An Efficient Framework of Using Various Decomposition Methods to Synthesize LUT
Networks and Its Evaluation

Shigeru Yamashita Hiroshi Sawada Akira Nagoya

NTT Communication Science Laboratories
2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan
Tel: +81-774-93{5275, 5273, 527p
Fax: +81-774-93-5285
e-mail: {ger, sawada, nagoy@cslab.kecl.ntt.co.jp

Abstract— We present an efficient framework for synthesizing e Next, a technology mapper covers nodes Hoinput
look-up table (LUT) networks. nodes.
Some of the existing LUT network synthesis methods are based
onfunctional (boolean) decompositian®ur method also uses func- In this category, there are state-of-the-art methods such as
tional decompositions, but we try to use various decomposition Chortle-d [2], MIS-pga-delay [3] and FlowMap [4]. For
methods, which includealgebraic decompositionsTherefore, this the covering phase, optimal algorithms have been developed
method can be thought of as a general framework for synthesiz- under specified conditions [2, 4]. However, the intermediate
ing LUT networks by integrating various decomposition methods. networks before the covering phase often affect the final results;
We use acost database filehich is a unique characteristic inour i such cases, the final results are sometimes not so good.
m'a\;\?Od'l . The methods in the second category consist of only one
e also present comparisons between our method and some o0 they directly transform primary outguhctions (not
well-known LUT network synthesis methods, and evaluate the
final results after placement and routing. Although our method expressmns) In term; of P”mary inputs represented by an
is rather heuristic in nature, the experimental results are encour- Ordered binary decision diagram (OBDD) [5, 6]. (Below,
aging. we call transformations of functiorignctional decomposition
methods.) Therefore, the final results are not affected by
intermediate results, and are usually better than the results of
|. INTRODUCTION the methods in the first category.

. . L . . . The decomposition form of the functional decomposition
When implementing a combinational logic function usin . . o
. . : thods used in the methods in the second category is limited
a given technology, the desired function must be decomposF

) . ga specified form based on Disjoint Decomposition [7]. In
or factorized to smaller functions so that the decompose . "
some cases, another type of functional decomposition called

; " eNon—Disjoint Bi-Decomposition may be more appropriate [8].
technology. Accordingly, many decomposition methods hay owever, there is no method that positively tries to utilize vari-

been proposed. Most of these methods are based on transform- ! " .) S
)) . o . ous functional decomposition methods including Non-Disjoint
ing the algebraiexpressionof switching formulas, which we

i " Bi-Decomposition in synthesizing LUT networks.
callthemalgebraicdecomposition methods. For example, ker- o . :
Considering the above discussion, we propose a method

nel extraction [1] is an example of one superior method. Such. h the followi -
decomposition methods appear to be reasonable in conjunctivt\)/H the following properties:
with the technology mapping phase for standard technology e Various decomposition methods, not oraigebraic but
libraries. alsofunctionaldecomposition methods, can be integrated.
To realize combinational logic functions using a lookup table . - .
(LUT) based field programmable gate array (FPGA), we must ® It consists of only a decomposition phase. That is, we
generate an LUT network where each LUT is a special node do not need to consider the covering effect after the
that can realize any function witR (typically 4 or 5) inputs. decomposition phase.
Most LUT network synthesis methods can be divided into the
following two categories.
The methods in the first category are extended methods for
the standard technology libraries: Various decomposition methods, such as Disjoint Decomposi-
Cgon [7], Non-Disjoint Bi-Decomposition [8], Weak Division

e Toselectthe “best probable” decomposition at an interme-
diate decomposition, a “cost database file” is introduced.

o First, a logic optimizer performs decomposition an y Kernels, and Davio Expansion can be integrated into our

technology-independent optimization. In this phase, aﬂweethod. Our method can be thought of as an extension of the

gebraic decqmposmon methods are usually u_sed,_ and tmethods in the second category and a general framework for
number of literals is used for the cost considering the

standard technology libraries. IMIS-pga partially uses a functional decomposition method.

