methods cannot treat
large functions. In the future, therefore, we would like to
improve the framework by incorporating it with appropri-
ate network partitioning methods, and to extend it using the
techniques presented in this paper.

REFERENCES

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, “MIS: a multiple-level logic optimization
system,”IEEE Trans. CAD, vol. CAD-6, pp. 1062–1081,
Nov. 1987.

[2] R. J. Francis, J. Rose, and Z. Vranesic, “Technology
mapping of lookup table-based FPGAs for performance,”
in Proc. ICCAD, pp. 568–571, Nov. 1991.

[3] R. Murgai, N. Shenoy, and R. K. Brayton, “Performance
directed synthesis for table look up programmable gate
arrays,” inProc. ICCAD, pp. 572–575, Nov. 1991.

[4] J. Cong and Y. Ding, “An optimal technology mapping
algorithm for delay optimization in lookup-table based
FPGA designs,” inProc. ICCAD, pp. 48–53, Nov. 1992.

[5] C. Legl, B. Wurth, and K. Eckl, “A boolean approach
to performance-directed technology mapping for LUT-
based FPGA designs,” in33rd ACM/IEEE Design Au-
tomation Conference, pp. 730–733, June 1996.

[6] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis
for look-up table based FPGAs using functional decom-
position and support minimization,” inProc. ICCAD,
pp. 353–358, Nov. 1995.

[7] J. P. Roth and R. M. Karp, “Minimization over boolean
graphs,”IBM Journal, pp. 227–238, Apr. 1962.

[8] S. Yamashita, H. Sawada, and A. Nagoya, “New methods
to find optimal non-disjoint bi-decompositions,” inASP-
DAC ’98, pp. 59–68, Feb. 1998.

[9] Y.-T. Lai, M. Pedram, and S. Vrudhula, “BDD based
decomposition of logic functions with application to
FPGA synthesis,” in30th ACM/IEEE Design Automation
Conference, pp. 642–647, June 1993.

[10] H. Sawada, S. Yamashita, and A. Nagoya, “Restructur-
ing logic representations with easily detectable simple
disjunctive decompositions,” inProc. of the Design, Au-
tomation and Test in Europe (DATE’98), pp. 755–759,
Feb. 1998.

[11] S. Yamashita, H. Sawada, and A. Nagoya, “A new
method to express functional permissibilities for LUT
based FPGAs and its applications,” inProc. ICCAD,
pp. 254–261, Nov. 1996.

[12] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, “An itera-
tive area/performance trade-off algorithm for LUT-based
FPGA technology mapping,” inProc. ICCAD, pp. 13–17,
Nov. 1996.

[13] Y. Nakamura, K. Oguri, A. Nagoya, M. Yukishita, and
R. Nomura, “High-level synthesis design at NTT systems
labs,” in Proc. of the Synthesis and Simulation Meeting
and International Interchange, pp. 344–353, 1992.

[14] Altera Corporation,Data book, 1993.


	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