synthesizing LUT networks by integrating various decompoweak Division by Kernels
sition methods. Although it is rather heuristic in nature, th

experimental results are very encouraging. q’h|s is a decomposition method using sum-of-products ex-

ressions [1]. The computation time is usually smaller than

.Th's paper 1S organgd as follows. !n Section ”! W&unctional decomposition methods since it is based on the
briefly explain decomposition methods which are used in Olglgebraic division of expressions

method. In Section Ill, we propose a method of using various
decomposition methods to synthesize LUT networks. We |)

present experimental results in Section V. We mention tHgaVio Expansion

features of our method in Section VI. Section VII concludeshe pavio Expansion has the following three forms:

this paper.
o f=fod i fa
e f=fiew; fand

o f=%; foDxi- f1,

We treat a network as a directed acyclic graph (DAG) Wher\?/herefo = f+, f1 = fe, andfo = fo @ f1. This decomposi-
each node has a specified internal function with respect to {5 is importént because any function can be decomposed by
fanins. If the number qf fanins of a node is not more ti#an using these expansions.
we call the noddy -feasible

Our problem is to generate the lowest cost network where
all nodes ardx -feasible. I1l. OUR LUT NETWORK SYNTHESISMETHOD

The cost of a decomposed network is defined as follows: 4 Concept of Our Method

(the number of nodes in the network) + (Mthe levels of the .)

network), wherd¥ is the user defined weight. Our strategy is based on the following concept. Suppose
We consider various decomposition methods to be incorp8/€ have various decomposition methods. We can find the best

rated into our method. Here we summarize some of them §Composed network from the search space by considering all
of the possible combinations of the decomposition methods

Il. PRELIMINARY

follows) ; X
and the covering effect. However, performing an exhaustive
search for all of the possible combinations is not practical.

Disjoint Decomposition Thergfore, we .instead select a “best probable” decomposition
at an intermediate decomposition.

The disjoint decomposition is the form: f = If we must think of the covering effect after the decomposi-

algr(XB),...,9.(XB), X)) = a(§(XPB),XF), whereX? tion phase, it becomes difficult to determine a “best probable”
and X ¥ are disjoint variable sets [7]. This decompositiordecomposition at each intermediate decomposition, because
can be found by using the OBDD representing the functiothe decomposition forms are likely to be different between
of a node to be decomposed [6, 9]. In the previous LUBOMe of the decomposition methods. Thus, it is difficult to
network synthesis metholX #| is limited to K so that each predict the covering effect when the decomposition is being
g(XB) can be mapped into a single LUT. In our method, wélone.

prepare this kind of method withX | as 3 up toK because With this in mind, we evaluate the “cost” of a decomposition
we also consider the covering effect at the same time whé@rm with the following strategy.

decomposing a node, which will be discussed later. e We evaluate the cost of a decomposition including the

covering effect at the same time.

Non-Disjoint Bi-Decomposition ¢ We predict the cost of nodes whose supports are more than
N L X L K by using a “cost database file,” which describes de-
The decomposition formf = a(g1(X "), g2(X <)), whereX composition costs of functions from previously designed

and X2 are not limited to disjoint variable sets, can be ef- resylts.

fectively found by the method proposed in [8]. For some -) -)
functions, this decomposition form is better than Disjoint DefS @ result, we can utilize various decomposition methods in
composition [8]. The method can treat an incompletely spe@Ur method.

ified function for f, and representg; andg, as incompletely

specified functions, which is an advantage of this method. Outline of Our Method

However, if we want to use this decomposition together with
Disjoint Decomposition, we need to consider covering nodeér
at the same time as will be mentioned in Section Ill because
this decomposition produces a two-input node as a root no&ep 1: Construct an initial network that has only primary
for a decomposition, which is very different from the case of output nodes whose internal logics correspond to the
Disjoint Decomposition. This is one of our motivations to primary output functions (in terms of primary inputs) of
propose the framework in this paper. the given specification.

The overall procedure of generating a network whose nodes
e allK-feasible is as follows.

Step 2: Aslong as there remains a node that is Reteasible,
we decompose the node by using a selected decompositic -
method. How to select a “best probable” decompositior
is mentioned in Section II-C.

For a node to be decomposed, we prepare both sum-of-produc

DecompArea

expressions and functions by OBDDs for the internal logic in
order to utilize both algebraic and functional decomposition
methods.

C. How to Select a “Best Probable” Decomposition

(CY

(b) After decomposition

(c) After merging nodes

Fig. 1. Decomposition form of a node.

K -feasible node. However, we cannot know the precise values

We characterize a decomposition form of the various d&f CostLUT (n;) andCostLEV (n) if n; is not K -feasible.
composition methods used in our method as follows: a decorhierefore, we determine their values by looking up a cost
position form of a node: is characterized as a nodé which ~ database file as mentioned in Section IlI-D.

is a replacement af, and newly introduced nodes, - - - n,,
which are fanins ofn'.
methods in this form. Fig.1(b) shows an example of this for
Bi-Decomposition based methods. We call the set of nod
introduced at the decomposition “DecompArea” (the dotte
rectangle in Fig.1(b)).

In our decomposition form, we do not share common func:
tions between some functions. This is because we bravef)é)
omit sharing functions in order to uniformly treat various de-
composition methods. However, this can be considered as
extension of our method and will be mentioned in Section IV-A,

We select a “best probable” decomposition form of a nod
at Step 2 in our method by evaluating the “cost” of the o
decomposition. Since we want to treat various decomposition
methods, we consider the case where the number of fanins of
a node in the DecompArea is less thAn For example, the
number of fanins oh’ is two when a decomposition method
based on Bi-Decomposition is used. Such a node may be
merged into a node not in the DecompArea. Since our strategy
does not perform the covering phase after the decomposition
phase, we try to merge such a node, which is at the boundary of
the DecompArea, into a node not in the DecompArea to form ©
a newly merged node if the merged node is diilifeasible
as shown in Fig.1(c). In this example, andn, can be
merged into other nodes, so we do not consider them in the
decomposition cost. Accordingly, the cost evaluation after
the merging of the nodes simultaneously includes the covering
effect.

For the DecompArea after the merging (the dotted rectangle
in Fig.1(c)), our cost is defined as:
cost of a decomposition =

2

n;€EDecompArea

CostLUT (n;)}+

W x { max

n;€DecompArea

LEV(ni)},

whereWV is the user defined weightL EV (n;) is recursively
defined as follows, and it becomes 0 for a primary input node.

We can treat most decomposition D. Decomposition Cost

In our cost strategy, at first we prepare a cost database
%"?e which stores the statistical relationships between some
parameters characterizing the output function (in terms of
the primary inputs) of a node;, and CostLUT(n;) and
stLEV (n;).
m
e, _

e generated a cost database file as shown here, but clearly
Ehis is not the only method.

In the present implementation, we use the
ber of supports of the function, and the number of cubes
literals in an expression for the function.

We make a first cost database file in whichst LUT (n;)
andCostLEV (n;) take the same value as follows.

1, if n; is K-feasible
(the number of fanins of n;) — K + 1, otherwise

This value is taken from [5]. We do not consider the
number of cubes and literals in this first cost database file.

Using the first cost database file, we generate various
networks by our method. We then make a second cost
database file in which each entry describes a statistical
relationship between the above three parameters for the
output function of each node in the decomposed networks,
and the number of transitive fanins of the node and
levels of the node, which correspond €wst LUT and
CostLEV , respectively.

TABLE |
A COSTDATABASE FILE

supports| cubes| literals || CostLUT | CostLev

7 24 113 7 3

max

nj is a fanin of n;

LEV (n;) ={ LEV (n;)}+CostLEV (n;).

For example, if we need 7 LUTs and 3 levels to implement
a function whose supports, and cubes and literals are 7, 24

and 113, respectively, by using the first cost database file (it
CostLUT (n;) andCostLEV (n;) denote the predicted num- actually happened in our experiments), we get an entry in the
bers of K-LUTs and the levels for implementing the in-second cost database file as shown in Table I. We think the
ternal function ofn;, respectively. They become 1 for asecond cost database file is more accurate than the first cost

database file because the latter predicts that Botkk LUT Indeed, we can perform decomposition methods in parallel on
andCost LEV for the function are 3§ = 5), which is quite different processors, and this reduces the computation time.
different form the actual results. The second cost database filee idea is as follows. If adecomposition method takes a much
can be thought of as a feedback from the previously designé&mhger time to decompose some functions (or expressions)
results. Actually, we usually obtain better results with thehan other decomposition methods, the decomposition result is
second cost database file than we do by using the first cagtually worse. Therefore, we abandon some of decomposition

database file. methods that take too much time in a parallel implementation
With the cost database file, we calculétest LUT (n;) and without sacrificing the quality of our results. This dramatically
CostLEV (n;) as follows. reduces the computation time. As processors are getting

_ ~ cheaper and cheaper, an implementation in parallel becomes
o Calculate three parameters from the internal function gf,gre attractive for our method.

;.

e Find the values 0€ostLUT (n;) andCostLEV (n;) in V. EXPERIMENTAL RESULTS
the entry that produces the best fit for the three parameters
in the cost database file. A. Evaluation of Various Implementations

In most of the previous logic synthesis methods, the cost of aWe ct?]n g.eft various rIeSlt"rl;[s .frorln varlotu? |mplemercljtat|on3_of
function is usually measured only by the number of supports rthmet od, ofrgxamp e, 't'e Imp ethedn atlhlo? varl_e? eptend lngd
the function or literals in the logic expression of the functionO" the types ot decomposilion methods that are integrated an
We can use the both parameters in our method. the cost database file that is used. All of our results shown in

We can generate the third cost database file from the seco P section were produced by an implementation using Davio

cost database file in the same way. With the third cost datab ansion with each variable, Disjoint Decomposition with

- i B "
file, we sometimes obtain better results than we do by usi |as 3,4 and 5, and Non D_|s!0|nt Bi-Decomposition. .
the second cost database file. In our cost strategy, we originally expect the followings

features:

e The results obtained with the ¢ 1)-th cost database file
are usually better than those with theth cost database

A. Sharing Sub Functions file.

IV. AN EXTENSION OFOUR METHOD

As previously mentioned, our strategy takes little account of ® We can control the trade-off between network levels and
the sharing of common functions, which sometimes dramat- the number of nodes by using the user defined weiight

ically reduces the network cost. Therefore, we plan to add \yg herformed experiments with the first, second and third
the following operation to the decomposition methods that aig,; qatabase files aifiti = 0.5. 1 and 20. From a comparison

also used as decomposition methods at Step 2: When a nog&e results, we could not find the above features but instead
n; is decomposed, we check whether an existing nodean 1,4 following features:

be used for the node. This can be accomplished by dividing
the expression ofy; by the expression of;, which is called e The results with the second cost database fileléind 1
algebraic resubstitution. This can also be done by utilizing the are usually the best. This means that we cannot expect
boolean resubstitution and the support minimization technique the third cost database file to always be better than the
proposed in [6]. Note that we can adopt the above operation second cost database file.

as a decomposition method in our framework if we do not .
considen, in the decomposition cost. o If W is larger, the levels usually becomes smaller. How-

In our framework, we can also prepare another operation e}/er,(;:hangmgv seemed to have no effect on the number
to share common functions: after all decompositions, the ornodes.
minimization method proposed in [11] is performed to replacgrom the above, we do not consider our current cost database

the output of a node with that of another node. files to be robust. However, the differences between the various
cost database files ahid were not so large, and all results were
B. Speeding Up the Framework thought to be good enough, as we will see in the following

) N sub-sections.
We believe that some decomposition methods had better be

applied first if possible. For example, a simple disjunctiv
decomposition usually provides good decomposition form
that can be found relatively fast [10]. Such decomposition Table Il compares the mapping results for 5-LUT networks
methods should be applied before the decomposition of a nodetween our method and several of the well-known level-
at Step 2. We expect that this process will sometimes reduoptimized LUT network synthesis methods. Our results were
the total computation time. obtained with the second cost database fileTdhd 1.
Another technique of speeding up the framework is to The sub-columnsflut” and “tivl” show the numbers of

independently checking each decomposition method at StepR2LUTs and network levels, respectively. The sub-column

. Comparison Before Placement and Routing

TABLE Il
COMPARISON OFMAPPING RESULTS FOR5-LUT NETWORKS

circuit ALTO[12] mispga-d chortle-d FlowMap-r | BoolMap-D[5] Ours

name flut | givl fglut | givl flut | glvl flut | vl flut givl | glut | glivl CPU
5xpl 19 2 21 2 26 3 23 3 13 2 11 2 0.33
9sym 7 3 7 3 63 5 61 5 7 3 5 4 0.55
alu2 61 6 122 6 227 9 148 8 43 433 4 5.44
alu4 259 8 155| 11| 500| 10| 245| 10 268 7 85 7 77.33
apex4 - - - - | 1112 6 - - - - 1:302 4 32.67
apex6 229 4 274 5] 308 4 232 4 189 4161 4] 691.89
apex7 77 4 95 4 108 4 80 4 78 3 61 4 | 204.98
clip 33 3 54 4 - - - - - - 11 3 2.39
count 47 3 81 4 91 4 73 4 42 2 30 4| 7325
duke2 156 4 164 6 241 4 187 4 193 5 |:150 4] 162.75
f51m 15 3 23 4 - - - - - - 10 3 0.34
misex1 14 2 17 2 19 2 15 2 15 2 10 2 0.22
misex3 251 6 - - - - - - - - |:166 6| 196.64
rd73 8 2 8 2 - - - - - - 6 2 0.21
rdg4 13 3 13 3 61 4 43 4 10 2 7 3 0.54
sao2 38 3 45 5 - - - - - - 21 3 3.56
vg2 26 3 39 4 55 4 38 4 30 4 21 4 | 120.16
z4ml| 5 2 10 2 25 3 13 3 5 2 5 2 0.13
ALTO 1258 |61 793|611

mispga-d 1128 | 67 627:|:::55

chortle-d 2836 | 62 881:|:::48
FlowMap-r 1158 | 55 57944
BoolMap-D 893 40579 44

“CPU” indicates the CPU run-time (sec.) on a Sun Ultra 2 Step 1 Convert the file format by PARTHENON.

2200. To compare our results with other results, we show the Step 2 Our method is called from PARTHENON sys-
total numbers for the same circuits in the lower part of the table. tem to perform the technology mapping for 4-LUT
The shaded numbers indicate the best results. Our framework network€. Then PARTHENON outputs the result
appears relatively good in the comparison. We think one reason with the mapping informatichto MAX+plus II.

is that Non-Disjoint Bi-Decomposition sometimes provides .
good decompositions. Our method sometimes needed a long Step 3 Perform placement and routing by MAX+plus II.
computation time, which we do not think is a very serious

problem, as mentioned in Section IV-B. The two flows are different depending on the method used to

generate LUT networks, our proposed method or MAX+plus I.
Table 1l shows the results after placement and routing.
C. Comparison After Placement and Routing “4LE” and “Delay” show the numbers of logic elements and

We have incorporated the proposed method intwe delay values (ns) for the longest paths in the final results,

PARTHENON [13], which consists of a simulator and Syr1_respectively. From the table,_ we can see that our method
thesizers for a hardware description language SFL (Structur@l???_ has a good effect on the final results after placement and
Function description Language). routing.

To evaluate the integrated system, we compared the follow-

ing two logic synthesis flows. V1. FEATURES OFOUR METHOD

Using the mapping method in Max+plus I The proposed method has the following features.

Step 1 Convert the file format and perform the logic syn-
thesis at the technology independent level (including
logic reduction) by PARTHENON, and output the
result to MAX+plus II, which is the development
system for Altera devices.

Step 2 Perform the technology mapping for the Altera We can get various results from various implementations
FLEX8000 series [14] by MAX+plus II. of our method. Therefore, we are able to obtain various

e Various decomposition methods can easily be integrated
into our method. If a new decomposition algorithm has
been developed, we can easily check its effectiveness in
our framework.

Step 3 Perform placement and routing by MAX+plus Il. 2A logic element of FLEX8000 has one 4-input, 1-output LUT.
.) SAn LCELL primitive in MAX+plus Il can be used to attach the mapping
Using our mapping method information.

TABLE Il
COMPARISON OFFINAL RESULTS FORALTERA FLEX8000
Base tool PARTHENON
(synthesis & converter)
Mapping MAX+plus Il | Ours
Place & Route MAX+plus Il
circuit name fLE | Delay| fLE | Delay
5xpl 46| 27.2 15175
9sym 35| 444 8::18.6
alu2 135| 40.2 97327
alu4 715| 87.4|:420|::75.2
apex4 1447| 70.6|:691| - 46.4
apex6 230:|:::38.6:| 258| 47.6
apex7 113:| 43.0| 140|277
clip 33| 293 20244
count 41|::31.2 36| 32.9
duke2 322| 70.7|:261| 611
f51m 42| 26.7 13:-20.0
misex1 23| 271 14::-16:3
misex3 604| 76.7|:313|.::67.5
rd73 29| 328 7186
rdg4 37| 345 14::-26.7
sao2 80| 355 37:::19:6
vg2 71]::33.3 55| 36.1
z4ml 10| 174 6:|:16.0
Total 3922| 773.9|2405|604.9

(1]

(2]

(3]

(4]

(5]

(6]

decomposed networks for a given specification, and calm
explore a large design space.

(8]

There are some interesting features in our cost strategy. Itis

natural for a “bad” entry (which we think has a bad effect on

our cost strategy) to be generated in our cost database file from
a “bad” node for which abnormal (unexpected) number(s)[9] Y.-T. Lai, M. Pedram, and S. Vrudhula, “BDD based
of nodes or (and) levels were used in previously designed

networks. In our experiment, we ignored a “bad” entry in the

cost database file. However, it was interesting that when we

resynthesized a “bad” node, the numbers of nodes and lev
for the node were reduced at times to normal values in our ¢

0]

database file. We think this feedback to the resynthesis is one
of the advantages of our framework. In other words, the cost
of the network was sometimes reduced by resynthesizing the

output of “bad” nodes.

VII. CONCLUSION

(11]

We have proposed an efficient method for synthesizing LUT
networks. In our method, we successfully integrated marf{2]
decomposition methods that are not only algebraic but also
functional. Our method can be thought of as a general frame-

work for synthesizing LUT networks by integrating various

decomposition methods.
eL13]
Currently, our framework cannot treat large networks b
cause some of functional decomposition methods cannot treat

large functions. In the future, therefore, we would like to
improve the framework by incorporating it with appropri-

REFERENCES

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, “MIS: a multiple-level logic optimization
system,”IEEE Trans. CADvol. CAD-6, pp. 1062-1081,
Nov. 1987.

R. J. Francis, J. Rose, and Z. Vranesic, “Technology
mapping of lookup table-based FPGAs for performance,”
in Proc. ICCAD pp. 568-571, Nov. 1991.

R. Murgai, N. Shenoy, and R. K. Brayton, “Performance
directed synthesis for table look up programmable gate
arrays,” inProc. ICCAD pp. 572-575, Nov. 1991.

J. Cong and Y. Ding, “An optimal technology mapping
algorithm for delay optimization in lookup-table based
FPGA designs,” irfProc. ICCAD pp. 48-53, Nov. 1992.

C. Legl, B. Wurth, and K. Eckl, “A boolean approach
to performance-directed technology mapping for LUT-
based FPGA designs,” i83rd ACM/IEEE Design Au-
tomation Conferen¢ep. 730-733, June 1996.

H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis
for look-up table based FPGAs using functional decom-
position and support minimization,” ifProc. ICCAD

pp. 353-358, Nov. 1995.

J. P. Roth and R. M. Karp, “Minimization over boolean
graphs,”IBM Journal, pp. 227-238, Apr. 1962.

S. Yamashita, H. Sawada, and A. Nagoya, “New methods
to find optimal non-disjoint bi-decompositions,” ASP-
DAC '98, pp. 59-68, Feb. 1998.

decomposition of logic functions with application to
FPGA synthesis,” ir80th ACM/IEEE Design Automation
Conferencepp. 642—647, June 1993.

H. Sawada, S. Yamashita, and A. Nagoya, “Restructur-
ing logic representations with easily detectable simple
disjunctive decompositions,” iRroc. of the Design, Au-
tomation and Test in Europe (DATE'9Q®)p. 755-759,
Feb. 1998.

S. Yamashita, H. Sawada, and A. Nagoya, “A new
method to express functional permissibilities for LUT
based FPGAs and its applications,” Rroc. ICCAD
pp. 254-261, Nov. 1996.

J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, “An itera-
tive area/performance trade-off algorithm for LUT-based
FPGA technology mapping,” iRroc. ICCAD pp. 13-17,
Nov. 1996.

Y. Nakamura, K. Oguri, A. Nagoya, M. Yukishita, and
R. Nomura, “High-level synthesis design at NTT systems
labs,” in Proc. of the Synthesis and Simulation Meeting
and International Interchangep. 344—-353, 1992.

ate network partitioning methods, and to extend it using th@ 4] Altera CorporationPata book 1993.
techniques presented in this paper.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

